xref: /openbsd/sys/kern/kern_tc.c (revision 73471bf0)
1 /*	$OpenBSD: kern_tc.c,v 1.75 2021/10/24 00:02:25 jsg Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/rwlock.h>
29 #include <sys/stdint.h>
30 #include <sys/timeout.h>
31 #include <sys/sysctl.h>
32 #include <sys/syslog.h>
33 #include <sys/systm.h>
34 #include <sys/timetc.h>
35 #include <sys/queue.h>
36 #include <sys/malloc.h>
37 
38 u_int dummy_get_timecount(struct timecounter *);
39 
40 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
41 int sysctl_tc_choice(void *, size_t *, void *, size_t);
42 
43 /*
44  * Implement a dummy timecounter which we can use until we get a real one
45  * in the air.  This allows the console and other early stuff to use
46  * time services.
47  */
48 
49 u_int
50 dummy_get_timecount(struct timecounter *tc)
51 {
52 	static u_int now;
53 
54 	return atomic_inc_int_nv(&now);
55 }
56 
57 static struct timecounter dummy_timecounter = {
58 	.tc_get_timecount = dummy_get_timecount,
59 	.tc_poll_pps = NULL,
60 	.tc_counter_mask = ~0u,
61 	.tc_frequency = 1000000,
62 	.tc_name = "dummy",
63 	.tc_quality = -1000000,
64 	.tc_priv = NULL,
65 	.tc_user = 0,
66 };
67 
68 /*
69  * Locks used to protect struct members, global variables in this file:
70  *	I	immutable after initialization
71  *	T	tc_lock
72  *	W	windup_mtx
73  */
74 
75 struct timehands {
76 	/* These fields must be initialized by the driver. */
77 	struct timecounter	*th_counter;		/* [W] */
78 	int64_t			th_adjtimedelta;	/* [T,W] */
79 	struct bintime		th_next_ntp_update;	/* [T,W] */
80 	int64_t			th_adjustment;		/* [W] */
81 	u_int64_t		th_scale;		/* [W] */
82 	u_int	 		th_offset_count;	/* [W] */
83 	struct bintime		th_boottime;		/* [T,W] */
84 	struct bintime		th_offset;		/* [W] */
85 	struct bintime		th_naptime;		/* [W] */
86 	struct timeval		th_microtime;		/* [W] */
87 	struct timespec		th_nanotime;		/* [W] */
88 	/* Fields not to be copied in tc_windup start with th_generation. */
89 	volatile u_int		th_generation;		/* [W] */
90 	struct timehands	*th_next;		/* [I] */
91 };
92 
93 static struct timehands th0;
94 static struct timehands th1 = {
95 	.th_next = &th0
96 };
97 static struct timehands th0 = {
98 	.th_counter = &dummy_timecounter,
99 	.th_scale = UINT64_MAX / 1000000,
100 	.th_offset = { .sec = 1, .frac = 0 },
101 	.th_generation = 1,
102 	.th_next = &th1
103 };
104 
105 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock");
106 
107 /*
108  * tc_windup() must be called before leaving this mutex.
109  */
110 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
111 
112 static struct timehands *volatile timehands = &th0;		/* [W] */
113 struct timecounter *timecounter = &dummy_timecounter;		/* [T] */
114 static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list);
115 
116 /*
117  * These are updated from tc_windup().  They are useful when
118  * examining kernel core dumps.
119  */
120 volatile time_t naptime = 0;
121 volatile time_t time_second = 1;
122 volatile time_t time_uptime = 0;
123 
124 static int timestepwarnings;
125 
126 void ntp_update_second(struct timehands *);
127 void tc_windup(struct bintime *, struct bintime *, int64_t *);
128 
129 /*
130  * Return the difference between the timehands' counter value now and what
131  * was when we copied it to the timehands' offset_count.
132  */
133 static __inline u_int
134 tc_delta(struct timehands *th)
135 {
136 	struct timecounter *tc;
137 
138 	tc = th->th_counter;
139 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
140 	    tc->tc_counter_mask);
141 }
142 
143 /*
144  * Functions for reading the time.  We have to loop until we are sure that
145  * the timehands that we operated on was not updated under our feet.  See
146  * the comment in <sys/time.h> for a description of these functions.
