1 /* $OpenBSD: kern_synch.c,v 1.170 2020/04/06 07:52:12 claudio Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/signalvar.h> 45 #include <sys/resourcevar.h> 46 #include <sys/sched.h> 47 #include <sys/timeout.h> 48 #include <sys/mount.h> 49 #include <sys/syscallargs.h> 50 #include <sys/pool.h> 51 #include <sys/refcnt.h> 52 #include <sys/atomic.h> 53 #include <sys/witness.h> 54 #include <sys/tracepoint.h> 55 56 #include <ddb/db_output.h> 57 58 #include <machine/spinlock.h> 59 60 #ifdef DIAGNOSTIC 61 #include <sys/syslog.h> 62 #endif 63 64 #ifdef KTRACE 65 #include <sys/ktrace.h> 66 #endif 67 68 int thrsleep(struct proc *, struct sys___thrsleep_args *); 69 int thrsleep_unlock(void *); 70 71 /* 72 * We're only looking at 7 bits of the address; everything is 73 * aligned to 4, lots of things are aligned to greater powers 74 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 75 */ 76 #define TABLESIZE 128 77 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1)) 78 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE]; 79 80 void 81 sleep_queue_init(void) 82 { 83 int i; 84 85 for (i = 0; i < TABLESIZE; i++) 86 TAILQ_INIT(&slpque[i]); 87 } 88 89 90 /* 91 * During autoconfiguration or after a panic, a sleep will simply 92 * lower the priority briefly to allow interrupts, then return. 93 * The priority to be used (safepri) is machine-dependent, thus this 94 * value is initialized and maintained in the machine-dependent layers. 95 * This priority will typically be 0, or the lowest priority 96 * that is safe for use on the interrupt stack; it can be made 97 * higher to block network software interrupts after panics. 98 */ 99 extern int safepri; 100 101 /* 102 * General sleep call. Suspends the current process until a wakeup is 103 * performed on the specified identifier. The process will then be made 104 * runnable with the specified priority. Sleeps at most timo/hz seconds 105 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 106 * before and after sleeping, else signals are not checked. Returns 0 if 107 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 108 * signal needs to be delivered, ERESTART is returned if the current system 109 * call should be restarted if possible, and EINTR is returned if the system 110 * call should be interrupted by the signal (return EINTR). 111 */ 112 int 113 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo) 114 { 115 struct sleep_state sls; 116 #ifdef MULTIPROCESSOR 117 int hold_count; 118 #endif 119 120 KASSERT((priority & ~(PRIMASK | PCATCH)) == 0); 121 122 #ifdef MULTIPROCESSOR 123 KASSERT(timo || _kernel_lock_held()); 124 #endif 125 126 #ifdef DDB 127 if (cold == 2) 128 db_stack_dump(); 129 #endif 130 if (cold || panicstr) { 131 int s; 132 /* 133 * After a panic, or during autoconfiguration, 134 * just give interrupts a chance, then just return; 135 * don't run any other procs or panic below, 136 * in case this is the idle process and already asleep. 137 */ 138 s = splhigh(); 139 splx(safepri); 140 #ifdef MULTIPROCESSOR 141 if (_kernel_lock_held()) { 142 hold_count = __mp_release_all(&kernel_lock); 143 __mp_acquire_count(&kernel_lock, hold_count); 144 } 145 #endif 146 splx(s); 147 return (0); 148 } 149 150 sleep_setup(&sls, ident, priority, wmesg); 151 sleep_setup_timeout(&sls, timo); 152 sleep_setup_signal(&sls); 153 154 return sleep_finish_all(&sls, 1); 155 } 156 157 int 158 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg, 159 uint64_t nsecs) 160 { 161 uint64_t to_ticks; 162 163 if (nsecs == INFSLP) 164 return tsleep(ident, priority, wmesg, 0); 165 #ifdef DIAGNOSTIC 166 if (nsecs == 0) { 167 log(LOG_WARNING, 168 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 169 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 170 wmesg); 171 } 172 #endif 173 /* 174 * We want to sleep at least nsecs nanoseconds worth of ticks. 