xref: /openbsd/sys/kern/kern_sysctl.c (revision 3bef86f7)
1 /*	$OpenBSD: kern_sysctl.c,v 1.424 2024/01/19 01:43:27 bluhm Exp $	*/
2 /*	$NetBSD: kern_sysctl.c,v 1.17 1996/05/20 17:49:05 mrg Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Mike Karels at Berkeley Software Design, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_sysctl.c	8.4 (Berkeley) 4/14/94
36  */
37 
38 /*
39  * sysctl system call.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/vnode.h>
54 #include <sys/unistd.h>
55 #include <sys/buf.h>
56 #include <sys/clockintr.h>
57 #include <sys/tty.h>
58 #include <sys/disklabel.h>
59 #include <sys/disk.h>
60 #include <sys/sysctl.h>
61 #include <sys/msgbuf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/namei.h>
64 #include <sys/exec.h>
65 #include <sys/mbuf.h>
66 #include <sys/percpu.h>
67 #include <sys/sensors.h>
68 #include <sys/pipe.h>
69 #include <sys/eventvar.h>
70 #include <sys/socketvar.h>
71 #include <sys/socket.h>
72 #include <sys/domain.h>
73 #include <sys/protosw.h>
74 #include <sys/pledge.h>
75 #include <sys/timetc.h>
76 #include <sys/evcount.h>
77 #include <sys/un.h>
78 #include <sys/unpcb.h>
79 #include <sys/sched.h>
80 #include <sys/mount.h>
81 #include <sys/syscallargs.h>
82 #include <sys/wait.h>
83 #include <sys/witness.h>
84 
85 #include <uvm/uvm_extern.h>
86 
87 #include <dev/cons.h>
88 
89 #include <dev/usb/ucomvar.h>
90 
91 #include <net/route.h>
92 #include <netinet/in.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/ip6.h>
97 #include <netinet/tcp.h>
98 #include <netinet/tcp_timer.h>
99 #include <netinet/tcp_var.h>
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102 #include <netinet6/ip6_var.h>
103 
104 #ifdef DDB
105 #include <ddb/db_var.h>
106 #endif
107 
108 #ifdef SYSVMSG
109 #include <sys/msg.h>
110 #endif
111 #ifdef SYSVSEM
112 #include <sys/sem.h>
113 #endif
114 #ifdef SYSVSHM
115 #include <sys/shm.h>
116 #endif
117 
118 #include "audio.h"
119 #include "dt.h"
120 #include "pf.h"
121 #include "ucom.h"
122 #include "video.h"
123 
124 extern struct forkstat forkstat;
125 extern struct nchstats nchstats;
126 extern int fscale;
127 extern fixpt_t ccpu;
128 extern long numvnodes;
129 extern int allowdt;
130 extern int audio_record_enable;
131 extern int video_record_enable;
132 extern int autoconf_serial;
133 
134 int allowkmem;
135 
136 int sysctl_diskinit(int, struct proc *);
137 int sysctl_proc_args(int *, u_int, void *, size_t *, struct proc *);
138 int sysctl_proc_cwd(int *, u_int, void *, size_t *, struct proc *);
139 int sysctl_proc_nobroadcastkill(int *, u_int, void *, size_t, void *, size_t *,
140 	struct proc *);
141 int sysctl_proc_vmmap(int *, u_int, void *, size_t *, struct proc *);
142 int sysctl_intrcnt(int *, u_int, void *, size_t *);
143 int sysctl_sensors(int *, u_int, void *, size_t *, void *, size_t);
144 int sysctl_cptime2(int *, u_int, void *, size_t *, void *, size_t);
145 int sysctl_audio(int *, u_int, void *, size_t *, void *, size_t);
146 int sysctl_video(int *, u_int, void *, size_t *, void *, size_t);
147 int sysctl_cpustats(int *, u_int, void *, size_t *, void *, size_t);
148 int sysctl_utc_offset(void *, size_t *, void *, size_t);
149 int sysctl_hwbattery(int *, u_int, void *, size_t *, void *, size_t);
150 
151 void fill_file(struct kinfo_file *, struct file *, struct filedesc *, int,
152     struct vnode *, struct process *, struct proc *, struct socket *, int);
153 void fill_kproc(struct process *, struct kinfo_proc *, struct proc *, int);
154 
155 int (*cpu_cpuspeed)(int *);
156 
157 /*
158  * Lock to avoid too many processes vslocking a large amount of memory
159  * at the same time.
160  */
161 struct rwlock sysctl_lock = RWLOCK_INITIALIZER("sysctllk");
162 struct rwlock sysctl_disklock = RWLOCK_INITIALIZER("sysctldlk");
163 
164 int
165 sys_sysctl(struct proc *p, void *v, register_t *retval)
166 {
167 	struct sys_sysctl_args /* {
168 		syscallarg(const int *) name;
169 		syscallarg(u_int) namelen;
170 		syscallarg(void *) old;
171 		syscallarg(size_t *) oldlenp;
172 		syscallarg(void *) new;
173 		syscallarg(size_t) newlen;
174 	} */ *uap = v;
175 	int error, dolock = 1;
176 	size_t savelen = 0, oldlen = 0;
177 	sysctlfn *fn;
178 	int name[CTL_MAXNAME];
179 
180 	if (SCARG(uap, new) != NULL &&
181 	    (error = suser(p)))
182 		return (error);
183 	/*
184 	 * all top-level sysctl names are non-terminal
185 	 */
186 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
187 		return (EINVAL);
188 	error = copyin(SCARG(uap, name), name,
189 		       SCARG(uap, namelen) * sizeof(int));
190 	if (error)
191 		return (error);
192 
193 	error = pledge_sysctl(p, SCARG(uap, namelen),
194 	    name, SCARG(uap, new));
195 	if (error)
196 		return (error);
197 
198 	switch (name[0]) {
199 	case CTL_KERN:
200 		fn = kern_sysctl;
201 		break;
202 	case CTL_HW:
203 		fn = hw_sysctl;
204 		break;
205 	case CTL_VM:
206 		fn = uvm_sysctl;
207 		break;
208 	case CTL_NET:
209 		fn = net_sysctl;
210 		break;
211 	case CTL_FS:
212 		fn = fs_sysctl;
213 		break;
214 	case CTL_VFS:
215 		fn = vfs_sysctl;
216 		break;
217 	case CTL_MACHDEP:
218 		fn = cpu_sysctl;
219 		break;
220 #ifdef DEBUG_SYSCTL
221 	case CTL_DEBUG:
222 		fn = debug_sysctl;
223 		break;
224 #endif
225 #ifdef DDB
226 	case CTL_DDB:
227 		fn = ddb_sysctl;
228 		break;
229 #endif
230 	default:
231 		return (EOPNOTSUPP);
232 	}
233 
234 	if (SCARG(uap, oldlenp) &&
235 	    (error = copyin(SCARG(uap, oldlenp), &oldlen, sizeof(oldlen))))
236 		return (error);
237 	if (SCARG(uap, old) != NULL) {
238 		if ((error = rw_enter(&sysctl_lock, RW_WRITE|RW_INTR)) != 0)
239 			return (error);
240 		if (dolock) {
241 			if (atop(oldlen) > uvmexp.wiredmax - uvmexp.wired) {
242 				rw_exit_write(&sysctl_lock);
243 				return (ENOMEM);
244 			}
245 			error = uvm_vslock(p, SCARG(uap, old), oldlen,
246 			    PROT_READ | PROT_WRITE);
247 			if (error) {
248 				rw_exit_write(&sysctl_lock);
249 				return (error);
250 			}
251 		}
252 		savelen = oldlen;
253 	}
254 	error = (*fn)(&name[1], SCARG(uap, namelen) - 1, SCARG(uap, old),
255 	    &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
256 	if (SCARG(uap, old) != NULL) {
257 		if (dolock)
258 			uvm_vsunlock(p, SCARG(uap, old), savelen);
259 		rw_exit_write(&sysctl_lock);
260 	}
261 	if (error)
262 		return (error);
263 	if (SCARG(uap, oldlenp))
264 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
265 	return (error);
266 }
267 
268 /*
269  * Attributes stored in the kernel.
270  */
271 char hostname[MAXHOSTNAMELEN];
272 int hostnamelen;
273 char domainname[MAXHOSTNAMELEN];
274 int domainnamelen;
275 long hostid;
276 char *disknames = NULL;
277 size_t disknameslen;
278 struct diskstats *diskstats = NULL;
279 size_t diskstatslen;
280 int securelevel;
281 
282 /* morally const values reported by sysctl_bounded_arr */
283 static int arg_max = ARG_MAX;
284 static int openbsd = OpenBSD;
285 static int posix_version = _POSIX_VERSION;
286 static int ngroups_max = NGROUPS_MAX;
287 static int int_zero = 0;
288 static int int_one = 1;
289 static int maxpartitions = MAXPARTITIONS;
290 static int raw_part = RAW_PART;
291 
292 extern int somaxconn, sominconn;
293 extern int nosuidcoredump;
294 extern int maxlocksperuid;
295 extern int uvm_wxabort;
296 extern int global_ptrace;
297 
298 const struct sysctl_bounded_args kern_vars[] = {
299 	{KERN_OSREV, &openbsd, SYSCTL_INT_READONLY},
300 	{KERN_MAXVNODES, &maxvnodes, 0, INT_MAX},
301 	{KERN_MAXPROC, &maxprocess, 0, INT_MAX},
302 	{KERN_MAXFILES, &maxfiles, 0, INT_MAX},
303 	{KERN_NFILES, &numfiles, SYSCTL_INT_READONLY},
304 	{KERN_TTYCOUNT, &tty_count, SYSCTL_INT_READONLY},
305 	{KERN_ARGMAX, &arg_max, SYSCTL_INT_READONLY},
306 	{KERN_POSIX1, &posix_version, SYSCTL_INT_READONLY},
307 	{KERN_NGROUPS, &ngroups_max, SYSCTL_INT_READONLY},
308 	{KERN_JOB_CONTROL, &int_one, SYSCTL_INT_READONLY},
309 	{KERN_SAVED_IDS, &int_one, SYSCTL_INT_READONLY},
310 	{KERN_MAXPARTITIONS, &maxpartitions, SYSCTL_INT_READONLY},
311 	{KERN_RAWPARTITION, &raw_part, SYSCTL_INT_READONLY},
312 	{KERN_MAXTHREAD, &maxthread, 0, INT_MAX},
313 	{KERN_NTHREADS, &nthreads, SYSCTL_INT_READONLY},
314 	{KERN_SOMAXCONN, &somaxconn, 0, SHRT_MAX},
315 	{KERN_SOMINCONN, &sominconn, 0, SHRT_MAX},
316 	{KERN_NOSUIDCOREDUMP, &nosuidcoredump, 0, 3},
317 	{KERN_FSYNC, &int_one, SYSCTL_INT_READONLY},
318 	{KERN_SYSVMSG,
319 #ifdef SYSVMSG
320 	 &int_one,
321 #else
322 	 &int_zero,
323 #endif
324 	 SYSCTL_INT_READONLY},
325 	{KERN_SYSVSEM,
326 #ifdef SYSVSEM
327 	 &int_one,
328 #else
329 	 &int_zero,
330 #endif
331 	 SYSCTL_INT_READONLY},
332 	{KERN_SYSVSHM,
333 #ifdef SYSVSHM
334 	 &int_one,
335 #else
336 	 &int_zero,
337 #endif
338 	 SYSCTL_INT_READONLY},
339 	{KERN_FSCALE, &fscale, SYSCTL_INT_READONLY},
340 	{KERN_CCPU, &ccpu, SYSCTL_INT_READONLY},
341 	{KERN_NPROCS, &nprocesses, SYSCTL_INT_READONLY},
342 	{KERN_SPLASSERT, &splassert_ctl, 0, 3},
343 	{KERN_MAXLOCKSPERUID, &maxlocksperuid, 0, INT_MAX},
344 	{KERN_WXABORT, &uvm_wxabort, 0, 1},
345 	{KERN_NETLIVELOCKS, &int_zero, SYSCTL_INT_READONLY},
346 #ifdef PTRACE
347 	{KERN_GLOBAL_PTRACE, &global_ptrace, 0, 1},
348 #endif
349 	{KERN_AUTOCONF_SERIAL, &autoconf_serial, SYSCTL_INT_READONLY},
350 };
351 
352 int
353 kern_sysctl_dirs(int top_name, int *name, u_int namelen,
354     void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p)
355 {
356 	switch (top_name) {
357 #ifndef SMALL_KERNEL
358 	case KERN_PROC:
359 		return (sysctl_doproc(name, namelen, oldp, oldlenp));
360 	case KERN_PROC_ARGS:
361 		return (sysctl_proc_args(name, namelen, oldp, oldlenp, p));