147  */
148 
149 void
150 binboottime(struct bintime *bt)
151 {
152 	struct timehands *th;
153 	u_int gen;
154 
155 	do {
156 		th = timehands;
157 		gen = th->th_generation;
158 		membar_consumer();
159 		*bt = th->th_boottime;
160 		membar_consumer();
161 	} while (gen == 0 || gen != th->th_generation);
162 }
163 
164 void
165 microboottime(struct timeval *tvp)
166 {
167 	struct bintime bt;
168 
169 	binboottime(&bt);
170 	BINTIME_TO_TIMEVAL(&bt, tvp);
171 }
172 
173 void
174 nanoboottime(struct timespec *tsp)
175 {
176 	struct bintime bt;
177 
178 	binboottime(&bt);
179 	BINTIME_TO_TIMESPEC(&bt, tsp);
180 }
181 
182 void
183 binuptime(struct bintime *bt)
184 {
185 	struct timehands *th;
186 	u_int gen;
187 
188 	do {
189 		th = timehands;
190 		gen = th->th_generation;
191 		membar_consumer();
192 		*bt = th->th_offset;
193 		bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt);
194 		membar_consumer();
195 	} while (gen == 0 || gen != th->th_generation);
196 }
197 
198 void
199 getbinuptime(struct bintime *bt)
200 {
201 	struct timehands *th;
202 	u_int gen;
203 
204 	do {
205 		th = timehands;
206 		gen = th->th_generation;
207 		membar_consumer();
208 		*bt = th->th_offset;
209 		membar_consumer();
210 	} while (gen == 0 || gen != th->th_generation);
211 }
212 
213 void
214 nanouptime(struct timespec *tsp)
215 {
216 	struct bintime bt;
217 
218 	binuptime(&bt);
219 	BINTIME_TO_TIMESPEC(&bt, tsp);
220 }
221 
222 void
223 microuptime(struct timeval *tvp)
224 {
225 	struct bintime bt;
226 
227 	binuptime(&bt);
228 	BINTIME_TO_TIMEVAL(&bt, tvp);
229 }
230 
231 time_t
232 getuptime(void)
233 {
234 #if defined(__LP64__)
235 	return time_uptime;	/* atomic */
236 #else
237 	time_t now;
238 	struct timehands *th;
239 	u_int gen;
240 
241 	do {
242 		th = timehands;
243 		gen = th->th_generation;
244 		membar_consumer();
245 		now = th->th_offset.sec;
246 		membar_consumer();
247 	} while (gen == 0 || gen != th->th_generation);
248 
249 	return now;
250 #endif
251 }
252 
253 uint64_t
254 nsecuptime(void)
255 {
256 	struct bintime bt;
257 
258 	binuptime(&bt);
259 	return BINTIME_TO_NSEC(&bt);
260 }
261 
262 uint64_t
263 getnsecuptime(void)
264 {
265 	struct bintime bt;
266 
267 	getbinuptime(&bt);
268 	return BINTIME_TO_NSEC(&bt);
269 }
270 
271 void
272 binruntime(struct bintime *bt)
273 {
274 	struct timehands *th;
275 	u_int gen;
276 
277 	do {
278 		th = timehands;
279 		gen = th->th_generation;
280 		membar_consumer();
281 		bintimeaddfrac(&th->th_offset, th->th_scale * tc_delta(th), bt);
282 		bintimesub(bt, &th->th_naptime, bt);
283 		membar_consumer();
284 	} while (gen == 0 || gen != th->th_generation);
285 }
286 
287 void
288 nanoruntime(struct timespec *ts)
289 {
290 	struct bintime bt;
291 
292 	binruntime(&bt);
293 	BINTIME_TO_TIMESPEC(&bt, ts);
294 }
295 
296 void
297 bintime(struct bintime *bt)
298 {
299 	struct timehands *th;
300 	u_int gen;
301 
302 	do {
303 		th = timehands;
304 		gen = th->th_generation;
305 		membar_consumer();
306 		*bt = th->th_offset;
307 		bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt);
308 		bintimeadd(bt, &th->th_boottime, bt);
309 		membar_consumer();
310 	} while (gen == 0 || gen != th->th_generation);
311 }
312 
313 void
314 nanotime(struct timespec *tsp)
315 {
316 	struct bintime bt;
317 
318 	bintime(&bt);
319 	BINTIME_TO_TIMESPEC(&bt, tsp);
320 }
321 
322 void
323 microtime(struct timeval *tvp)
324 {
325 	struct bintime bt;
326 
327 	bintime(&bt);