175 * 176 * - Clamp nsecs to prevent arithmetic overflow. 177 * 178 * - Round nsecs up to account for any nanoseconds that do not 179 * divide evenly into tick_nsec, otherwise we'll lose them to 180 * integer division in the next step. We add (tick_nsec - 1) 181 * to keep from introducing a spurious tick if there are no 182 * such nanoseconds, i.e. nsecs % tick_nsec == 0. 183 * 184 * - Divide the rounded value to a count of ticks. We divide 185 * by (tick_nsec + 1) to discard the extra tick introduced if, 186 * before rounding, nsecs % tick_nsec == 1. 187 * 188 * - Finally, add a tick to the result. We need to wait out 189 * the current tick before we can begin counting our interval, 190 * as we do not know how much time has elapsed since the 191 * current tick began. 192 */ 193 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 194 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 195 if (to_ticks > INT_MAX) 196 to_ticks = INT_MAX; 197 return tsleep(ident, priority, wmesg, (int)to_ticks); 198 } 199 200 /* 201 * Same as tsleep, but if we have a mutex provided, then once we've 202 * entered the sleep queue we drop the mutex. After sleeping we re-lock. 203 */ 204 int 205 msleep(const volatile void *ident, struct mutex *mtx, int priority, 206 const char *wmesg, int timo) 207 { 208 struct sleep_state sls; 209 int error, spl; 210 #ifdef MULTIPROCESSOR 211 int hold_count; 212 #endif 213 214 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 215 KASSERT(mtx != NULL); 216 217 if (priority & PCATCH) 218 KERNEL_ASSERT_LOCKED(); 219 220 if (cold || panicstr) { 221 /* 222 * After a panic, or during autoconfiguration, 223 * just give interrupts a chance, then just return; 224 * don't run any other procs or panic below, 225 * in case this is the idle process and already asleep. 226 */ 227 spl = MUTEX_OLDIPL(mtx); 228 MUTEX_OLDIPL(mtx) = safepri; 229 mtx_leave(mtx); 230 #ifdef MULTIPROCESSOR 231 if (_kernel_lock_held()) { 232 hold_count = __mp_release_all(&kernel_lock); 233 __mp_acquire_count(&kernel_lock, hold_count); 234 } 235 #endif 236 if ((priority & PNORELOCK) == 0) { 237 mtx_enter(mtx); 238 MUTEX_OLDIPL(mtx) = spl; 239 } else 240 splx(spl); 241 return (0); 242 } 243 244 sleep_setup(&sls, ident, priority, wmesg); 245 sleep_setup_timeout(&sls, timo); 246 247 /* XXX - We need to make sure that the mutex doesn't 248 * unblock splsched. This can be made a bit more 249 * correct when the sched_lock is a mutex. 250 */ 251 spl = MUTEX_OLDIPL(mtx); 252 MUTEX_OLDIPL(mtx) = splsched(); 253 mtx_leave(mtx); 254 /* signal may stop the process, release mutex before that */ 255 sleep_setup_signal(&sls); 256 257 error = sleep_finish_all(&sls, 1); 258 259 if ((priority & PNORELOCK) == 0) { 260 mtx_enter(mtx); 261 MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */ 262 } else 263 splx(spl); 264 265 return error; 266 } 267 268 int 269 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority, 270 const char *wmesg, uint64_t nsecs) 271 { 272 uint64_t to_ticks; 273 274 if (nsecs == INFSLP) 275 return msleep(ident, mtx, priority, wmesg, 0); 276 #ifdef DIAGNOSTIC 277 if (nsecs == 0) { 278 log(LOG_WARNING, 279 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 280 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 281 wmesg); 282 } 283 #endif 284 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 285 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 286 if (to_ticks > INT_MAX) 287 to_ticks = INT_MAX; 288 return msleep(ident, mtx, priority, wmesg, (int)to_ticks); 