362 	case KERN_PROC_CWD:
363 		return (sysctl_proc_cwd(name, namelen, oldp, oldlenp, p));
364 	case KERN_PROC_NOBROADCASTKILL:
365 		return (sysctl_proc_nobroadcastkill(name, namelen,
366 		     newp, newlen, oldp, oldlenp, p));
367 	case KERN_PROC_VMMAP:
368 		return (sysctl_proc_vmmap(name, namelen, oldp, oldlenp, p));
369 	case KERN_FILE:
370 		return (sysctl_file(name, namelen, oldp, oldlenp, p));
371 #endif
372 #if defined(GPROF) || defined(DDBPROF)
373 	case KERN_PROF:
374 		return (sysctl_doprof(name, namelen, oldp, oldlenp,
375 		    newp, newlen));
376 #endif
377 	case KERN_MALLOCSTATS:
378 		return (sysctl_malloc(name, namelen, oldp, oldlenp,
379 		    newp, newlen, p));
380 	case KERN_TTY:
381 		return (sysctl_tty(name, namelen, oldp, oldlenp,
382 		    newp, newlen));
383 	case KERN_POOL:
384 		return (sysctl_dopool(name, namelen, oldp, oldlenp));
385 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
386 	case KERN_SYSVIPC_INFO:
387 		return (sysctl_sysvipc(name, namelen, oldp, oldlenp));
388 #endif
389 #ifdef SYSVSEM
390 	case KERN_SEMINFO:
391 		return (sysctl_sysvsem(name, namelen, oldp, oldlenp,
392 		    newp, newlen));
393 #endif
394 #ifdef SYSVSHM
395 	case KERN_SHMINFO:
396 		return (sysctl_sysvshm(name, namelen, oldp, oldlenp,
397 		    newp, newlen));
398 #endif
399 #ifndef SMALL_KERNEL
400 	case KERN_INTRCNT:
401 		return (sysctl_intrcnt(name, namelen, oldp, oldlenp));
402 	case KERN_WATCHDOG:
403 		return (sysctl_wdog(name, namelen, oldp, oldlenp,
404 		    newp, newlen));
405 #endif
406 #ifndef SMALL_KERNEL
407 	case KERN_EVCOUNT:
408 		return (evcount_sysctl(name, namelen, oldp, oldlenp,
409 		    newp, newlen));
410 #endif
411 	case KERN_TIMECOUNTER:
412 		return (sysctl_tc(name, namelen, oldp, oldlenp, newp, newlen));
413 	case KERN_CPTIME2:
414 		return (sysctl_cptime2(name, namelen, oldp, oldlenp,
415 		    newp, newlen));
416 #ifdef WITNESS
417 	case KERN_WITNESSWATCH:
418 		return witness_sysctl_watch(oldp, oldlenp, newp, newlen);
419 	case KERN_WITNESS:
420 		return witness_sysctl(name, namelen, oldp, oldlenp,
421 		    newp, newlen);
422 #endif
423 #if NAUDIO > 0
424 	case KERN_AUDIO:
425 		return (sysctl_audio(name, namelen, oldp, oldlenp,
426 		    newp, newlen));
427 #endif
428 #if NVIDEO > 0
429 	case KERN_VIDEO:
430 		return (sysctl_video(name, namelen, oldp, oldlenp,
431 		    newp, newlen));
432 #endif
433 	case KERN_CPUSTATS:
434 		return (sysctl_cpustats(name, namelen, oldp, oldlenp,
435 		    newp, newlen));
436 	case KERN_CLOCKINTR:
437 		return sysctl_clockintr(name, namelen, oldp, oldlenp, newp,
438 		    newlen);
439 	default:
440 		return (ENOTDIR);	/* overloaded */
441 	}
442 }
443 
444 /*
445  * kernel related system variables.
446  */
447 int
448 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
449     size_t newlen, struct proc *p)
450 {
451 	int error, level, inthostid, stackgap;
452 	dev_t dev;
453 	extern int pool_debug;
454 
455 	/* dispatch the non-terminal nodes first */
456 	if (namelen != 1) {
457 		return kern_sysctl_dirs(name[0], name + 1, namelen - 1,
458 		    oldp, oldlenp, newp, newlen, p);
459 	}
460 
461 	switch (name[0]) {
462 	case KERN_OSTYPE:
463 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
464 	case KERN_OSRELEASE:
465 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
466 	case KERN_OSVERSION:
467 		return (sysctl_rdstring(oldp, oldlenp, newp, osversion));
468 	case KERN_VERSION:
469 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
470 	case KERN_NUMVNODES:  /* XXX numvnodes is a long */
471 		return (sysctl_rdint(oldp, oldlenp, newp, numvnodes));
472 	case KERN_SECURELVL:
473 		level = securelevel;
474 		if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
475 		    newp == NULL)
476 			return (error);
477 		if ((securelevel > 0 || level < -1) &&
478 		    level < securelevel && p->p_p->ps_pid != 1)
479 			return (EPERM);
480 		securelevel = level;
481 		return (0);
482 #if NDT > 0
483 	case KERN_ALLOWDT:
484 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
485 		    &allowdt));
486 #endif
487 	case KERN_ALLOWKMEM:
488 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
489 		    &allowkmem));
490 	case KERN_HOSTNAME:
491 		error = sysctl_tstring(oldp, oldlenp, newp, newlen,
492 		    hostname, sizeof(hostname));
493 		if (newp && !error)
494 			hostnamelen = newlen;
495 		return (error);
496 	case KERN_DOMAINNAME:
497 		if (securelevel >= 1 && domainnamelen && newp)
498 			error = EPERM;
499 		else
500 			error = sysctl_tstring(oldp, oldlenp, newp, newlen,
501 			    domainname, sizeof(domainname));
502 		if (newp && !error)
503 			domainnamelen = newlen;
504 		return (error);
505 	case KERN_HOSTID:
506 		inthostid = hostid;  /* XXX assumes sizeof long <= sizeof int */
507 		error =  sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
508 		hostid = inthostid;
509 		return (error);
510 	case KERN_CLOCKRATE:
511 		return (sysctl_clockrate(oldp, oldlenp, newp));
512 	case KERN_BOOTTIME: {
513 		struct timeval bt;
514 		memset(&bt, 0, sizeof bt);
515 		microboottime(&bt);
516 		return (sysctl_rdstruct(oldp, oldlenp, newp, &bt, sizeof bt));
517 	  }
518 	case KERN_MBSTAT: {
519 		extern struct cpumem *mbstat;
520 		uint64_t counters[MBSTAT_COUNT];
521 		struct mbstat mbs;
522 		unsigned int i;
523 
524 		memset(&mbs, 0, sizeof(mbs));
525 		counters_read(mbstat, counters, MBSTAT_COUNT, NULL);
526 		for (i = 0; i < MBSTAT_TYPES; i++)
527 			mbs.m_mtypes[i] = counters[i];
528 
529 		mbs.m_drops = counters[MBSTAT_DROPS];
530 		mbs.m_wait = counters[MBSTAT_WAIT];
531 		mbs.m_drain = counters[MBSTAT_DRAIN];
532 
533 		return (sysctl_rdstruct(oldp, oldlenp, newp,
534 		    &mbs, sizeof(mbs)));
535 	}
536 	case KERN_MSGBUFSIZE:
537 	case KERN_CONSBUFSIZE: {
538 		struct msgbuf *mp;
539 		mp = (name[0] == KERN_MSGBUFSIZE) ? msgbufp : consbufp;
540 		/*
541 		 * deal with cases where the message buffer has
542 		 * become corrupted.
543 		 */
544 		if (!mp || mp->msg_magic != MSG_MAGIC)
545 			return (ENXIO);
546 		return (sysctl_rdint(oldp, oldlenp, newp, mp->msg_bufs));
547 	}
548 	case KERN_CONSBUF:
549 		if ((error = suser(p)))
550 			return (error);
551 		/* FALLTHROUGH */
552 	case KERN_MSGBUF: {
553 		struct msgbuf *mp;
554 		mp = (name[0] == KERN_MSGBUF) ? msgbufp : consbufp;
555 		/* see note above */
556 		if (!mp || mp->msg_magic != MSG_MAGIC)
557 			return (ENXIO);
558 		return (sysctl_rdstruct(oldp, oldlenp, newp, mp,
559 		    mp->msg_bufs + offsetof(struct msgbuf, msg_bufc)));
560 	}
561 	case KERN_CPTIME:
562 	{
563 		CPU_INFO_ITERATOR cii;
564 		struct cpu_info *ci;
565 		long cp_time[CPUSTATES];
566 		int i, n = 0;
567 
568 		memset(cp_time, 0, sizeof(cp_time));
569 
570 		CPU_INFO_FOREACH(cii, ci) {
571 			if (!cpu_is_online(ci))
572 				continue;
573 			n++;
574 			for (i = 0; i < CPUSTATES; i++)
575 				cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
576 		}
577 
578 		for (i = 0; i < CPUSTATES; i++)
579 			cp_time[i] /= n;
580 
581 		return (sysctl_rdstruct(oldp, oldlenp, newp, &cp_time,
582 		    sizeof(cp_time)));
583 	}
584 	case KERN_NCHSTATS:
585 		return (sysctl_rdstruct(oldp, oldlenp, newp, &nchstats,
586 		    sizeof(struct nchstats)));
587 	case KERN_FORKSTAT:
588 		return (sysctl_rdstruct(oldp, oldlenp, newp, &forkstat,
589 		    sizeof(struct forkstat)));
590 	case KERN_STACKGAPRANDOM:
591 		stackgap = stackgap_random;
592 		error = sysctl_int(oldp, oldlenp, newp, newlen, &stackgap);
593 		if (error)
594 			return (error);
595 		/*
596 		 * Safety harness.
597 		 */
598 		if ((stackgap < ALIGNBYTES && stackgap != 0) ||
599 		    !powerof2(stackgap) || stackgap >= MAXSSIZ)
600 			return (EINVAL);
601 		stackgap_random = stackgap;
602 		return (0);
603 	case KERN_MAXCLUSTERS: {
604 		int val = nmbclust;
605 		error = sysctl_int(oldp, oldlenp, newp, newlen, &val);
606 		if (error == 0 && val != nmbclust)
607 			error = nmbclust_update(val);
608 		return (error);
609 	}
610 	case KERN_CACHEPCT: {
611 		u_int64_t dmapages;
612 		int opct, pgs;
613 		opct = bufcachepercent;
614 		error = sysctl_int(oldp, oldlenp, newp, newlen,
615 		    &bufcachepercent);
616 		if (error)
617 			return(error);
618 		if (bufcachepercent > 90 || bufcachepercent < 5) {
619 			bufcachepercent = opct;
620 			return (EINVAL);
621 		}
622 		dmapages = uvm_pagecount(&dma_constraint);
623 		if (bufcachepercent != opct) {
624 			pgs = bufcachepercent * dmapages / 100;
625 			bufadjust(pgs); /* adjust bufpages */
626 			bufhighpages = bufpages; /* set high water mark */
627 		}
628 		return(0);
629 	}
630 	case KERN_CONSDEV:
631 		if (cn_tab != NULL)
632 			dev = cn_tab->cn_dev;
633 		else
634 			dev = NODEV;
635 		return sysctl_rdstruct(oldp, oldlenp, newp, &dev, sizeof(dev));
636 	case KERN_POOL_DEBUG: {
637 		int old_pool_debug = pool_debug;
638 
639 		error = sysctl_int(oldp, oldlenp, newp, newlen,
640 		    &pool_debug);
641 		if (error == 0 && pool_debug != old_pool_debug)
642 			pool_reclaim_all();
643 		return (error);
644 	}
645 #if NPF > 0
646 	case KERN_PFSTATUS:
647 		return (pf_sysctl(oldp, oldlenp, newp, newlen));
648 #endif
649 	case KERN_TIMEOUT_STATS:
650 		return (timeout_sysctl(oldp, oldlenp, newp, newlen));
651 	case KERN_UTC_OFFSET:
652 		return (sysctl_utc_offset(oldp, oldlenp, newp, newlen));
653 	default:
654 		return (sysctl_bounded_arr(kern_vars, nitems(kern_vars), name,
655 		    namelen, oldp, oldlenp, newp, newlen));
656 	}
657 	/* NOTREACHED */
658 }
659 
660 /*
661  * hardware related system variables.