328 	BINTIME_TO_TIMEVAL(&bt, tvp);
329 }
330 
331 time_t
332 gettime(void)
333 {
334 #if defined(__LP64__)
335 	return time_second;	/* atomic */
336 #else
337 	time_t now;
338 	struct timehands *th;
339 	u_int gen;
340 
341 	do {
342 		th = timehands;
343 		gen = th->th_generation;
344 		membar_consumer();
345 		now = th->th_microtime.tv_sec;
346 		membar_consumer();
347 	} while (gen == 0 || gen != th->th_generation);
348 
349 	return now;
350 #endif
351 }
352 
353 void
354 getnanouptime(struct timespec *tsp)
355 {
356 	struct timehands *th;
357 	u_int gen;
358 
359 	do {
360 		th = timehands;
361 		gen = th->th_generation;
362 		membar_consumer();
363 		BINTIME_TO_TIMESPEC(&th->th_offset, tsp);
364 		membar_consumer();
365 	} while (gen == 0 || gen != th->th_generation);
366 }
367 
368 void
369 getmicrouptime(struct timeval *tvp)
370 {
371 	struct timehands *th;
372 	u_int gen;
373 
374 	do {
375 		th = timehands;
376 		gen = th->th_generation;
377 		membar_consumer();
378 		BINTIME_TO_TIMEVAL(&th->th_offset, tvp);
379 		membar_consumer();
380 	} while (gen == 0 || gen != th->th_generation);
381 }
382 
383 void
384 getnanotime(struct timespec *tsp)
385 {
386 	struct timehands *th;
387 	u_int gen;
388 
389 	do {
390 		th = timehands;
391 		gen = th->th_generation;
392 		membar_consumer();
393 		*tsp = th->th_nanotime;
394 		membar_consumer();
395 	} while (gen == 0 || gen != th->th_generation);
396 }
397 
398 void
399 getmicrotime(struct timeval *tvp)
400 {
401 	struct timehands *th;
402 	u_int gen;
403 
404 	do {
405 		th = timehands;
406 		gen = th->th_generation;
407 		membar_consumer();
408 		*tvp = th->th_microtime;
409 		membar_consumer();
410 	} while (gen == 0 || gen != th->th_generation);
411 }
412 
413 /*
414  * Initialize a new timecounter and possibly use it.
415  */
416 void
417 tc_init(struct timecounter *tc)
418 {
419 	u_int64_t tmp;
420 	u_int u;
421 
422 	u = tc->tc_frequency / tc->tc_counter_mask;
423 	/* XXX: We need some margin here, 10% is a guess */
424 	u *= 11;
425 	u /= 10;
426 	if (tc->tc_quality >= 0) {
427 		if (u > hz) {
428 			tc->tc_quality = -2000;
429 			printf("Timecounter \"%s\" frequency %lu Hz",
430 			    tc->tc_name, (unsigned long)tc->tc_frequency);
431 			printf(" -- Insufficient hz, needs at least %u\n", u);
432 		}
433 	}
434 
435 	/* Determine the counter's precision. */
436 	for (tmp = 1; (tmp & tc->tc_counter_mask) == 0; tmp <<= 1)
437 		continue;
438 	tc->tc_precision = tmp;
439 
440 	SLIST_INSERT_HEAD(&tc_list, tc, tc_next);
441 
442 	/*
443 	 * Never automatically use a timecounter with negative quality.
444 	 * Even though we run on the dummy counter, switching here may be
445 	 * worse since this timecounter may not be monotonic.
446 	 */
447 	if (tc->tc_quality < 0)
448 		return;
449 	if (tc->tc_quality < timecounter->tc_quality)
450 		return;
451 	if (tc->tc_quality == timecounter->tc_quality &&
452 	    tc->tc_frequency < timecounter->tc_frequency)
453 		return;
454 	(void)tc->tc_get_timecount(tc);
455 	enqueue_randomness(tc->tc_get_timecount(tc));
456 
457 	timecounter = tc;
458 }
459 
460 /* Report the frequency of the current timecounter. */
461 u_int64_t
462 tc_getfrequency(void)
463 {
464 	return (timehands->th_counter->tc_frequency);
465 }
466 
467 /* Report the precision of the current timecounter. */
468 u_int64_t
469 tc_getprecision(void)
470 {
471 	return (timehands->th_counter->tc_precision);
472 }
473 
474 /*
475  * Step our concept of UTC, aka the realtime clock.