289 } 290 291 /* 292 * Same as tsleep, but if we have a rwlock provided, then once we've 293 * entered the sleep queue we drop the it. After sleeping we re-lock. 294 */ 295 int 296 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority, 297 const char *wmesg, int timo) 298 { 299 struct sleep_state sls; 300 int error, status; 301 302 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 303 rw_assert_anylock(rwl); 304 status = rw_status(rwl); 305 306 sleep_setup(&sls, ident, priority, wmesg); 307 sleep_setup_timeout(&sls, timo); 308 309 rw_exit(rwl); 310 /* signal may stop the process, release rwlock before that */ 311 sleep_setup_signal(&sls); 312 313 error = sleep_finish_all(&sls, 1); 314 315 if ((priority & PNORELOCK) == 0) 316 rw_enter(rwl, status); 317 318 return error; 319 } 320 321 int 322 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority, 323 const char *wmesg, uint64_t nsecs) 324 { 325 uint64_t to_ticks; 326 327 if (nsecs == INFSLP) 328 return rwsleep(ident, rwl, priority, wmesg, 0); 329 #ifdef DIAGNOSTIC 330 if (nsecs == 0) { 331 log(LOG_WARNING, 332 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 333 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 334 wmesg); 335 } 336 #endif 337 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 338 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 339 if (to_ticks > INT_MAX) 340 to_ticks = INT_MAX; 341 return rwsleep(ident, rwl, priority, wmesg, (int)to_ticks); 342 } 343 344 void 345 sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio, 346 const char *wmesg) 347 { 348 struct proc *p = curproc; 349 350 #ifdef DIAGNOSTIC 351 if (p->p_flag & P_CANTSLEEP) 352 panic("sleep: %s failed insomnia", p->p_p->ps_comm); 353 if (ident == NULL) 354 panic("tsleep: no ident"); 355 if (p->p_stat != SONPROC) 356 panic("tsleep: not SONPROC"); 357 #endif 358 359 sls->sls_catch = prio & PCATCH; 360 sls->sls_do_sleep = 1; 361 sls->sls_locked = 0; 362 sls->sls_sig = 0; 363 sls->sls_unwind = 0; 364 sls->sls_timeout = 0; 365 366 /* 367 * The kernel has to be locked for signal processing. 368 * This is done here and not in sleep_setup_signal() because 369 * KERNEL_LOCK() has to be taken before SCHED_LOCK(). 370 */ 371 if (sls->sls_catch != 0) { 372 KERNEL_LOCK(); 373 sls->sls_locked = 1; 374 } 375 376 SCHED_LOCK(sls->sls_s); 377 378 TRACEPOINT(sched, sleep, NULL); 379 380 p->p_wchan = ident; 381 p->p_wmesg = wmesg; 382 p->p_slptime = 0; 383 p->p_slppri = prio & PRIMASK; 384 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq); 385 } 386 387 int 388 sleep_finish_all(struct sleep_state *sls, int do_sleep) 389 { 390 int error, error1; 391 392 sleep_finish(sls, do_sleep); 393 error1 = sleep_finish_timeout(sls); 394 error = sleep_finish_signal(sls); 395 396 /* Signal errors are higher priority than timeouts. */ 397 if (error == 0 && error1 != 0) 398 error = error1; 399 400 return error; 401 } 402 403 void 404 sleep_finish(struct sleep_state *sls, int do_sleep) 405 { 406 struct proc *p = curproc; 407 408 if (sls->sls_do_sleep && do_sleep) { 409 p->p_stat = SSLEEP; 410 p->p_ru.ru_nvcsw++; 411 SCHED_ASSERT_LOCKED(); 412 mi_switch(); 413 } else if (!do_sleep) { 414 unsleep(p); 415 } 416 417 #ifdef DIAGNOSTIC 418 if (p->p_stat != SONPROC) 419 panic("sleep_finish !SONPROC"); 420 #endif 421 422 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri; 423 SCHED_UNLOCK(sls->sls_s); 424 425 /* 426 * Even though this belongs to the signal handling part of sleep, 427 * we need to clear it before the ktrace. 