662  */
663 char *hw_vendor, *hw_prod, *hw_uuid, *hw_serial, *hw_ver;
664 int allowpowerdown = 1;
665 int hw_power = 1;
666 
667 /* morally const values reported by sysctl_bounded_arr */
668 static int byte_order = BYTE_ORDER;
669 static int page_size = PAGE_SIZE;
670 
671 const struct sysctl_bounded_args hw_vars[] = {
672 	{HW_NCPU, &ncpus, SYSCTL_INT_READONLY},
673 	{HW_NCPUFOUND, &ncpusfound, SYSCTL_INT_READONLY},
674 	{HW_BYTEORDER, &byte_order, SYSCTL_INT_READONLY},
675 	{HW_PAGESIZE, &page_size, SYSCTL_INT_READONLY},
676 	{HW_DISKCOUNT, &disk_count, SYSCTL_INT_READONLY},
677 	{HW_POWER, &hw_power, SYSCTL_INT_READONLY},
678 };
679 
680 int
681 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
682     size_t newlen, struct proc *p)
683 {
684 	extern char machine[], cpu_model[];
685 	int err, cpuspeed;
686 
687 	/*
688 	 * all sysctl names at this level except sensors and battery
689 	 * are terminal
690 	 */
691 	if (name[0] != HW_SENSORS && name[0] != HW_BATTERY && namelen != 1)
692 		return (ENOTDIR);		/* overloaded */
693 
694 	switch (name[0]) {
695 	case HW_MACHINE:
696 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
697 	case HW_MODEL:
698 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
699 	case HW_NCPUONLINE:
700 		return (sysctl_rdint(oldp, oldlenp, newp,
701 		    sysctl_hwncpuonline()));
702 	case HW_PHYSMEM:
703 		return (sysctl_rdint(oldp, oldlenp, newp, ptoa(physmem)));
704 	case HW_USERMEM:
705 		return (sysctl_rdint(oldp, oldlenp, newp,
706 		    ptoa(physmem - uvmexp.wired)));
707 	case HW_DISKNAMES:
708 		err = sysctl_diskinit(0, p);
709 		if (err)
710 			return err;
711 		if (disknames)
712 			return (sysctl_rdstring(oldp, oldlenp, newp,
713 			    disknames));
714 		else
715 			return (sysctl_rdstring(oldp, oldlenp, newp, ""));
716 	case HW_DISKSTATS:
717 		err = sysctl_diskinit(1, p);
718 		if (err)
719 			return err;
720 		return (sysctl_rdstruct(oldp, oldlenp, newp, diskstats,
721 		    disk_count * sizeof(struct diskstats)));
722 	case HW_CPUSPEED:
723 		if (!cpu_cpuspeed)
724 			return (EOPNOTSUPP);
725 		err = cpu_cpuspeed(&cpuspeed);
726 		if (err)
727 			return err;
728 		return (sysctl_rdint(oldp, oldlenp, newp, cpuspeed));
729 #ifndef	SMALL_KERNEL
730 	case HW_SENSORS:
731 		return (sysctl_sensors(name + 1, namelen - 1, oldp, oldlenp,
732 		    newp, newlen));
733 	case HW_SETPERF:
734 		return (sysctl_hwsetperf(oldp, oldlenp, newp, newlen));
735 	case HW_PERFPOLICY:
736 		return (sysctl_hwperfpolicy(oldp, oldlenp, newp, newlen));
737 #endif /* !SMALL_KERNEL */
738 	case HW_VENDOR:
739 		if (hw_vendor)
740 			return (sysctl_rdstring(oldp, oldlenp, newp,
741 			    hw_vendor));
742 		else
743 			return (EOPNOTSUPP);
744 	case HW_PRODUCT:
745 		if (hw_prod)
746 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_prod));
747 		else
748 			return (EOPNOTSUPP);
749 	case HW_VERSION:
750 		if (hw_ver)
751 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_ver));
752 		else
753 			return (EOPNOTSUPP);
754 	case HW_SERIALNO:
755 		if (hw_serial)
756 			return (sysctl_rdstring(oldp, oldlenp, newp,
757 			    hw_serial));
758 		else
759 			return (EOPNOTSUPP);
760 	case HW_UUID:
761 		if (hw_uuid)
762 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_uuid));
763 		else
764 			return (EOPNOTSUPP);
765 	case HW_PHYSMEM64:
766 		return (sysctl_rdquad(oldp, oldlenp, newp,
767 		    ptoa((psize_t)physmem)));
768 	case HW_USERMEM64:
769 		return (sysctl_rdquad(oldp, oldlenp, newp,
770 		    ptoa((psize_t)physmem - uvmexp.wired)));
771 	case HW_ALLOWPOWERDOWN:
772 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
773 		    &allowpowerdown));
774 #if NUCOM > 0
775 	case HW_UCOMNAMES: {
776 		const char *str = sysctl_ucominit();
777 		if (str == NULL)
778 			return EINVAL;
779 		return (sysctl_rdstring(oldp, oldlenp, newp, str));
780 	}
781 #endif	/* NUCOM > 0 */
782 #ifdef __HAVE_CPU_TOPOLOGY
783 	case HW_SMT:
784 		return (sysctl_hwsmt(oldp, oldlenp, newp, newlen));
785 #endif
786 #ifndef SMALL_KERNEL
787 	case HW_BATTERY:
788 		return (sysctl_hwbattery(name + 1, namelen - 1, oldp, oldlenp,
789 		    newp, newlen));
790 #endif
791 	default:
792 		return sysctl_bounded_arr(hw_vars, nitems(hw_vars), name,
793 		    namelen, oldp, oldlenp, newp, newlen);
794 	}
795 	/* NOTREACHED */
796 }
797 
798 #ifndef SMALL_KERNEL
799 
800 int hw_battery_chargemode;
801 int hw_battery_chargestart;
802 int hw_battery_chargestop;
803 int (*hw_battery_setchargemode)(int);
804 int (*hw_battery_setchargestart)(int);
805 int (*hw_battery_setchargestop)(int);
806 
807 int
808 sysctl_hwchargemode(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
809 {
810 	int mode = hw_battery_chargemode;
811 	int error;
812 
813 	if (!hw_battery_setchargemode)
814 		return EOPNOTSUPP;
815 
816 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
817 	    &mode, -1, 1);
818 	if (error)
819 		return error;
820 
821 	if (newp != NULL)
822 		error = hw_battery_setchargemode(mode);
823 
824 	return error;
825 }
826 
827 int
828 sysctl_hwchargestart(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
829 {
830 	int start = hw_battery_chargestart;
831 	int error;
832 
833 	if (!hw_battery_setchargestart)
834 		return EOPNOTSUPP;
835 
836 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
837 	    &start, 0, 100);
838 	if (error)
839 		return error;
840 
841 	if (newp != NULL)
842 		error = hw_battery_setchargestart(start);
843 
844 	return error;
845 }
846 
847 int
848 sysctl_hwchargestop(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
849 {
850 	int stop = hw_battery_chargestop;
851 	int error;
852 
853 	if (!hw_battery_setchargestop)
854 		return EOPNOTSUPP;
855 
856 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
857 	    &stop, 0, 100);
858 	if (error)
859 		return error;
860 
861 	if (newp != NULL)
862 		error = hw_battery_setchargestop(stop);
863 
864 	return error;
865 }
866 
867 int
868 sysctl_hwbattery(int *name, u_int namelen, void *oldp, size_t *oldlenp,
869     void *newp, size_t newlen)
870 {
871 	if (namelen != 1)
872 		return (ENOTDIR);
873 
874 	switch (name[0]) {
875 	case HW_BATTERY_CHARGEMODE:
876 		return (sysctl_hwchargemode(oldp, oldlenp, newp, newlen));
877 	case HW_BATTERY_CHARGESTART:
878 		return (sysctl_hwchargestart(oldp, oldlenp, newp, newlen));
879 	case HW_BATTERY_CHARGESTOP:
880 		return (sysctl_hwchargestop(oldp, oldlenp, newp, newlen));
881 	default:
882 		return (EOPNOTSUPP);
883 	}
884 	/* NOTREACHED */
885 }
886 
887 #endif
888 
889 #ifdef DEBUG_SYSCTL
890 /*
891  * Debugging related system variables.
892  */
893 extern struct ctldebug debug_vfs_busyprt;
894 struct ctldebug debug1, debug2, debug3, debug4;
895 struct ctldebug debug5, debug6, debug7, debug8, debug9;
896 struct ctldebug debug10, debug11, debug12, debug13, debug14;
897 struct ctldebug debug15, debug16, debug17, debug18, debug19;
898 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
899 	&debug_vfs_busyprt,
900 	&debug1, &debug2, &debug3, &debug4,
901 	&debug5, &debug6, &debug7, &debug8, &debug9,
902 	&debug10, &debug11, &debug12, &debug13, &debug14,
903 	&debug15, &debug16, &debug17, &debug18, &debug19,
904 };
905 int
906 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
907     size_t newlen, struct proc *p)
908 {
909 	struct ctldebug *cdp;
910 
911 	/* all sysctl names at this level are name and field */
912 	if (namelen != 2)
913 		return (ENOTDIR);		/* overloaded */
914 	if (name[0] < 0 || name[0] >= nitems(debugvars))
915 		return (EOPNOTSUPP);
916 	cdp = debugvars[name[0]];
917 	if (cdp->debugname == 0)
918 		return (EOPNOTSUPP);
919 	switch (name[1]) {
920 	case CTL_DEBUG_NAME:
921 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
922 	case CTL_DEBUG_VALUE:
923 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
924 	default:
925 		return (EOPNOTSUPP);
926 	}
927 	/* NOTREACHED */
928 }
929 #endif /* DEBUG_SYSCTL */
930 
931 /*
932  * Reads, or writes that lower the value
933  */
934 int
935 sysctl_int_lower(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
936     int *valp)
937 {
938 	unsigned int oval = *valp, val = *valp;
939 	int error;
940 
941 	if (newp == NULL)
942 		return (sysctl_rdint(oldp, oldlenp, newp, val));
943 
944 	if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val)))
945 		return (error);
946 	if (val > oval)
947 		return (EPERM);		/* do not allow raising */
948 	*(unsigned int *)valp = val;
949 	return (0);
950 }
951 
952 /*
953  * Validate parameters and get old / set new parameters
954  * for an integer-valued sysctl function.
955  */
956 int
957 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
958 {
959 	int error = 0;
960 
961 	if (oldp && *oldlenp < sizeof(int))
962 		return (ENOMEM);
963 	if (newp && newlen != sizeof(int))
964 		return (EINVAL);
965 	*oldlenp = sizeof(int);
966 	if (oldp)
967 		error = copyout(valp, oldp, sizeof(int));
968 	if (error == 0 && newp)
969 		error = copyin(newp, valp, sizeof(int));
970 	return (error);
971 }
972 
973 /*
974  * As above, but read-only.
975  */
976 int
977 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
978 {
979 	int error = 0;
980 
981 	if (oldp && *oldlenp < sizeof(int))
982 		return (ENOMEM);
983 	if (newp)
984 		return (EPERM);
985 	*oldlenp = sizeof(int);
986 	if (oldp)
987 		error = copyout((caddr_t)&val, oldp, sizeof(int));
988 	return (error);
989 }
990 
991 /*
992  * Selects between sysctl_rdint and sysctl_int according to securelevel.
993  */
994 int
995 sysctl_securelevel_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
996     int *valp)
997 {
998 	if (securelevel > 0)
999 		return (sysctl_rdint(oldp, oldlenp, newp, *valp));
1000 	return (sysctl_int(oldp, oldlenp, newp, newlen, valp));
1001 }
1002 
1003 /*
1004  * Read-only or bounded integer values.