476  * This is done by modifying our estimate of when we booted.
477  *
478  * Any ongoing adjustment is meaningless after a clock jump,
479  * so we zero adjtimedelta here as well.
480  */
481 void
482 tc_setrealtimeclock(const struct timespec *ts)
483 {
484 	struct bintime boottime, old_utc, uptime, utc;
485 	struct timespec tmp;
486 	int64_t zero = 0;
487 
488 	TIMESPEC_TO_BINTIME(ts, &utc);
489 
490 	rw_enter_write(&tc_lock);
491 	mtx_enter(&windup_mtx);
492 
493 	binuptime(&uptime);
494 	bintimesub(&utc, &uptime, &boottime);
495 	bintimeadd(&timehands->th_boottime, &uptime, &old_utc);
496 	/* XXX fiddle all the little crinkly bits around the fiords... */
497 	tc_windup(&boottime, NULL, &zero);
498 
499 	mtx_leave(&windup_mtx);
500 	rw_exit_write(&tc_lock);
501 
502 	enqueue_randomness(ts->tv_sec);
503 
504 	if (timestepwarnings) {
505 		BINTIME_TO_TIMESPEC(&old_utc, &tmp);
506 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
507 		    (long long)tmp.tv_sec, tmp.tv_nsec,
508 		    (long long)ts->tv_sec, ts->tv_nsec);
509 	}
510 }
511 
512 /*
513  * Step the monotonic and realtime clocks, triggering any timeouts that
514  * should have occurred across the interval.
515  */
516 void
517 tc_setclock(const struct timespec *ts)
518 {
519 	struct bintime new_naptime, old_naptime, uptime, utc;
520 	struct timespec tmp;
521 	static int first = 1;
522 #ifndef SMALL_KERNEL
523 	struct bintime elapsed;
524 	long long adj_ticks;
525 #endif
526 
527 	/*
528 	 * When we're called for the first time, during boot when
529 	 * the root partition is mounted, we need to set boottime.
530 	 */
531 	if (first) {
532 		tc_setrealtimeclock(ts);
533 		first = 0;
534 		return;
535 	}
536 
537 	enqueue_randomness(ts->tv_sec);
538 
539 	TIMESPEC_TO_BINTIME(ts, &utc);
540 
541 	mtx_enter(&windup_mtx);
542 
543 	bintimesub(&utc, &timehands->th_boottime, &uptime);
544 	old_naptime = timehands->th_naptime;
545 	/* XXX fiddle all the little crinkly bits around the fiords... */
546 	tc_windup(NULL, &uptime, NULL);
547 	new_naptime = timehands->th_naptime;
548 
549 	mtx_leave(&windup_mtx);
550 
551 	if (bintimecmp(&old_naptime, &new_naptime, ==)) {
552 		BINTIME_TO_TIMESPEC(&uptime, &tmp);
553 		printf("%s: cannot rewind uptime to %lld.%09ld\n",
554 		    __func__, (long long)tmp.tv_sec, tmp.tv_nsec);
555 	}
556 
557 #ifndef SMALL_KERNEL
558 	/* convert the bintime to ticks */
559 	bintimesub(&new_naptime, &old_naptime, &elapsed);
560 	adj_ticks = BINTIME_TO_NSEC(&elapsed) / tick_nsec;
561 	if (adj_ticks > 0) {
562 		if (adj_ticks > INT_MAX)
563 			adj_ticks = INT_MAX;
564 		timeout_adjust_ticks(adj_ticks);
565 	}
566 #endif
567 }
568 
569 void
570 tc_update_timekeep(void)
571 {
572 	static struct timecounter *last_tc = NULL;
573 	struct timehands *th;
574 
575 	MUTEX_ASSERT_LOCKED(&windup_mtx);
576 
577 	if (timekeep == NULL)
578 		return;
579 
580 	th = timehands;
581 	timekeep->tk_generation = 0;
582 	membar_producer();
583 	timekeep->tk_scale = th->th_scale;
584 	timekeep->tk_offset_count = th->th_offset_count;
585 	timekeep->tk_offset = th->th_offset;
586 	timekeep->tk_naptime = th->th_naptime;
587 	timekeep->tk_boottime = th->th_boottime;
588 	if (last_tc != th->th_counter) {
589 		timekeep->tk_counter_mask = th->th_counter->tc_counter_mask;
590 		timekeep->tk_user = th->th_counter->tc_user;
591 		last_tc = th->th_counter;
592 	}
593 	membar_producer();
594 	timekeep->tk_generation = th->th_generation;
595 
596 	return;
597 }
598 
599 /*
600  * Initialize the next struct timehands in the ring and make
601  * it the active timehands.  Along the way we might switch to a different
602  * timecounter and/or do seconds processing in NTP.  Slightly magic.