428 */ 429 atomic_clearbits_int(&p->p_flag, P_SINTR); 430 } 431 432 void 433 sleep_setup_timeout(struct sleep_state *sls, int timo) 434 { 435 struct proc *p = curproc; 436 437 if (timo) { 438 KASSERT((p->p_flag & P_TIMEOUT) == 0); 439 sls->sls_timeout = 1; 440 timeout_add(&p->p_sleep_to, timo); 441 } 442 } 443 444 int 445 sleep_finish_timeout(struct sleep_state *sls) 446 { 447 struct proc *p = curproc; 448 449 if (sls->sls_timeout) { 450 if (p->p_flag & P_TIMEOUT) { 451 atomic_clearbits_int(&p->p_flag, P_TIMEOUT); 452 return (EWOULDBLOCK); 453 } else { 454 /* This must not sleep. */ 455 timeout_del_barrier(&p->p_sleep_to); 456 KASSERT((p->p_flag & P_TIMEOUT) == 0); 457 } 458 } 459 460 return (0); 461 } 462 463 void 464 sleep_setup_signal(struct sleep_state *sls) 465 { 466 struct proc *p = curproc; 467 468 if (sls->sls_catch == 0) 469 return; 470 471 /* sleep_setup() has locked the kernel. */ 472 KERNEL_ASSERT_LOCKED(); 473 474 /* 475 * We put ourselves on the sleep queue and start our timeout before 476 * calling single_thread_check or CURSIG, as we could stop there, and 477 * a wakeup or a SIGCONT (or both) could occur while we were stopped. 478 * A SIGCONT would cause us to be marked as SSLEEP without resuming us, 479 * thus we must be ready for sleep when CURSIG is called. If the 480 * wakeup happens while we're stopped, p->p_wchan will be 0 upon 481 * return from single_thread_check or CURSIG. In that case we should 482 * not go to sleep. If single_thread_check returns an error we need 483 * to unwind immediately. That's achieved by saving the return value 484 * in sls->sl_unwind and checking it later in sleep_finish_signal. 485 */ 486 atomic_setbits_int(&p->p_flag, P_SINTR); 487 if ((sls->sls_unwind = single_thread_check(p, 1)) != 0 || 488 (sls->sls_sig = CURSIG(p)) != 0) { 489 unsleep(p); 490 p->p_stat = SONPROC; 491 sls->sls_do_sleep = 0; 492 } else if (p->p_wchan == 0) { 493 sls->sls_catch = 0; 494 sls->sls_do_sleep = 0; 495 } 496 } 497 498 int 499 sleep_finish_signal(struct sleep_state *sls) 500 { 501 struct proc *p = curproc; 502 int error = 0; 503 504 if (sls->sls_catch != 0) { 505 KERNEL_ASSERT_LOCKED(); 506 507 if (sls->sls_unwind != 0 || 508 (sls->sls_unwind = single_thread_check(p, 1)) != 0) 509 error = sls->sls_unwind; 510 else if (sls->sls_sig != 0 || 511 (sls->sls_sig = CURSIG(p)) != 0) { 512 if (p->p_p->ps_sigacts->ps_sigintr & 513 sigmask(sls->sls_sig)) 514 error = EINTR; 515 else 516 error = ERESTART; 517 } 518 } 519 520 if (sls->sls_locked) 521 KERNEL_UNLOCK(); 522 523 return (error); 524 } 525 526 int 527 wakeup_proc(struct proc *p, const volatile void *chan) 528 { 529 int s, awakened = 0; 530 531 SCHED_LOCK(s); 532 if (p->p_wchan != NULL && 533 ((chan == NULL) || (p->p_wchan == chan))) { 534 awakened = 1; 535 if (p->p_stat == SSLEEP) 536 setrunnable(p); 537 else 538 unsleep(p); 539 } 540 SCHED_UNLOCK(s); 541 542 return awakened; 543 } 544 545 /* 546 * Implement timeout for tsleep. 547 * If process hasn't been awakened (wchan non-zero), 548 * set timeout flag and undo the sleep. If proc 549 * is stopped, just unsleep so it will remain stopped. 550 */ 551 void 552 endtsleep(void *arg) 553 { 554 struct proc *p = arg; 555 int s; 556 557 SCHED_LOCK(s); 558 if (wakeup_proc(p, NULL)) 559 atomic_setbits_int(&p->p_flag, P_TIMEOUT); 560 SCHED_UNLOCK(s); 561 } 562 563 /* 564 * Remove a process from its wait queue 565 */ 566 void 567 unsleep(struct proc *p) 568 { 569 SCHED_ASSERT_LOCKED(); 570 571 if (p->p_wchan != NULL) { 572 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq); 573 p->p_wchan = NULL; 574 TRACEPOINT(sched, wakeup, p->p_tid, p->p_p->ps_pid); 575 } 576 } 577 578 /* 579 * Make a number of processes sleeping on the specified identifier runnable. 