1005  */
1006 int
1007 sysctl_int_bounded(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1008     int *valp, int minimum, int maximum)
1009 {
1010 	int val = *valp;
1011 	int error;
1012 
1013 	/* read only */
1014 	if (newp == NULL || minimum > maximum)
1015 		return (sysctl_rdint(oldp, oldlenp, newp, val));
1016 
1017 	if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val)))
1018 		return (error);
1019 	/* outside limits */
1020 	if (val < minimum || maximum < val)
1021 		return (EINVAL);
1022 	*valp = val;
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Array of read-only or bounded integer values.
1028  */
1029 int
1030 sysctl_bounded_arr(const struct sysctl_bounded_args *valpp, u_int valplen,
1031     int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1032     size_t newlen)
1033 {
1034 	u_int i;
1035 	if (namelen != 1)
1036 		return (ENOTDIR);
1037 	for (i = 0; i < valplen; ++i) {
1038 		if (valpp[i].mib == name[0]) {
1039 			return (sysctl_int_bounded(oldp, oldlenp, newp, newlen,
1040 			    valpp[i].var, valpp[i].minimum, valpp[i].maximum));
1041 		}
1042 	}
1043 	return (EOPNOTSUPP);
1044 }
1045 
1046 /*
1047  * Validate parameters and get old / set new parameters
1048  * for an integer-valued sysctl function.
1049  */
1050 int
1051 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1052     int64_t *valp)
1053 {
1054 	int error = 0;
1055 
1056 	if (oldp && *oldlenp < sizeof(int64_t))
1057 		return (ENOMEM);
1058 	if (newp && newlen != sizeof(int64_t))
1059 		return (EINVAL);
1060 	*oldlenp = sizeof(int64_t);
1061 	if (oldp)
1062 		error = copyout(valp, oldp, sizeof(int64_t));
1063 	if (error == 0 && newp)
1064 		error = copyin(newp, valp, sizeof(int64_t));
1065 	return (error);
1066 }
1067 
1068 /*
1069  * As above, but read-only.
1070  */
1071 int
1072 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, int64_t val)
1073 {
1074 	int error = 0;
1075 
1076 	if (oldp && *oldlenp < sizeof(int64_t))
1077 		return (ENOMEM);
1078 	if (newp)
1079 		return (EPERM);
1080 	*oldlenp = sizeof(int64_t);
1081 	if (oldp)
1082 		error = copyout((caddr_t)&val, oldp, sizeof(int64_t));
1083 	return (error);
1084 }
1085 
1086 /*
1087  * Validate parameters and get old / set new parameters
1088  * for a string-valued sysctl function.
1089  */
1090 int
1091 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1092     size_t maxlen)
1093 {
1094 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 0);
1095 }
1096 
1097 int
1098 sysctl_tstring(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1099     char *str, size_t maxlen)
1100 {
1101 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 1);
1102 }
1103 
1104 int
1105 sysctl__string(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1106     char *str, size_t maxlen, int trunc)
1107 {
1108 	size_t len;
1109 	int error = 0;
1110 
1111 	len = strlen(str) + 1;
1112 	if (oldp && *oldlenp < len) {
1113 		if (trunc == 0 || *oldlenp == 0)
1114 			return (ENOMEM);
1115 	}
1116 	if (newp && newlen >= maxlen)
1117 		return (EINVAL);
1118 	if (oldp) {
1119 		if (trunc && *oldlenp < len) {
1120 			len = *oldlenp;
1121 			error = copyout(str, oldp, len - 1);
1122 			if (error == 0)
1123 				error = copyout("", (char *)oldp + len - 1, 1);
1124 		} else {
1125 			error = copyout(str, oldp, len);
1126 		}
1127 	}
1128 	*oldlenp = len;
1129 	if (error == 0 && newp) {
1130 		error = copyin(newp, str, newlen);
1131 		str[newlen] = 0;
1132 	}
1133 	return (error);
1134 }
1135 
1136 /*
1137  * As above, but read-only.
1138  */
1139 int
1140 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1141 {
1142 	size_t len;
1143 	int error = 0;
1144 
1145 	len = strlen(str) + 1;
1146 	if (oldp && *oldlenp < len)
1147 		return (ENOMEM);
1148 	if (newp)
1149 		return (EPERM);
1150 	*oldlenp = len;
1151 	if (oldp)
1152 		error = copyout(str, oldp, len);
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Validate parameters and get old / set new parameters
1158  * for a structure oriented sysctl function.
1159  */
1160 int
1161 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1162     size_t len)
1163 {
1164 	int error = 0;
1165 
1166 	if (oldp && *oldlenp < len)
1167 		return (ENOMEM);
1168 	if (newp && newlen > len)
1169 		return (EINVAL);
1170 	if (oldp) {
1171 		*oldlenp = len;
1172 		error = copyout(sp, oldp, len);
1173 	}
1174 	if (error == 0 && newp)
1175 		error = copyin(newp, sp, len);
1176 	return (error);
1177 }
1178 
1179 /*
1180  * Validate parameters and get old parameters
1181  * for a structure oriented sysctl function.
1182  */
1183 int
1184 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1185     size_t len)
1186 {
1187 	int error = 0;
1188 
1189 	if (oldp && *oldlenp < len)
1190 		return (ENOMEM);
1191 	if (newp)
1192 		return (EPERM);
1193 	*oldlenp = len;
1194 	if (oldp)
1195 		error = copyout(sp, oldp, len);
1196 	return (error);
1197 }
1198 
1199 #ifndef SMALL_KERNEL
1200 void
1201 fill_file(struct kinfo_file *kf, struct file *fp, struct filedesc *fdp,
1202 	  int fd, struct vnode *vp, struct process *pr, struct proc *p,
1203 	  struct socket *so, int show_pointers)
1204 {
1205 	struct vattr va;
1206 
1207 	memset(kf, 0, sizeof(*kf));
1208 
1209 	kf->fd_fd = fd;		/* might not really be an fd */
1210 
1211 	if (fp != NULL) {
1212 		if (show_pointers)
1213 			kf->f_fileaddr = PTRTOINT64(fp);
1214 		kf->f_flag = fp->f_flag;
1215 		kf->f_iflags = fp->f_iflags;
1216 		kf->f_type = fp->f_type;
1217 		kf->f_count = fp->f_count;
1218 		if (show_pointers)
1219 			kf->f_ucred = PTRTOINT64(fp->f_cred);
1220 		kf->f_uid = fp->f_cred->cr_uid;
1221 		kf->f_gid = fp->f_cred->cr_gid;
1222 		if (show_pointers)
1223 			kf->f_ops = PTRTOINT64(fp->f_ops);
1224 		if (show_pointers)
1225 			kf->f_data = PTRTOINT64(fp->f_data);
1226 		kf->f_usecount = 0;
1227 
1228 		if (suser(p) == 0 || p->p_ucred->cr_uid == fp->f_cred->cr_uid) {
1229 			mtx_enter(&fp->f_mtx);
1230 			kf->f_offset = fp->f_offset;
1231 			kf->f_rxfer = fp->f_rxfer;
1232 			kf->f_rwfer = fp->f_wxfer;
1233 			kf->f_seek = fp->f_seek;
1234 			kf->f_rbytes = fp->f_rbytes;
1235 			kf->f_wbytes = fp->f_wbytes;
1236 			mtx_leave(&fp->f_mtx);
1237 		} else
1238 			kf->f_offset = -1;
1239 	} else if (vp != NULL) {
1240 		/* fake it */
1241 		kf->f_type = DTYPE_VNODE;
1242 		kf->f_flag = FREAD;
1243 		if (fd == KERN_FILE_TRACE)
1244 			kf->f_flag |= FWRITE;
1245 	} else if (so != NULL) {
1246 		/* fake it */
1247 		kf->f_type = DTYPE_SOCKET;
1248 	}
1249 
1250 	/* information about the object associated with this file */
1251 	switch (kf->f_type) {
1252 	case DTYPE_VNODE:
1253 		if (fp != NULL)
1254 			vp = (struct vnode *)fp->f_data;
1255 
1256 		if (show_pointers)
1257 			kf->v_un = PTRTOINT64(vp->v_un.vu_socket);
1258 		kf->v_type = vp->v_type;
1259 		kf->v_tag = vp->v_tag;
1260 		kf->v_flag = vp->v_flag;
1261 		if (show_pointers)
1262 			kf->v_data = PTRTOINT64(vp->v_data);
1263 		if (show_pointers)
1264 			kf->v_mount = PTRTOINT64(vp->v_mount);
1265 		if (vp->v_mount)
1266 			strlcpy(kf->f_mntonname,
1267 			    vp->v_mount->mnt_stat.f_mntonname,
1268 			    sizeof(kf->f_mntonname));
1269 
1270 		if (VOP_GETATTR(vp, &va, p->p_ucred, p) == 0) {
1271 			kf->va_fileid = va.va_fileid;
1272 			kf->va_mode = MAKEIMODE(va.va_type, va.va_mode);
1273 			kf->va_size = va.va_size;
1274 			kf->va_rdev = va.va_rdev;
1275 			kf->va_fsid = va.va_fsid & 0xffffffff;
1276 			kf->va_nlink = va.va_nlink;
1277 		}
1278 		break;
1279 
1280 	case DTYPE_SOCKET: {
1281 		int locked = 0;
1282 
1283 		if (so == NULL) {
1284 			so = (struct socket *)fp->f_data;
1285 			/* if so is passed as parameter it is already locked */
1286 			solock(so);
1287 			locked = 1;
1288 		}
1289 
1290 		kf->so_type = so->so_type;
1291 		kf->so_state = so->so_state | so->so_snd.sb_state |
1292 		    so->so_rcv.sb_state;
1293 		if (show_pointers)
1294 			kf->so_pcb = PTRTOINT64(so->so_pcb);
1295 		else
1296 			kf->so_pcb = -1;
1297 		kf->so_protocol = so->so_proto->pr_protocol;
1298 		kf->so_family = so->so_proto->pr_domain->dom_family;
1299 		kf->so_rcv_cc = so->so_rcv.sb_cc;
1300 		kf->so_snd_cc = so->so_snd.sb_cc;
1301 		if (isspliced(so)) {
1302 			if (show_pointers)
1303 				kf->so_splice =
1304 				    PTRTOINT64(so->so_sp->ssp_socket);
1305 			kf->so_splicelen = so->so_sp->ssp_len;
1306 		} else if (issplicedback(so))
1307 			kf->so_splicelen = -1;
1308 		if (so->so_pcb == NULL) {
1309 			if (locked)
1310 				sounlock(so);
1311 			break;
1312 		}
1313 		switch (kf->so_family) {
1314 		case AF_INET: {
1315 			struct inpcb *inpcb = so->so_pcb;
1316 
1317 			soassertlocked(so);
1318 			if (show_pointers)
1319 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1320 			kf->inp_lport = inpcb->inp_lport;
1321 			kf->inp_laddru[0] = inpcb->inp_laddr.s_addr;
1322 			kf->inp_fport = inpcb->inp_fport;
1323 			kf->inp_faddru[0] = inpcb->inp_faddr.s_addr;
1324 			kf->inp_rtableid = inpcb->inp_rtableid;
1325 			if (so->so_type == SOCK_RAW)
1326 				kf->inp_proto = inpcb->inp_ip.ip_p;
1327 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1328 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1329 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1330 				kf->t_snd_wnd = tcpcb->snd_wnd;
1331 				kf->t_snd_cwnd = tcpcb->snd_cwnd;
1332 				kf->t_state = tcpcb->t_state;
1333 			}
1334 			break;
1335 		    }
1336 		case AF_INET6: {
1337 			struct inpcb *inpcb = so->so_pcb;
1338 
1339 			soassertlocked(so);
1340 			if (show_pointers)
1341 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1342 			kf->inp_lport = inpcb->inp_lport;
1343 			kf->inp_laddru[0] = inpcb->inp_laddr6.s6_addr32[0];
1344 			kf->inp_laddru[1] = inpcb->inp_laddr6.s6_addr32[1];
1345 			kf->inp_laddru[2] = inpcb->inp_laddr6.s6_addr32[2];
1346 			kf->inp_laddru[3] = inpcb->inp_laddr6.s6_addr32[3];
1347 			kf->inp_fport = inpcb->inp_fport;
1348 			kf->inp_faddru[0] = inpcb->inp_faddr6.s6_addr32[0];
1349 			kf->inp_faddru[1] = inpcb->inp_faddr6.s6_addr32[1];
1350 			kf->inp_faddru[2] = inpcb->inp_faddr6.s6_addr32[2];
1351 			kf->inp_faddru[3] = inpcb->inp_faddr6.s6_addr32[3];
1352 			kf->inp_rtableid = inpcb->inp_rtableid;
1353 			if (so->so_type == SOCK_RAW)
1354 				kf->inp_proto = inpcb->inp_ipv6.ip6_nxt;
1355 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1356 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1357 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1358 				kf->t_snd_wnd = tcpcb->snd_wnd;
1359 				kf->t_state = tcpcb->t_state;
1360 			}
1361 			break;
1362 		    }
1363 		case AF_UNIX: {
1364 			struct unpcb *unpcb = so->so_pcb;
1365 
1366 			kf->f_msgcount = unpcb->unp_msgcount;
1367 			if (show_pointers) {
1368 				kf->unp_conn	= PTRTOINT64(unpcb->unp_conn);
1369 				kf->unp_refs	= PTRTOINT64(
1370 				    SLIST_FIRST(&unpcb->unp_refs));
1371 				kf->unp_nextref	= PTRTOINT64(
1372 				    SLIST_NEXT(unpcb, unp_nextref));
1373 				kf->v_un	= PTRTOINT64(unpcb->unp_vnode);
1374 				kf->unp_addr	= PTRTOINT64(unpcb->unp_addr);
1375 			}
1376 			if (unpcb->unp_addr != NULL) {
1377 				struct sockaddr_un *un = mtod(unpcb->unp_addr,
1378 				    struct sockaddr_un *);
1379 				memcpy(kf->unp_path, un->sun_path, un->sun_len
1380 				    - offsetof(struct sockaddr_un,sun_path));
1381 			}
1382 			break;
1383 		    }
1384 		}
1385 		if (locked)
1386 			sounlock(so);
1387 		break;
1388 	    }
1389 
1390 	case DTYPE_PIPE: {
1391 		struct pipe *pipe = (struct pipe *)fp->f_data;
1392 
1393 		if (show_pointers)
1394 			kf->pipe_peer = PTRTOINT64(pipe->pipe_peer);
1395 		kf->pipe_state = pipe->pipe_state;
1396 		break;
1397 	    }
1398 
1399 	case DTYPE_KQUEUE: {
1400 		struct kqueue *kqi = (struct kqueue *)fp->f_data;
1401 
1402 		kf->kq_count = kqi->kq_count;
1403 		kf->kq_state = kqi->kq_state;
1404 		break;
1405 	    }
1406 	}
1407 
1408 	/* per-process information for KERN_FILE_BY[PU]ID */
1409 	if (pr != NULL) {
1410 		kf->p_pid = pr->ps_pid;
1411 		kf->p_uid = pr->ps_ucred->cr_uid;
1412 		kf->p_gid = pr->ps_ucred->cr_gid;
1413 		kf->p_tid = -1;
1414 		strlcpy(kf->p_comm, pr->ps_comm, sizeof(kf->p_comm));
1415 	}
1416 	if (fdp != NULL) {
1417 		fdplock(fdp);
1418 		kf->fd_ofileflags = fdp->fd_ofileflags[fd];
1419 		fdpunlock(fdp);
1420 	}
1421 }
1422 
1423 /*
1424  * Get file structures.