603  */
604 void
605 tc_windup(struct bintime *new_boottime, struct bintime *new_offset,
606     int64_t *new_adjtimedelta)
607 {
608 	struct bintime bt;
609 	struct timecounter *active_tc;
610 	struct timehands *th, *tho;
611 	u_int64_t scale;
612 	u_int delta, ncount, ogen;
613 
614 	if (new_boottime != NULL || new_adjtimedelta != NULL)
615 		rw_assert_wrlock(&tc_lock);
616 	MUTEX_ASSERT_LOCKED(&windup_mtx);
617 
618 	active_tc = timecounter;
619 
620 	/*
621 	 * Make the next timehands a copy of the current one, but do not
622 	 * overwrite the generation or next pointer.  While we update
623 	 * the contents, the generation must be zero.
624 	 */
625 	tho = timehands;
626 	ogen = tho->th_generation;
627 	th = tho->th_next;
628 	th->th_generation = 0;
629 	membar_producer();
630 	memcpy(th, tho, offsetof(struct timehands, th_generation));
631 
632 	/*
633 	 * Capture a timecounter delta on the current timecounter and if
634 	 * changing timecounters, a counter value from the new timecounter.
635 	 * Update the offset fields accordingly.
636 	 */
637 	delta = tc_delta(th);
638 	if (th->th_counter != active_tc)
639 		ncount = active_tc->tc_get_timecount(active_tc);
640 	else
641 		ncount = 0;
642 	th->th_offset_count += delta;
643 	th->th_offset_count &= th->th_counter->tc_counter_mask;
644 	bintimeaddfrac(&th->th_offset, th->th_scale * delta, &th->th_offset);
645 
646 	/*
647 	 * Ignore new offsets that predate the current offset.
648 	 * If changing the offset, first increase the naptime
649 	 * accordingly.
650 	 */
651 	if (new_offset != NULL && bintimecmp(&th->th_offset, new_offset, <)) {
652 		bintimesub(new_offset, &th->th_offset, &bt);
653 		bintimeadd(&th->th_naptime, &bt, &th->th_naptime);
654 		naptime = th->th_naptime.sec;
655 		th->th_offset = *new_offset;
656 	}
657 
658 #ifdef notyet
659 	/*
660 	 * Hardware latching timecounters may not generate interrupts on
661 	 * PPS events, so instead we poll them.  There is a finite risk that
662 	 * the hardware might capture a count which is later than the one we
663 	 * got above, and therefore possibly in the next NTP second which might
664 	 * have a different rate than the current NTP second.  It doesn't
665 	 * matter in practice.
666 	 */
667 	if (tho->th_counter->tc_poll_pps)
668 		tho->th_counter->tc_poll_pps(tho->th_counter);
669 #endif
670 
671 	/*
672 	 * If changing the boot time or clock adjustment, do so before
673 	 * NTP processing.
674 	 */
675 	if (new_boottime != NULL)
676 		th->th_boottime = *new_boottime;
677 	if (new_adjtimedelta != NULL) {
678 		th->th_adjtimedelta = *new_adjtimedelta;
679 		/* Reset the NTP update period. */
680 		bintimesub(&th->th_offset, &th->th_naptime,
681 		    &th->th_next_ntp_update);
682 	}
683 
684 	/*
685 	 * Deal with NTP second processing.  The while-loop normally
686 	 * iterates at most once, but in extreme situations it might
687 	 * keep NTP sane if tc_windup() is not run for several seconds.