580 */ 581 void 582 wakeup_n(const volatile void *ident, int n) 583 { 584 struct slpque *qp; 585 struct proc *p; 586 struct proc *pnext; 587 int s; 588 589 SCHED_LOCK(s); 590 qp = &slpque[LOOKUP(ident)]; 591 for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) { 592 pnext = TAILQ_NEXT(p, p_runq); 593 #ifdef DIAGNOSTIC 594 /* 595 * If the rwlock passed to rwsleep() is contended, the 596 * CPU will end up calling wakeup() between sleep_setup() 597 * and sleep_finish(). 598 */ 599 if (p == curproc) { 600 KASSERT(p->p_stat == SONPROC); 601 continue; 602 } 603 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 604 panic("wakeup: p_stat is %d", (int)p->p_stat); 605 #endif 606 if (wakeup_proc(p, ident)) 607 --n; 608 } 609 SCHED_UNLOCK(s); 610 } 611 612 /* 613 * Make all processes sleeping on the specified identifier runnable. 614 */ 615 void 616 wakeup(const volatile void *chan) 617 { 618 wakeup_n(chan, -1); 619 } 620 621 int 622 sys_sched_yield(struct proc *p, void *v, register_t *retval) 623 { 624 struct proc *q; 625 uint8_t newprio; 626 int s; 627 628 SCHED_LOCK(s); 629 /* 630 * If one of the threads of a multi-threaded process called 631 * sched_yield(2), drop its priority to ensure its siblings 632 * can make some progress. 633 */ 634 newprio = p->p_usrpri; 635 TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) 636 newprio = max(newprio, q->p_runpri); 637 setrunqueue(p->p_cpu, p, newprio); 638 p->p_ru.ru_nvcsw++; 639 mi_switch(); 640 SCHED_UNLOCK(s); 641 642 return (0); 643 } 644 645 int 646 thrsleep_unlock(void *lock) 647 { 648 static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED; 649 _atomic_lock_t *atomiclock = lock; 650 651 if (!lock) 652 return 0; 653 654 return copyout(&unlocked, atomiclock, sizeof(unlocked)); 655 } 656 657 struct tslpentry { 658 TAILQ_ENTRY(tslpentry) tslp_link; 659 long tslp_ident; 660 }; 661 662 /* thrsleep queue shared between processes */ 663 static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue); 664 static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk"); 665 666 int 667 thrsleep(struct proc *p, struct sys___thrsleep_args *v) 668 { 669 struct sys___thrsleep_args /* { 670 syscallarg(const volatile void *) ident; 671 syscallarg(clockid_t) clock_id; 672 syscallarg(const struct timespec *) tp; 673 syscallarg(void *) lock; 674 syscallarg(const int *) abort; 675 } */ *uap = v; 676 long ident = (long)SCARG(uap, ident); 677 struct tslpentry entry; 678 struct tslpqueue *queue; 679 struct rwlock *qlock; 680 struct timespec *tsp = (struct timespec *)SCARG(uap, tp); 681 void *lock = SCARG(uap, lock); 682 uint64_t nsecs = INFSLP; 683 int abort = 0, error; 684 clockid_t clock_id = SCARG(uap, clock_id); 685 686 if (ident == 0) 687 return (EINVAL); 688 if (tsp != NULL) { 689 struct timespec now; 690 691 if ((error = clock_gettime(p, clock_id, &now))) 692 return (error); 693 #ifdef KTRACE 694 if (KTRPOINT(p, KTR_STRUCT)) 695 ktrabstimespec(p, tsp); 696 #endif 697 698 if (timespeccmp(tsp, &now, <=)) { 699 /* already passed: still do the unlock */ 700 if ((error = thrsleep_unlock(lock))) 701 return (error); 702 return (EWOULDBLOCK); 703 } 704 705 timespecsub(tsp, &now, tsp); 706 nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP); 707 } 708 709 if (ident == -1) { 710 queue = &thrsleep_queue; 711 qlock = &thrsleep_lock; 712 } else { 713 queue = &p->p_p->ps_tslpqueue; 714 qlock = &p->p_p->ps_lock; 715 } 716 717 /* Interlock with wakeup. */ 718 entry.tslp_ident = ident; 719 rw_enter_write(qlock); 720 TAILQ_INSERT_TAIL(queue, &entry, tslp_link); 721 rw_exit_write(qlock); 722 723 error = thrsleep_unlock(lock); 724 725 if (error == 0 && SCARG(uap, abort) != NULL) 726 error = copyin(SCARG(uap, abort), &abort, sizeof(abort)); 727 728 rw_enter_write(qlock); 729 