1425  */
1426 int
1427 sysctl_file(int *name, u_int namelen, char *where, size_t *sizep,
1428     struct proc *p)
1429 {
1430 	struct kinfo_file *kf;
1431 	struct filedesc *fdp;
1432 	struct file *fp;
1433 	struct process *pr;
1434 	size_t buflen, elem_size, elem_count, outsize;
1435 	char *dp = where;
1436 	int arg, i, error = 0, needed = 0, matched;
1437 	u_int op;
1438 	int show_pointers;
1439 
1440 	if (namelen > 4)
1441 		return (ENOTDIR);
1442 	if (namelen < 4 || name[2] > sizeof(*kf))
1443 		return (EINVAL);
1444 
1445 	buflen = where != NULL ? *sizep : 0;
1446 	op = name[0];
1447 	arg = name[1];
1448 	elem_size = name[2];
1449 	elem_count = name[3];
1450 	outsize = MIN(sizeof(*kf), elem_size);
1451 
1452 	if (elem_size < 1)
1453 		return (EINVAL);
1454 
1455 	show_pointers = suser(curproc) == 0;
1456 
1457 	kf = malloc(sizeof(*kf), M_TEMP, M_WAITOK);
1458 
1459 #define FILLIT2(fp, fdp, i, vp, pr, so) do {				\
1460 	if (buflen >= elem_size && elem_count > 0) {			\
1461 		fill_file(kf, fp, fdp, i, vp, pr, p, so, show_pointers);\
1462 		error = copyout(kf, dp, outsize);			\
1463 		if (error)						\
1464 			break;						\
1465 		dp += elem_size;					\
1466 		buflen -= elem_size;					\
1467 		elem_count--;						\
1468 	}								\
1469 	needed += elem_size;						\
1470 } while (0)
1471 #define FILLIT(fp, fdp, i, vp, pr) \
1472 	FILLIT2(fp, fdp, i, vp, pr, NULL)
1473 #define FILLSO(so) \
1474 	FILLIT2(NULL, NULL, 0, NULL, NULL, so)
1475 
1476 	switch (op) {
1477 	case KERN_FILE_BYFILE:
1478 		/* use the inp-tables to pick up closed connections, too */
1479 		if (arg == DTYPE_SOCKET) {
1480 			struct inpcb *inp;
1481 
1482 			NET_LOCK();
1483 			mtx_enter(&tcbtable.inpt_mtx);
1484 			TAILQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue)
1485 				FILLSO(inp->inp_socket);
1486 			mtx_leave(&tcbtable.inpt_mtx);
1487 			mtx_enter(&udbtable.inpt_mtx);
1488 			TAILQ_FOREACH(inp, &udbtable.inpt_queue, inp_queue)
1489 				FILLSO(inp->inp_socket);
1490 			mtx_leave(&udbtable.inpt_mtx);
1491 #ifdef INET6
1492 			mtx_enter(&udb6table.inpt_mtx);
1493 			TAILQ_FOREACH(inp, &udb6table.inpt_queue, inp_queue)
1494 				FILLSO(inp->inp_socket);
1495 			mtx_leave(&udb6table.inpt_mtx);
1496 #endif
1497 			mtx_enter(&rawcbtable.inpt_mtx);
1498 			TAILQ_FOREACH(inp, &rawcbtable.inpt_queue, inp_queue)
1499 				FILLSO(inp->inp_socket);
1500 			mtx_leave(&rawcbtable.inpt_mtx);
1501 #ifdef INET6
1502 			mtx_enter(&rawin6pcbtable.inpt_mtx);
1503 			TAILQ_FOREACH(inp, &rawin6pcbtable.inpt_queue,
1504 			    inp_queue)
1505 				FILLSO(inp->inp_socket);
1506 			mtx_leave(&rawin6pcbtable.inpt_mtx);
1507 #endif
1508 			NET_UNLOCK();
1509 		}
1510 		fp = NULL;
1511 		while ((fp = fd_iterfile(fp, p)) != NULL) {
1512 			if ((arg == 0 || fp->f_type == arg)) {
1513 				int af, skip = 0;
1514 				if (arg == DTYPE_SOCKET && fp->f_type == arg) {
1515 					af = ((struct socket *)fp->f_data)->
1516 					    so_proto->pr_domain->dom_family;
1517 					if (af == AF_INET || af == AF_INET6)
1518 						skip = 1;
1519 				}
1520 				if (!skip)
1521 					FILLIT(fp, NULL, 0, NULL, NULL);
1522 			}
1523 		}
1524 		break;
1525 	case KERN_FILE_BYPID:
1526 		/* A arg of -1 indicates all processes */
1527 		if (arg < -1) {
1528 			error = EINVAL;
1529 			break;
1530 		}
1531 		matched = 0;
1532 		LIST_FOREACH(pr, &allprocess, ps_list) {
1533 			/*
1534 			 * skip system, exiting, embryonic and undead
1535 			 * processes
1536 			 */
1537 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1538 				continue;
1539 			if (arg > 0 && pr->ps_pid != (pid_t)arg) {
1540 				/* not the pid we are looking for */
1541 				continue;
1542 			}
1543 			matched = 1;
1544 			fdp = pr->ps_fd;
1545 			if (pr->ps_textvp)
1546 				FILLIT(NULL, NULL, KERN_FILE_TEXT, pr->ps_textvp, pr);
1547 			if (fdp->fd_cdir)
1548 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1549 			if (fdp->fd_rdir)
1550 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1551 			if (pr->ps_tracevp)
1552 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1553 			for (i = 0; i < fdp->fd_nfiles; i++) {
1554 				if ((fp = fd_getfile(fdp, i)) == NULL)
1555 					continue;
1556 				FILLIT(fp, fdp, i, NULL, pr);
1557 				FRELE(fp, p);
1558 			}
1559 		}
1560 		if (!matched)
1561 			error = ESRCH;
1562 		break;
1563 	case KERN_FILE_BYUID:
1564 		LIST_FOREACH(pr, &allprocess, ps_list) {
1565 			/*
1566 			 * skip system, exiting, embryonic and undead
1567 			 * processes
1568 			 */
1569 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1570 				continue;
1571 			if (arg >= 0 && pr->ps_ucred->cr_uid != (uid_t)arg) {
1572 				/* not the uid we are looking for */
1573 				continue;
1574 			}
1575 			fdp = pr->ps_fd;
1576 			if (fdp->fd_cdir)
1577 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1578 			if (fdp->fd_rdir)
1579 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1580 			if (pr->ps_tracevp)
1581 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1582 			for (i = 0; i < fdp->fd_nfiles; i++) {
1583 				if ((fp = fd_getfile(fdp, i)) == NULL)
1584 					continue;
1585 				FILLIT(fp, fdp, i, NULL, pr);
1586 				FRELE(fp, p);
1587 			}
1588 		}
1589 		break;
1590 	default:
1591 		error = EINVAL;
1592 		break;
1593 	}
1594 	free(kf, M_TEMP, sizeof(*kf));
1595 
1596 	if (!error) {
1597 		if (where == NULL)
1598 			needed += KERN_FILESLOP * elem_size;
1599 		else if (*sizep < needed)
1600 			error = ENOMEM;
1601 		*sizep = needed;
1602 	}
1603 
1604 	return (error);
1605 }
1606 
1607 /*
1608  * try over estimating by 5 procs
1609  */
1610 #define KERN_PROCSLOP	5
1611 
1612 int
1613 sysctl_doproc(int *name, u_int namelen, char *where, size_t *sizep)
1614 {
1615 	struct kinfo_proc *kproc = NULL;
1616 	struct proc *p;
1617 	struct process *pr;
1618 	char *dp;
1619 	int arg, buflen, doingzomb, elem_size, elem_count;
1620 	int error, needed, op;
1621 	int dothreads = 0;
1622 	int show_pointers;
1623 
1624 	dp = where;
1625 	buflen = where != NULL ? *sizep : 0;
1626 	needed = error = 0;
1627 
1628 	if (namelen != 4 || name[2] <= 0 || name[3] < 0 ||
1629 	    name[2] > sizeof(*kproc))
1630 		return (EINVAL);
1631 	op = name[0];
1632 	arg = name[1];
1633 	elem_size = name[2];
1634 	elem_count = name[3];
1635 
1636 	dothreads = op & KERN_PROC_SHOW_THREADS;
1637 	op &= ~KERN_PROC_SHOW_THREADS;
1638 
1639 	show_pointers = suser(curproc) == 0;
1640 
1641 	if (where != NULL)
1642 		kproc = malloc(sizeof(*kproc), M_TEMP, M_WAITOK);
1643 
1644 	pr = LIST_FIRST(&allprocess);
1645 	doingzomb = 0;
1646 again:
1647 	for (; pr != NULL; pr = LIST_NEXT(pr, ps_list)) {
1648 		/* XXX skip processes in the middle of being zapped */
1649 		if (pr->ps_pgrp == NULL)
1650 			continue;
1651 
1652 		/*
1653 		 * Skip embryonic processes.