688 	 */
689 	bintimesub(&th->th_offset, &th->th_naptime, &bt);
690 	while (bintimecmp(&th->th_next_ntp_update, &bt, <=)) {
691 		ntp_update_second(th);
692 		th->th_next_ntp_update.sec++;
693 	}
694 
695 	/* Update the UTC timestamps used by the get*() functions. */
696 	bintimeadd(&th->th_boottime, &th->th_offset, &bt);
697 	BINTIME_TO_TIMEVAL(&bt, &th->th_microtime);
698 	BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime);
699 
700 	/* Now is a good time to change timecounters. */
701 	if (th->th_counter != active_tc) {
702 		th->th_counter = active_tc;
703 		th->th_offset_count = ncount;
704 	}
705 
706 	/*-
707 	 * Recalculate the scaling factor.  We want the number of 1/2^64
708 	 * fractions of a second per period of the hardware counter, taking
709 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
710 	 * processing provides us with.
711 	 *
712 	 * The th_adjustment is nanoseconds per second with 32 bit binary
713 	 * fraction and we want 64 bit binary fraction of second:
714 	 *
715 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
716 	 *
717 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
718 	 * we can only multiply by about 850 without overflowing, but that
719 	 * leaves suitably precise fractions for multiply before divide.
720 	 *
721 	 * Divide before multiply with a fraction of 2199/512 results in a
722 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
723 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
724  	 *
725 	 * We happily sacrifice the lowest of the 64 bits of our result
726 	 * to the goddess of code clarity.
727 	 *
728 	 */
729 	scale = (u_int64_t)1 << 63;
730 	scale += \
731 	    ((th->th_adjustment + th->th_counter->tc_freq_adj) / 1024) * 2199;
732 	scale /= th->th_counter->tc_frequency;
733 	th->th_scale = scale * 2;
734 
735 	/*
736 	 * Now that the struct timehands is again consistent, set the new
737 	 * generation number, making sure to not make it zero.
738 	 */
739 	if (++ogen == 0)
740 		ogen = 1;
741 	membar_producer();
742 	th->th_generation = ogen;
743 
744 	/* Go live with the new struct timehands. */
745 	time_second = th->th_microtime.tv_sec;
746 	time_uptime = th->th_offset.sec;
747 	membar_producer();
748 	timehands = th;
749 
750 	tc_update_timekeep();
751 }
752 
753 /* Report or change the active timecounter hardware. */
754 int
755 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
756 {
757 	char newname[32];
758 	struct timecounter *newtc, *tc;
759 	int error;
760 
761 	tc = timecounter;
762 	strlcpy(newname, tc->tc_name, sizeof(newname));
763 
764 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
765 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
766 		return (error);
767 	SLIST_FOREACH(newtc, &tc_list, tc_next) {
768 		if (strcmp(newname, newtc->tc_name) != 0)
769 			continue;
770 
771 		/* Warm up new timecounter. */
772 		(void)newtc->tc_get_timecount(newtc);
773 		(void)newtc->tc_get_timecount(newtc);
774 
775 		rw_enter_write(&tc_lock);
776 		timecounter = newtc;
777 		rw_exit_write(&tc_lock);
778 
779 		return (0);
780 	}
781 	return (EINVAL);
782 }
783 
784 /* Report or change the active timecounter hardware. */
785 int
786 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
787 {
788 	char buf[32], *spc, *choices;
789 	struct timecounter *tc;
790 	int error, maxlen;
791 
792 	if (SLIST_EMPTY(&tc_list))
793 		return (sysctl_rdstring(oldp, oldlenp, newp, ""));
794 
795 	spc = "";
796 	maxlen = 0;
797 	SLIST_FOREACH(tc, &tc_list, tc_next)
798 		maxlen += sizeof(buf);
799 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
800 	*choices = '\0';
801 	SLIST_FOREACH(tc, &tc_list, tc_next) {
802 		snprintf(buf, sizeof(buf), "%s%s(%d)",
803 		    spc, tc->tc_name, tc->tc_quality);
804 		spc = " ";
805 		strlcat(choices, buf, maxlen);
806 	}
807 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
808 	free(choices, M_TEMP, maxlen);
809 	return (error);
810 }
811 
812 /*
813  * Timecounters need to be updated every so often to prevent the hardware
814  * counter from overflowing.  Updating also recalculates the cached values
815  * used by the get*() family of functions, so their precision depends on
816  * the update frequency.