if (error != 0) 730 goto out; 731 if (abort != 0) { 732 error = EINTR; 733 goto out; 734 } 735 if (entry.tslp_ident != 0) { 736 error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep", 737 nsecs); 738 } 739 740 out: 741 if (entry.tslp_ident != 0) 742 TAILQ_REMOVE(queue, &entry, tslp_link); 743 rw_exit_write(qlock); 744 745 if (error == ERESTART) 746 error = ECANCELED; 747 748 return (error); 749 750 } 751 752 int 753 sys___thrsleep(struct proc *p, void *v, register_t *retval) 754 { 755 struct sys___thrsleep_args /* { 756 syscallarg(const volatile void *) ident; 757 syscallarg(clockid_t) clock_id; 758 syscallarg(struct timespec *) tp; 759 syscallarg(void *) lock; 760 syscallarg(const int *) abort; 761 } */ *uap = v; 762 struct timespec ts; 763 int error; 764 765 if (SCARG(uap, tp) != NULL) { 766 if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) { 767 *retval = error; 768 return 0; 769 } 770 if (!timespecisvalid(&ts)) { 771 *retval = EINVAL; 772 return 0; 773 } 774 SCARG(uap, tp) = &ts; 775 } 776 777 *retval = thrsleep(p, uap); 778 return 0; 779 } 780 781 int 782 sys___thrwakeup(struct proc *p, void *v, register_t *retval) 783 { 784 struct sys___thrwakeup_args /* { 785 syscallarg(const volatile void *) ident; 786 syscallarg(int) n; 787 } */ *uap = v; 788 struct tslpentry *entry, *tmp; 789 struct tslpqueue *queue; 790 struct rwlock *qlock; 791 long ident = (long)SCARG(uap, ident); 792 int n = SCARG(uap, n); 793 int found = 0; 794 795 if (ident == 0) 796 *retval = EINVAL; 797 else { 798 if (ident == -1) { 799 queue = &thrsleep_queue; 800 qlock = &thrsleep_lock; 801 /* 802 * Wake up all waiters with ident -1. This is needed 803 * because ident -1 can be shared by multiple userspace 804 * lock state machines concurrently. The implementation 805 * has no way to direct the wakeup to a particular 806 * state machine. 807 */ 808 n = 0; 809 } else { 810 queue = &p->p_p->ps_tslpqueue; 811 qlock = &p->p_p->ps_lock; 812 } 813 814 rw_enter_write(qlock); 815 TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) { 816 if (entry->tslp_ident == ident) { 817 TAILQ_REMOVE(queue, entry, tslp_link); 818 entry->tslp_ident = 0; 819 wakeup_one(entry); 820 if (++found == n) 821 break; 822 } 823 } 824 rw_exit_write(qlock); 825 826 if (ident == -1) 827 *retval = 0; 828 else 829 *retval = found ? 0 : ESRCH; 830 } 831 832 return (0); 833 } 834 835 void 836 refcnt_init(struct refcnt *r) 837 { 838 r->refs = 1; 839 } 840 841 void 842 refcnt_take(struct refcnt *r) 843 { 844 #ifdef DIAGNOSTIC 845 u_int refcnt; 846 847 refcnt = atomic_inc_int_nv(&r->refs); 848 KASSERT(refcnt != 0); 849 #else 850 atomic_inc_int(&r->refs); 851 #endif 852 } 853 854 int 855 refcnt_rele(struct refcnt *r) 856 { 857 u_int refcnt; 858 859 refcnt = atomic_dec_int_nv(&r->refs); 860 KASSERT(refcnt != ~0); 861 862 return (refcnt == 0); 863 } 864 865 void 866 refcnt_rele_wake(struct refcnt *r) 867 { 868 if (refcnt_rele(r)) 869 wakeup_one(r); 870 } 871 872 void 873 refcnt_finalize(struct refcnt *r, const char *wmesg) 874 { 875 struct sleep_state sls; 876 u_int refcnt; 877 878 refcnt = atomic_dec_int_nv(&r->refs); 879 while (refcnt) { 880 sleep_setup(&sls, r, PWAIT, wmesg); 881 refcnt = r->refs; 882 sleep_finish(&sls, refcnt); 883 } 884 } 885 886 void 887 cond_init(struct cond *c) 888 { 889 c->c_wait = 1; 890 } 891 892 void 893 cond_signal(struct cond *c) 894 { 895 c->c_wait = 0; 896 897 wakeup_one(c); 898 } 899 900 void 901 cond_wait(struct cond *c, const char *wmesg) 902 { 903 struct sleep_state sls; 904 int wait; 905 906 wait = c->c_wait; 907 while (wait) { 908 sleep_setup(&sls, c, PWAIT, wmesg); 909 wait = c->c_wait; 910 sleep_finish(&sls, wait); 911 } 912 } 913