1654 		 */
1655 		if (pr->ps_flags & PS_EMBRYO)
1656 			continue;
1657 
1658 		/*
1659 		 * TODO - make more efficient (see notes below).
1660 		 */
1661 		switch (op) {
1662 
1663 		case KERN_PROC_PID:
1664 			/* could do this with just a lookup */
1665 			if (pr->ps_pid != (pid_t)arg)
1666 				continue;
1667 			break;
1668 
1669 		case KERN_PROC_PGRP:
1670 			/* could do this by traversing pgrp */
1671 			if (pr->ps_pgrp->pg_id != (pid_t)arg)
1672 				continue;
1673 			break;
1674 
1675 		case KERN_PROC_SESSION:
1676 			if (pr->ps_session->s_leader == NULL ||
1677 			    pr->ps_session->s_leader->ps_pid != (pid_t)arg)
1678 				continue;
1679 			break;
1680 
1681 		case KERN_PROC_TTY:
1682 			if ((pr->ps_flags & PS_CONTROLT) == 0 ||
1683 			    pr->ps_session->s_ttyp == NULL ||
1684 			    pr->ps_session->s_ttyp->t_dev != (dev_t)arg)
1685 				continue;
1686 			break;
1687 
1688 		case KERN_PROC_UID:
1689 			if (pr->ps_ucred->cr_uid != (uid_t)arg)
1690 				continue;
1691 			break;
1692 
1693 		case KERN_PROC_RUID:
1694 			if (pr->ps_ucred->cr_ruid != (uid_t)arg)
1695 				continue;
1696 			break;
1697 
1698 		case KERN_PROC_ALL:
1699 			if (pr->ps_flags & PS_SYSTEM)
1700 				continue;
1701 			break;
1702 
1703 		case KERN_PROC_KTHREAD:
1704 			/* no filtering */
1705 			break;
1706 
1707 		default:
1708 			error = EINVAL;
1709 			goto err;
1710 		}
1711 
1712 		if (buflen >= elem_size && elem_count > 0) {
1713 			fill_kproc(pr, kproc, NULL, show_pointers);
1714 			error = copyout(kproc, dp, elem_size);
1715 			if (error)
1716 				goto err;
1717 			dp += elem_size;
1718 			buflen -= elem_size;
1719 			elem_count--;
1720 		}
1721 		needed += elem_size;
1722 
1723 		/* Skip per-thread entries if not required by op */
1724 		if (!dothreads)
1725 			continue;
1726 
1727 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1728 			if (buflen >= elem_size && elem_count > 0) {
1729 				fill_kproc(pr, kproc, p, show_pointers);
1730 				error = copyout(kproc, dp, elem_size);
1731 				if (error)
1732 					goto err;
1733 				dp += elem_size;
1734 				buflen -= elem_size;
1735 				elem_count--;
1736 			}
1737 			needed += elem_size;
1738 		}
1739 	}
1740 	if (doingzomb == 0) {
1741 		pr = LIST_FIRST(&zombprocess);
1742 		doingzomb++;
1743 		goto again;
1744 	}
1745 	if (where != NULL) {
1746 		*sizep = dp - where;
1747 		if (needed > *sizep) {
1748 			error = ENOMEM;
1749 			goto err;
1750 		}
1751 	} else {
1752 		needed += KERN_PROCSLOP * elem_size;
1753 		*sizep = needed;
1754 	}
1755 err:
1756 	if (kproc)
1757 		free(kproc, M_TEMP, sizeof(*kproc));
1758 	return (error);
1759 }
1760 
1761 /*
1762  * Fill in a kproc structure for the specified process.
1763  */
1764 void
1765 fill_kproc(struct process *pr, struct kinfo_proc *ki, struct proc *p,
1766     int show_pointers)
1767 {
1768 	struct session *s = pr->ps_session;
1769 	struct tty *tp;
1770 	struct vmspace *vm = pr->ps_vmspace;
1771 	struct timespec booted, st, ut, utc;
1772 	int isthread;
1773 
1774 	isthread = p != NULL;
1775 	if (!isthread)
1776 		p = pr->ps_mainproc;		/* XXX */
1777 
1778 	FILL_KPROC(ki, strlcpy, p, pr, pr->ps_ucred, pr->ps_pgrp,
1779 	    p, pr, s, vm, pr->ps_limit, pr->ps_sigacts, isthread,
1780 	    show_pointers);
1781 
1782 	/* stuff that's too painful to generalize into the macros */
1783 	if (pr->ps_pptr)
1784 		ki->p_ppid = pr->ps_ppid;
1785 	if (s->s_leader)
1786 		ki->p_sid = s->s_leader->ps_pid;
1787 
1788 	if ((pr->ps_flags & PS_CONTROLT) && (tp = s->s_ttyp)) {
1789 		ki->p_tdev = tp->t_dev;
1790 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : -1;
1791 		if (show_pointers)
1792 			ki->p_tsess = PTRTOINT64(tp->t_session);
1793 	} else {
1794 		ki->p_tdev = NODEV;
1795 		ki->p_tpgid = -1;
1796 	}
1797 
1798 	/* fixups that can only be done in the kernel */
1799 	if ((pr->ps_flags & PS_ZOMBIE) == 0) {
1800 		if ((pr->ps_flags & PS_EMBRYO) == 0 && vm != NULL)
1801 			ki->p_vm_rssize = vm_resident_count(vm);
1802 		calctsru(isthread ? &p->p_tu : &pr->ps_tu, &ut, &st, NULL);
1803 		ki->p_uutime_sec = ut.tv_sec;
1804 		ki->p_uutime_usec = ut.tv_nsec/1000;
1805 		ki->p_ustime_sec = st.tv_sec;
1806 		ki->p_ustime_usec = st.tv_nsec/1000;
1807 
1808 		/* Convert starting uptime to a starting UTC time. */
1809 		nanoboottime(&booted);
1810 		timespecadd(&booted, &pr->ps_start, &utc);
1811 		ki->p_ustart_sec = utc.tv_sec;
1812 		ki->p_ustart_usec = utc.tv_nsec / 1000;
1813 
1814 #ifdef MULTIPROCESSOR
1815 		if (p->p_cpu != NULL)
1816 			ki->p_cpuid = CPU_INFO_UNIT(p->p_cpu);
1817 #endif
1818 	}
1819 
1820 	/* get %cpu and schedule state: just one thread or sum of all? */
1821 	if (isthread) {
1822 		ki->p_pctcpu = p->p_pctcpu;
1823 		ki->p_stat   = p->p_stat;
1824 	} else {
1825 		ki->p_pctcpu = 0;
1826 		ki->p_stat = (pr->ps_flags & PS_ZOMBIE) ? SDEAD : SIDL;
1827 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1828 			ki->p_pctcpu += p->p_pctcpu;
1829 			/* find best state: ONPROC > RUN > STOP > SLEEP > .. */
1830 			if (p->p_stat == SONPROC || ki->p_stat == SONPROC)
1831 				ki->p_stat = SONPROC;
1832 			else if (p->p_stat == SRUN || ki->p_stat == SRUN)
1833 				ki->p_stat = SRUN;
1834 			else if (p->p_stat == SSTOP || ki->p_stat == SSTOP)
1835 				ki->p_stat = SSTOP;
1836 			else if (p->p_stat == SSLEEP)
1837 				ki->p_stat = SSLEEP;
1838 		}
1839 	}
1840 }
1841 
1842 int
1843 sysctl_proc_args(int *name, u_int namelen, void *oldp, size_t *oldlenp,
1844     struct proc *cp)
1845 {
1846 	struct process *vpr;
1847 	pid_t pid;
1848 	struct ps_strings pss;
1849 	struct iovec iov;
1850 	struct uio uio;
1851 	int error, cnt, op;
1852 	size_t limit;
1853 	char **rargv, **vargv;		/* reader vs. victim */
1854 	char *rarg, *varg, *buf;
1855 	struct vmspace *vm;
1856 	vaddr_t ps_strings;
1857 
1858 	if (namelen > 2)
1859 		return (ENOTDIR);
1860 	if (namelen < 2)
1861 		return (EINVAL);
1862 
1863 	pid = name[0];
1864 	op = name[1];
1865 
1866 	switch (op) {
1867 	case KERN_PROC_ARGV:
1868 	case KERN_PROC_NARGV:
1869 	case KERN_PROC_ENV:
1870 	case KERN_PROC_NENV:
1871 		break;
1872 	default:
1873 		return (EOPNOTSUPP);
1874 	}
1875 
1876 	if ((vpr = prfind(pid)) == NULL)
1877 		return (ESRCH);
1878 
1879 	if (oldp == NULL) {
1880 		if (op == KERN_PROC_NARGV || op == KERN_PROC_NENV)
1881 			*oldlenp = sizeof(int);
1882 		else
1883 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
1884 		return (0);
1885 	}
1886 
1887 	/* Either system process or exiting/zombie */
1888 	if (vpr->ps_flags & (PS_SYSTEM | PS_EXITING))
1889 		return (EINVAL);
1890 
1891 	/* Execing - danger. */
1892 	if ((vpr->ps_flags & PS_INEXEC))
1893 		return (EBUSY);
1894 
1895 	/* Only owner or root can get env */
1896 	if ((op == KERN_PROC_NENV || op == KERN_PROC_ENV) &&
1897 	    (vpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
1898 	    (error = suser(cp)) != 0))
1899 		return (error);
1900 
1901 	ps_strings = vpr->ps_strings;
1902 	vm = vpr->ps_vmspace;
1903 	uvmspace_addref(vm);
1904 	vpr = NULL;
1905 
1906 	buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1907 
1908 	iov.iov_base = &pss;
1909 	iov.iov_len = sizeof(pss);
1910 	uio.uio_iov = &iov;
1911 	uio.uio_iovcnt = 1;
1912 	uio.uio_offset = (off_t)ps_strings;
1913 	uio.uio_resid = sizeof(pss);
1914 	uio.uio_segflg = UIO_SYSSPACE;
1915 	uio.uio_rw = UIO_READ;
1916 	uio.uio_procp = cp;
1917 
1918 	if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1919 		goto out;
1920 
1921 	if (op == KERN_PROC_NARGV) {
1922 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nargvstr);
1923 		goto out;
1924 	}
1925 	if (op == KERN_PROC_NENV) {
1926 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nenvstr);
1927 		goto out;
1928 	}
1929 
1930 	if (op == KERN_PROC_ARGV) {
1931 		cnt = pss.ps_nargvstr;
1932 		vargv = pss.ps_argvstr;
1933 	} else {
1934 		cnt = pss.ps_nenvstr;
1935 		vargv = pss.ps_envstr;
1936 	}
1937 
1938 	/* -1 to have space for a terminating NUL */
1939 	limit = *oldlenp - 1;
1940 	*oldlenp = 0;
1941 
1942 	rargv = oldp;
1943 
1944 	/*
1945 	 * *oldlenp - number of bytes copied out into readers buffer.
1946 	 * limit - maximal number of bytes allowed into readers buffer.
1947 	 * rarg - pointer into readers buffer where next arg will be stored.
1948 	 * rargv - pointer into readers buffer where the next rarg pointer
1949 	 *  will be stored.
1950 	 * vargv - pointer into victim address space where the next argument
1951 	 *  will be read.
1952 	 */
1953 
1954 	/* space for cnt pointers and a NULL */
1955 	rarg = (char *)(rargv + cnt + 1);
1956 	*oldlenp += (cnt + 1) * sizeof(char **);
1957 
1958 	while (cnt > 0 && *oldlenp < limit) {
1959 		size_t len, vstrlen;
1960 
1961 		/* Write to readers argv */
1962 		if ((error = copyout(&rarg, rargv, sizeof(rarg))) != 0)
1963 			goto out;
1964 
1965 		/* read the victim argv */
1966 		iov.iov_base = &varg;
1967 		iov.iov_len = sizeof(varg);
1968 		uio.uio_iov = &iov;
1969 		uio.uio_iovcnt = 1;
1970 		uio.uio_offset = (off_t)(vaddr_t)vargv;
1971 		uio.uio_resid = sizeof(varg);
1972 		uio.uio_segflg = UIO_SYSSPACE;
1973 		uio.uio_rw = UIO_READ;
1974 		uio.uio_procp = cp;
1975 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1976 			goto out;
1977 
1978 		if (varg == NULL)
1979 			break;
1980 
1981 		/*
1982 		 * read the victim arg. We must jump through hoops to avoid
1983 		 * crossing a page boundary too much and returning an error.