817  */
818 static int tc_tick;
819 
820 void
821 tc_ticktock(void)
822 {
823 	static int count;
824 
825 	if (++count < tc_tick)
826 		return;
827 	if (!mtx_enter_try(&windup_mtx))
828 		return;
829 	count = 0;
830 	tc_windup(NULL, NULL, NULL);
831 	mtx_leave(&windup_mtx);
832 }
833 
834 void
835 inittimecounter(void)
836 {
837 #ifdef DEBUG
838 	u_int p;
839 #endif
840 
841 	/*
842 	 * Set the initial timeout to
843 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
844 	 * People should probably not use the sysctl to set the timeout
845 	 * to smaller than its initial value, since that value is the
846 	 * smallest reasonable one.  If they want better timestamps they
847 	 * should use the non-"get"* functions.
848 	 */
849 	if (hz > 1000)
850 		tc_tick = (hz + 500) / 1000;
851 	else
852 		tc_tick = 1;
853 #ifdef DEBUG
854 	p = (tc_tick * 1000000) / hz;
855 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
856 #endif
857 
858 	/* warm up new timecounter (again) and get rolling. */
859 	(void)timecounter->tc_get_timecount(timecounter);
860 	(void)timecounter->tc_get_timecount(timecounter);
861 }
862 
863 const struct sysctl_bounded_args tc_vars[] = {
864 	{ KERN_TIMECOUNTER_TICK, &tc_tick, SYSCTL_INT_READONLY },
865 	{ KERN_TIMECOUNTER_TIMESTEPWARNINGS, &timestepwarnings, 0, 1 },
866 };
867 
868 /*
869  * Return timecounter-related information.
870  */
871 int
872 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
873     void *newp, size_t newlen)
874 {
875 	if (namelen != 1)
876 		return (ENOTDIR);
877 
878 	switch (name[0]) {
879 	case KERN_TIMECOUNTER_HARDWARE:
880 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
881 	case KERN_TIMECOUNTER_CHOICE:
882 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
883 	default:
884 		return (sysctl_bounded_arr(tc_vars, nitems(tc_vars), name,
885 		    namelen, oldp, oldlenp, newp, newlen));
886 	}
887 	/* NOTREACHED */
888 }
889 
890 /*
891  * Skew the timehands according to any adjtime(2) adjustment.
892  */
893 void
894 ntp_update_second(struct timehands *th)
895 {
896 	int64_t adj;
897 
898 	MUTEX_ASSERT_LOCKED(&windup_mtx);
899 
900 	if (th->th_adjtimedelta > 0)
901 		adj = MIN(5000, th->th_adjtimedelta);
902 	else
903 		adj = MAX(-5000, th->th_adjtimedelta);
904 	th->th_adjtimedelta -= adj;
905 	th->th_adjustment = (adj * 1000) << 32;
906 }
907 
908 void
909 tc_adjfreq(int64_t *old, int64_t *new)
910 {
911 	if (old != NULL) {
912 		rw_assert_anylock(&tc_lock);
913 		*old = timecounter->tc_freq_adj;
914 	}
915 	if (new != NULL) {
916 		rw_assert_wrlock(&tc_lock);
917 		mtx_enter(&windup_mtx);
918 		timecounter->tc_freq_adj = *new;
919 		tc_windup(NULL, NULL, NULL);
920 		mtx_leave(&windup_mtx);
921 	}
922 }
923 
924 void
925 tc_adjtime(int64_t *old, int64_t *new)
926 {
927 	struct timehands *th;
928 	u_int gen;
929 
930 	if (old != NULL) {
931 		do {
932 			th = timehands;
933 			gen = th->th_generation;
934 			membar_consumer();
935 			*old = th->th_adjtimedelta;
936 			membar_consumer();
937 		} while (gen == 0 || gen != th->th_generation);
938 	}
939 	if (new != NULL) {
940 		rw_assert_wrlock(&tc_lock);
941 		mtx_enter(&windup_mtx);
942 		tc_windup(NULL, NULL, new);
943 		mtx_leave(&windup_mtx);
944 	}
945 }
946