1984 		 */
1985 more:
1986 		len = PAGE_SIZE - (((vaddr_t)varg) & PAGE_MASK);
1987 		/* leave space for the terminating NUL */
1988 		iov.iov_base = buf;
1989 		iov.iov_len = len;
1990 		uio.uio_iov = &iov;
1991 		uio.uio_iovcnt = 1;
1992 		uio.uio_offset = (off_t)(vaddr_t)varg;
1993 		uio.uio_resid = len;
1994 		uio.uio_segflg = UIO_SYSSPACE;
1995 		uio.uio_rw = UIO_READ;
1996 		uio.uio_procp = cp;
1997 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1998 			goto out;
1999 
2000 		for (vstrlen = 0; vstrlen < len; vstrlen++) {
2001 			if (buf[vstrlen] == '\0')
2002 				break;
2003 		}
2004 
2005 		/* Don't overflow readers buffer. */
2006 		if (*oldlenp + vstrlen + 1 >= limit) {
2007 			error = ENOMEM;
2008 			goto out;
2009 		}
2010 
2011 		if ((error = copyout(buf, rarg, vstrlen)) != 0)
2012 			goto out;
2013 
2014 		*oldlenp += vstrlen;
2015 		rarg += vstrlen;
2016 
2017 		/* The string didn't end in this page? */
2018 		if (vstrlen == len) {
2019 			varg += vstrlen;
2020 			goto more;
2021 		}
2022 
2023 		/* End of string. Terminate it with a NUL */
2024 		buf[0] = '\0';
2025 		if ((error = copyout(buf, rarg, 1)) != 0)
2026 			goto out;
2027 		*oldlenp += 1;
2028 		rarg += 1;
2029 
2030 		vargv++;
2031 		rargv++;
2032 		cnt--;
2033 	}
2034 
2035 	if (*oldlenp >= limit) {
2036 		error = ENOMEM;
2037 		goto out;
2038 	}
2039 
2040 	/* Write the terminating null */
2041 	rarg = NULL;
2042 	error = copyout(&rarg, rargv, sizeof(rarg));
2043 
2044 out:
2045 	uvmspace_free(vm);
2046 	free(buf, M_TEMP, PAGE_SIZE);
2047 	return (error);
2048 }
2049 
2050 int
2051 sysctl_proc_cwd(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2052     struct proc *cp)
2053 {
2054 	struct process *findpr;
2055 	struct vnode *vp;
2056 	pid_t pid;
2057 	int error;
2058 	size_t lenused, len;
2059 	char *path, *bp, *bend;
2060 
2061 	if (namelen > 1)
2062 		return (ENOTDIR);
2063 	if (namelen < 1)
2064 		return (EINVAL);
2065 
2066 	pid = name[0];
2067 	if ((findpr = prfind(pid)) == NULL)
2068 		return (ESRCH);
2069 
2070 	if (oldp == NULL) {
2071 		*oldlenp = MAXPATHLEN * 4;
2072 		return (0);
2073 	}
2074 
2075 	/* Either system process or exiting/zombie */
2076 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2077 		return (EINVAL);
2078 
2079 	/* Only owner or root can get cwd */
2080 	if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2081 	    (error = suser(cp)) != 0)
2082 		return (error);
2083 
2084 	len = *oldlenp;
2085 	if (len > MAXPATHLEN * 4)
2086 		len = MAXPATHLEN * 4;
2087 	else if (len < 2)
2088 		return (ERANGE);
2089 	*oldlenp = 0;
2090 
2091 	/* snag a reference to the vnode before we can sleep */
2092 	vp = findpr->ps_fd->fd_cdir;
2093 	vref(vp);
2094 
2095 	path = malloc(len, M_TEMP, M_WAITOK);
2096 
2097 	bp = &path[len];
2098 	bend = bp;
2099 	*(--bp) = '\0';
2100 
2101 	/* Same as sys__getcwd */
2102 	error = vfs_getcwd_common(vp, NULL,
2103 	    &bp, path, len / 2, GETCWD_CHECK_ACCESS, cp);
2104 	if (error == 0) {
2105 		*oldlenp = lenused = bend - bp;
2106 		error = copyout(bp, oldp, lenused);
2107 	}
2108 
2109 	vrele(vp);
2110 	free(path, M_TEMP, len);
2111 
2112 	return (error);
2113 }
2114 
2115 int
2116 sysctl_proc_nobroadcastkill(int *name, u_int namelen, void *newp, size_t newlen,
2117     void *oldp, size_t *oldlenp, struct proc *cp)
2118 {
2119 	struct process *findpr;
2120 	pid_t pid;
2121 	int error, flag;
2122 
2123 	if (namelen > 1)
2124 		return (ENOTDIR);
2125 	if (namelen < 1)
2126 		return (EINVAL);
2127 
2128 	pid = name[0];
2129 	if ((findpr = prfind(pid)) == NULL)
2130 		return (ESRCH);
2131 
2132 	/* Either system process or exiting/zombie */
2133 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2134 		return (EINVAL);
2135 
2136 	/* Only root can change PS_NOBROADCASTKILL */
2137 	if (newp != NULL && (error = suser(cp)) != 0)
2138 		return (error);
2139 
2140 	/* get the PS_NOBROADCASTKILL flag */
2141 	flag = findpr->ps_flags & PS_NOBROADCASTKILL ? 1 : 0;
2142 
2143 	error = sysctl_int(oldp, oldlenp, newp, newlen, &flag);
2144 	if (error == 0 && newp) {
2145 		if (flag)
2146 			atomic_setbits_int(&findpr->ps_flags,
2147 			    PS_NOBROADCASTKILL);
2148 		else
2149 			atomic_clearbits_int(&findpr->ps_flags,
2150 			    PS_NOBROADCASTKILL);
2151 	}
2152 
2153 	return (error);
2154 }
2155 
2156 /* Arbitrary but reasonable limit for one iteration. */
2157 #define	VMMAP_MAXLEN	MAXPHYS
2158 
2159 int
2160 sysctl_proc_vmmap(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2161     struct proc *cp)
2162 {
2163 	struct process *findpr;
2164 	pid_t pid;
2165 	int error;
2166 	size_t oldlen, len;
2167 	struct kinfo_vmentry *kve, *ukve;
2168 	u_long *ustart, start;
2169 
2170 	if (namelen > 1)
2171 		return (ENOTDIR);
2172 	if (namelen < 1)
2173 		return (EINVAL);
2174 
2175 	/* Provide max buffer length as hint. */
2176 	if (oldp == NULL) {
2177 		if (oldlenp == NULL)
2178 			return (EINVAL);
2179 		else {
2180 			*oldlenp = VMMAP_MAXLEN;
2181 			return (0);
2182 		}
2183 	}
2184 
2185 	pid = name[0];
2186 	if (pid == cp->p_p->ps_pid) {
2187 		/* Self process mapping. */
2188 		findpr = cp->p_p;
2189 	} else if (pid > 0) {
2190 		if ((findpr = prfind(pid)) == NULL)
2191 			return (ESRCH);
2192 
2193 		/* Either system process or exiting/zombie */
2194 		if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2195 			return (EINVAL);
2196 
2197 #if 1
2198 		/* XXX Allow only root for now */
2199 		if ((error = suser(cp)) != 0)
2200 			return (error);
2201 #else
2202 		/* Only owner or root can get vmmap */
2203 		if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2204 		    (error = suser(cp)) != 0)
2205 			return (error);
2206 #endif
2207 	} else {
2208 		/* Only root can get kernel_map */
2209 		if ((error = suser(cp)) != 0)
2210 			return (error);
2211 		findpr = NULL;
2212 	}
2213 
2214 	/* Check the given size. */
2215 	oldlen = *oldlenp;
2216 	if (oldlen == 0 || oldlen % sizeof(*kve) != 0)
2217 		return (EINVAL);
2218 
2219 	/* Deny huge allocation. */
2220 	if (oldlen > VMMAP_MAXLEN)
2221 		return (EINVAL);
2222 
2223 	/*
2224 	 * Iterate from the given address passed as the first element's
2225 	 * kve_start via oldp.
2226 	 */
2227 	ukve = (struct kinfo_vmentry *)oldp;
2228 	ustart = &ukve->kve_start;
2229 	error = copyin(ustart, &start, sizeof(start));
2230 	if (error != 0)
2231 		return (error);
2232 
2233 	/* Allocate wired memory to not block. */
2234 	kve = malloc(oldlen, M_TEMP, M_WAITOK);
2235 
2236 	/* Set the base address and read entries. */
2237 	kve[0].kve_start = start;
2238 	len = oldlen;
2239 	error = fill_vmmap(findpr, kve, &len);
2240 	if (error != 0 && error != ENOMEM)
2241 		goto done;
2242 	if (len == 0)
2243 		goto done;
2244 
2245 	KASSERT(len <= oldlen);
2246 	KASSERT((len % sizeof(struct kinfo_vmentry)) == 0);
2247 
2248 	error = copyout(kve, oldp, len);
2249 
2250 done:
2251 	*oldlenp = len;
2252 
2253 	free(kve, M_TEMP, oldlen);
2254 
2255 	return (error);
2256 }
2257 #endif
2258 
2259 /*
2260  * Initialize disknames/diskstats for export by sysctl. If update is set,
2261  * then we simply update the disk statistics information.
2262  */
2263 int
2264 sysctl_diskinit(int update, struct proc *p)
2265 {
2266 	struct diskstats *sdk;
2267 	struct disk *dk;
2268 	const char *duid;
2269 	int error, changed = 0;
2270 
2271 	KERNEL_ASSERT_LOCKED();
2272 
2273 	if ((error = rw_enter(&sysctl_disklock, RW_WRITE|RW_INTR)) != 0)
2274 		return error;
2275 
2276 	/* Run in a loop, disks may change while malloc sleeps. */
2277 	while (disk_change) {
2278 		int tlen;
2279 
2280 		disk_change = 0;
2281 
2282 		tlen = 0;
2283 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2284 			if (dk->dk_name)
2285 				tlen += strlen(dk->dk_name);
2286 			tlen += 18;	/* label uid + separators */
2287 		}
2288 		tlen++;
2289 
2290 		/*
2291 		 * The sysctl_disklock ensures that no other process can
2292 		 * allocate disknames and diskstats while our malloc sleeps.
2293 		 */
2294 		free(disknames, M_SYSCTL, disknameslen);
2295 		free(diskstats, M_SYSCTL, diskstatslen);
2296 		diskstats = NULL;
2297 		disknames = NULL;
2298 		diskstats = mallocarray(disk_count, sizeof(struct diskstats),
2299 		    M_SYSCTL, M_WAITOK|M_ZERO);
2300 		diskstatslen = disk_count * sizeof(struct diskstats);
2301 		disknames = malloc(tlen, M_SYSCTL, M_WAITOK|M_ZERO);
2302 		disknameslen = tlen;
2303 		disknames[0] = '\0';
2304 		changed = 1;
2305 	}
2306 
2307 	if (changed) {
2308 		int l;
2309 
2310 		l = 0;
2311 		sdk = diskstats;
2312 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2313 			duid = NULL;
2314 			if (dk->dk_label && !duid_iszero(dk->dk_label->d_uid))
2315 				duid = duid_format(dk->dk_label->d_uid);
2316 			snprintf(disknames + l, disknameslen - l, "%s:%s,",
2317 			    dk->dk_name ? dk->dk_name : "",
2318 			    duid ? duid : "");
2319 			l += strlen(disknames + l);
2320 			strlcpy(sdk->ds_name, dk->dk_name,
2321 			    sizeof(sdk->ds_name));
2322 			mtx_enter(&dk->dk_mtx);
2323 			sdk->ds_busy = dk->dk_busy;
2324 			sdk->ds_rxfer = dk->dk_rxfer;
2325 			sdk->ds_wxfer = dk->dk_wxfer;
2326 			sdk->ds_seek = dk->dk_seek;
2327 			sdk->ds_rbytes = dk->dk_rbytes;
2328 			sdk->ds_wbytes = dk->dk_wbytes;
2329 			sdk->ds_attachtime = dk->dk_attachtime;
2330 			sdk->ds_timestamp = dk->dk_timestamp;
2331 			sdk->ds_time = dk->dk_time;
2332 			mtx_leave(&dk->dk_mtx);
2333 			sdk++;
2334 		}
2335 
2336 		/* Eliminate trailing comma */
2337 		if (l != 0)
2338 			disknames[l - 1] = '\0';
2339 	} else if (update) {
2340 		/* Just update, number of drives hasn't changed */
2341 		sdk = diskstats;
2342 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2343 			strlcpy(sdk->ds_name, dk->dk_name,
2344 			    sizeof(sdk->ds_name));
2345 			mtx_enter(&dk->dk_mtx);
2346 			sdk->ds_busy = dk->dk_busy;
2347 			sdk->ds_rxfer = dk->dk_rxfer;
2348 			sdk->ds_wxfer = dk->dk_wxfer;
2349 			sdk->ds_seek = dk->dk_seek;
2350 			sdk->ds_rbytes = dk->dk_rbytes;
2351 			sdk->ds_wbytes = dk->dk_wbytes;
2352 			sdk->ds_attachtime = dk->dk_attachtime;
2353 			sdk->ds_timestamp = dk->dk_timestamp;
2354 			sdk->ds_time = dk->dk_time;
2355 			mtx_leave(&dk->dk_mtx);
2356 			sdk++;
2357 		}
2358 	}
2359 	rw_exit_write(&sysctl_disklock);
2360 	return 0;
2361 }
2362 
2363 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
2364 int
2365 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
2366 {
2367 #ifdef SYSVSEM
2368 	struct sem_sysctl_info *semsi;
2369 #endif
2370 #ifdef SYSVSHM
2371 	struct shm_sysctl_info *shmsi;
2372 #endif
2373 	size_t infosize, dssize, tsize, buflen, bufsiz;
2374 	int i, nds, error, ret;
2375 	void *buf;
2376 
2377 	if (namelen != 1)
2378 		return (EINVAL);
2379 
2380 	buflen = *sizep;
2381 
2382 	switch (*name) {
2383 	case KERN_SYSVIPC_MSG_INFO:
2384 #ifdef SYSVMSG
2385 		return (sysctl_sysvmsg(name, namelen, where, sizep));
2386 #else
2387 		return (EOPNOTSUPP);
2388 #endif
2389 	case KERN_SYSVIPC_SEM_INFO:
2390 #ifdef SYSVSEM
2391 		infosize = sizeof(semsi->seminfo);
2392 		nds = seminfo.semmni;
2393 		dssize = sizeof(semsi->semids[0]);
2394 		break;
2395 #else
2396 		return (EOPNOTSUPP);
2397 #endif
2398 	case KERN_SYSVIPC_SHM_INFO:
2399 #ifdef SYSVSHM
2400 		infosize = sizeof(shmsi->shminfo);
2401 		nds = shminfo.shmmni;
2402 		dssize = sizeof(shmsi->shmids[0]);
2403 		break;
2404 #else
2405 		return (EOPNOTSUPP);
2406 #endif
2407 	default:
2408 		return (EINVAL);
2409 	}
2410 	tsize = infosize + (nds * dssize);
2411 
2412 	/* Return just the total size required. */
2413 	if (where == NULL) {
2414 		*sizep = tsize;
2415 		return (0);
2416 	}
2417 
2418 	/* Not enough room for even the info struct. */
2419 	if (buflen < infosize) {
2420 		*sizep = 0;
2421 		return (ENOMEM);
2422 	}
2423 	bufsiz = min(tsize, buflen);
2424 	buf = malloc(bufsiz, M_TEMP, M_WAITOK|M_ZERO);
2425 
2426 	switch (*name) {
2427 #ifdef SYSVSEM
2428 	case KERN_SYSVIPC_SEM_INFO:
2429 		semsi = (struct sem_sysctl_info *)buf;
2430 		semsi->seminfo = seminfo;
2431 		break;
2432 #endif
2433 #ifdef SYSVSHM
2434 	case KERN_SYSVIPC_SHM_INFO:
2435 		shmsi = (struct shm_sysctl_info *)buf;
2436 		shmsi->shminfo = shminfo;
2437 		break;
2438 #endif
2439 	}
2440 	buflen -= infosize;
2441 
2442 	ret = 0;
2443 	if (buflen > 0) {
2444 		/* Fill in the IPC data structures.  */
2445 		for (i = 0; i < nds; i++) {
2446 			if (buflen < dssize) {
2447 				ret = ENOMEM;
2448 				break;
2449 			}
2450 			switch (*name) {
2451 #ifdef SYSVSEM
2452 			case KERN_SYSVIPC_SEM_INFO:
2453 				if (sema[i] != NULL)
2454 					memcpy(&semsi->semids[i], sema[i],
2455 					    dssize);
2456 				else
2457 					memset(&semsi->semids[i], 0, dssize);
2458 				break;
2459 #endif
2460 #ifdef SYSVSHM
2461 			case KERN_SYSVIPC_SHM_INFO:
2462 				if (shmsegs[i] != NULL)
2463 					memcpy(&shmsi->shmids[i], shmsegs[i],
2464 					    dssize);
2465 				else
2466 					memset(&shmsi->shmids[i], 0, dssize);
2467 				break;
2468 #endif
2469 			}
2470 			buflen -= dssize;
2471 		}
2472 	}
2473 	*sizep -= buflen;
2474 	error = copyout(buf, where, *sizep);
2475 	free(buf, M_TEMP, bufsiz);
2476 	/* If copyout succeeded, use return code set earlier. */
2477 	return (error ? error : ret);
2478 }
2479 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
2480 
2481 #ifndef	SMALL_KERNEL
2482 
2483 int
2484 sysctl_intrcnt(int *name, u_int namelen, void *oldp, size_t *oldlenp)
2485 {
2486 	return (evcount_sysctl(name, namelen, oldp, oldlenp, NULL, 0));
2487 }
2488 
2489 
2490 int
2491 sysctl_sensors(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2492     void *newp, size_t newlen)
2493 {
2494 	struct ksensor *ks;
2495 	struct sensor *us;
2496 	struct ksensordev *ksd;
2497 	struct sensordev *usd;
2498 	int dev, numt, ret;
2499 	enum sensor_type type;
2500 
2501 	if (namelen != 1 && namelen != 3)
2502 		return (ENOTDIR);
2503 
2504 	dev = name[0];
2505 	if (namelen == 1) {
2506 		ret = sensordev_get(dev, &ksd);
2507 		if (ret)
2508 			return (ret);
2509 
2510 		/* Grab a copy, to clear the kernel pointers */
2511 		usd = malloc(sizeof(*usd), M_TEMP, M_WAITOK|M_ZERO);
2512 		usd->num = ksd->num;
2513 		strlcpy(usd->xname, ksd->xname, sizeof(usd->xname));
2514 		memcpy(usd->maxnumt, ksd->maxnumt, sizeof(usd->maxnumt));
2515 		usd->sensors_count = ksd->sensors_count;
2516 
2517 		ret = sysctl_rdstruct(oldp, oldlenp, newp, usd,
2518 		    sizeof(struct sensordev));
2519 
2520 		free(usd, M_TEMP, sizeof(*usd));
2521 		return (ret);
2522 	}
2523 
2524 	type = name[1];
2525 	numt = name[2];
2526 
2527 	ret = sensor_find(dev, type, numt, &ks);
2528 	if (ret)
2529 		return (ret);
2530 
2531 	/* Grab a copy, to clear the kernel pointers */
2532 	us = malloc(sizeof(*us), M_TEMP, M_WAITOK|M_ZERO);
2533 	memcpy(us->desc, ks->desc, sizeof(us->desc));
2534 	us->tv = ks->tv;
2535 	us->value = ks->value;
2536 	us->type = ks->type;
2537 	us->status = ks->status;
2538 	us->numt = ks->numt;
2539 	us->flags = ks->flags;
2540 
2541 	ret = sysctl_rdstruct(oldp, oldlenp, newp, us,
2542 	    sizeof(struct sensor));
2543 	free(us, M_TEMP, sizeof(*us));
2544 	return (ret);
2545 }
2546 #endif	/* SMALL_KERNEL */
2547 
2548 int
2549 sysctl_cptime2(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2550     void *newp, size_t newlen)
2551 {
2552 	CPU_INFO_ITERATOR cii;
2553 	struct cpu_info *ci;
2554 	int found = 0;
2555 
2556 	if (namelen != 1)
2557 		return (ENOTDIR);
2558 
2559 	CPU_INFO_FOREACH(cii, ci) {
2560 		if (name[0] == CPU_INFO_UNIT(ci)) {
2561 			found = 1;
2562 			break;
2563 		}
2564 	}
2565 	if (!found)
2566 		return (ENOENT);
2567 
2568 	return (sysctl_rdstruct(oldp, oldlenp, newp,
2569 	    &ci->ci_schedstate.spc_cp_time,
2570 	    sizeof(ci->ci_schedstate.spc_cp_time)));
2571 }
2572 
2573 #if NAUDIO > 0
2574 int
2575 sysctl_audio(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2576     void *newp, size_t newlen)
2577 {
2578 	if (namelen != 1)
2579 		return (ENOTDIR);
2580 
2581 	if (name[0] != KERN_AUDIO_RECORD)
2582 		return (ENOENT);
2583 
2584 	return (sysctl_int(oldp, oldlenp, newp, newlen, &audio_record_enable));
2585 }
2586 #endif
2587 
2588 #if NVIDEO > 0
2589 int
2590 sysctl_video(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2591     void *newp, size_t newlen)
2592 {
2593 	if (namelen != 1)
2594 		return (ENOTDIR);
2595 
2596 	if (name[0] != KERN_VIDEO_RECORD)
2597 		return (ENOENT);
2598 
2599 	return (sysctl_int(oldp, oldlenp, newp, newlen, &video_record_enable));
2600 }
2601 #endif
2602 
2603 int
2604 sysctl_cpustats(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2605     void *newp, size_t newlen)
2606 {
2607 	CPU_INFO_ITERATOR cii;
2608 	struct cpustats cs;
2609 	struct cpu_info *ci;
2610 	int found = 0;
2611 
2612 	if (namelen != 1)
2613 		return (ENOTDIR);
2614 
2615 	CPU_INFO_FOREACH(cii, ci) {
2616 		if (name[0] == CPU_INFO_UNIT(ci)) {
2617 			found = 1;
2618 			break;
2619 		}
2620 	}
2621 	if (!found)
2622 		return (ENOENT);
2623 
2624 	memset(&cs, 0, sizeof cs);
2625 	memcpy(&cs.cs_time, &ci->ci_schedstate.spc_cp_time, sizeof(cs.cs_time));
2626 	cs.cs_flags = 0;
2627 	if (cpu_is_online(ci))
2628 		cs.cs_flags |= CPUSTATS_ONLINE;
2629 
2630 	return (sysctl_rdstruct(oldp, oldlenp, newp, &cs, sizeof(cs)));
2631 }
2632 
2633 int
2634 sysctl_utc_offset(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2635 {
2636 	struct timespec adjusted, now;
2637 	int adjustment_seconds, error, new_offset_minutes, old_offset_minutes;
2638 
2639 	old_offset_minutes = utc_offset / 60;	/* seconds -> minutes */
2640 	new_offset_minutes = old_offset_minutes;
2641 	error = sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
2642 	     &new_offset_minutes);
2643 	if (error)
2644 		return error;
2645 	if (new_offset_minutes < -24 * 60 || new_offset_minutes > 24 * 60)
2646 		return EINVAL;
2647 	if (new_offset_minutes == old_offset_minutes)
2648 		return 0;
2649 
2650 	utc_offset = new_offset_minutes * 60;	/* minutes -> seconds */
2651 	adjustment_seconds = (new_offset_minutes - old_offset_minutes) * 60;
2652 
2653 	nanotime(&now);
2654 	adjusted = now;
2655 	adjusted.tv_sec -= adjustment_seconds;
2656 	tc_setrealtimeclock(&adjusted);
2657 	resettodr();
2658 
2659 	return 0;
2660 }
2661