1 /* $OpenBSD: subr_hibernate.c,v 1.138 2022/09/03 18:17:15 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* Make sure the signature can fit in one block */ 39 CTASSERT(sizeof(union hibernate_info) <= DEV_BSIZE); 40 41 /* 42 * Hibernate piglet layout information 43 * 44 * The piglet is a scratch area of memory allocated by the suspending kernel. 45 * Its phys and virt addrs are recorded in the signature block. The piglet is 46 * used to guarantee an unused area of memory that can be used by the resuming 47 * kernel for various things. The piglet is excluded during unpack operations. 48 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 49 * 50 * Offset from piglet_base Purpose 51 * ---------------------------------------------------------------------------- 52 * 0 Private page for suspend I/O write functions 53 * 1*PAGE_SIZE I/O page used during hibernate suspend 54 * 2*PAGE_SIZE I/O page used during hibernate suspend 55 * 3*PAGE_SIZE copy page used during hibernate suspend 56 * 4*PAGE_SIZE final chunk ordering list (24 pages) 57 * 28*PAGE_SIZE RLE utility page 58 * 29*PAGE_SIZE start of hiballoc area 59 * 30*PAGE_SIZE preserved entropy 60 * 110*PAGE_SIZE end of hiballoc area (80 pages) 61 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 62 * ... unused 63 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 64 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 65 * 4*HIBERNATE_CHUNK_SIZE end of piglet 66 */ 67 68 /* Temporary vaddr ranges used during hibernate */ 69 vaddr_t hibernate_temp_page; 70 vaddr_t hibernate_copy_page; 71 vaddr_t hibernate_rle_page; 72 73 /* Hibernate info as read from disk during resume */ 74 union hibernate_info disk_hib; 75 76 /* 77 * Global copy of the pig start address. This needs to be a global as we 78 * switch stacks after computing it - it can't be stored on the stack. 79 */ 80 paddr_t global_pig_start; 81 82 /* 83 * Global copies of the piglet start addresses (PA/VA). We store these 84 * as globals to avoid having to carry them around as parameters, as the 85 * piglet is allocated early and freed late - its lifecycle extends beyond 86 * that of the hibernate info union which is calculated on suspend/resume. 87 */ 88 vaddr_t global_piglet_va; 89 paddr_t global_piglet_pa; 90 91 /* #define HIB_DEBUG */ 92 #ifdef HIB_DEBUG 93 int hib_debug = 99; 94 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 95 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 96 #else 97 #define DPRINTF(x...) 98 #define DNPRINTF(n,x...) 99 #endif 100 101 #ifndef NO_PROPOLICE 102 extern long __guard_local; 103 #endif /* ! NO_PROPOLICE */ 104 105 /* Retguard phys address (need to skip this region during unpack) */ 106 paddr_t retguard_start_phys, retguard_end_phys; 107 extern char __retguard_start, __retguard_end; 108 109 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 110 int hibernate_calc_rle(paddr_t, paddr_t); 111 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 112 size_t *); 113 114 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 115 116 /* 117 * Hib alloc enforced alignment. 118 */ 119 #define HIB_ALIGN 8 /* bytes alignment */ 120 121 /* 122 * sizeof builtin operation, but with alignment constraint. 123 */ 124 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 125 126 struct hiballoc_entry { 127 size_t hibe_use; 128 size_t hibe_space; 129 RBT_ENTRY(hiballoc_entry) hibe_entry; 130 }; 131 132 /* 133 * Sort hibernate memory ranges by ascending PA 134 */ 135 void 136 hibernate_sort_ranges(union hibernate_info *hib_info) 137 { 138 int i, j; 139 struct hibernate_memory_range *ranges; 140 paddr_t base, end; 141 142 ranges = hib_info->ranges; 143 144 for (i = 1; i < hib_info->nranges; i++) { 145 j = i; 146 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 147 base = ranges[j].base; 148 end = ranges[j].end; 149 ranges[j].base = ranges[j - 1].base; 150 ranges[j].end = ranges[j - 1].end; 151 ranges[j - 1].base = base; 152 ranges[j - 1].end = end; 153 j--; 154 } 155 } 156 } 157 158 /* 159 * Compare hiballoc entries based on the address they manage. 160 * 161 * Since the address is fixed, relative to struct hiballoc_entry, 162 * we just compare the hiballoc_entry pointers. 163 */ 164 static __inline int 165 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 166 { 167 vaddr_t vl = (vaddr_t)l; 168 vaddr_t vr = (vaddr_t)r; 169 170 return vl < vr ? -1 : (vl > vr); 171 } 172 173 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 174 175 /* 176 * Given a hiballoc entry, return the address it manages. 177 */ 178 static __inline void * 179 hib_entry_to_addr(struct hiballoc_entry *entry) 180 { 181 caddr_t addr; 182 183 addr = (caddr_t)entry; 184 addr += HIB_SIZEOF(struct hiballoc_entry); 185 return addr; 186 } 187 188 /* 189 * Given an address, find the hiballoc that corresponds. 190 */ 191 static __inline struct hiballoc_entry* 192 hib_addr_to_entry(void *addr_param) 193 { 194 caddr_t addr; 195 196 addr = (caddr_t)addr_param; 197 addr -= HIB_SIZEOF(struct hiballoc_entry); 198 return (struct hiballoc_entry*)addr; 199 } 200 201 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 202 203 /* 204 * Allocate memory from the arena. 205 * 206 * Returns NULL if no memory is available. 207 */ 208 void * 209 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 210 { 211 struct hiballoc_entry *entry, *new_entry; 212 size_t find_sz; 213 214 /* 215 * Enforce alignment of HIB_ALIGN bytes. 216 * 217 * Note that, because the entry is put in front of the allocation, 218 * 0-byte allocations are guaranteed a unique address. 219 */ 220 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 221 222 /* 223 * Find an entry with hibe_space >= find_sz. 224 * 225 * If the root node is not large enough, we switch to tree traversal. 226 * Because all entries are made at the bottom of the free space, 227 * traversal from the end has a slightly better chance of yielding 228 * a sufficiently large space. 229 */ 230 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 231 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 232 if (entry != NULL && entry->hibe_space < find_sz) { 233 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 234 if (entry->hibe_space >= find_sz) 235 break; 236 } 237 } 238 239 /* 240 * Insufficient or too fragmented memory. 241 */ 242 if (entry == NULL) 243 return NULL; 244 245 /* 246 * Create new entry in allocated space. 247 */ 248 new_entry = (struct hiballoc_entry*)( 249 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 250 new_entry->hibe_space = entry->hibe_space - find_sz; 251 new_entry->hibe_use = alloc_sz; 252 253 /* 254 * Insert entry. 255 */ 256 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 257 panic("hib_alloc: insert failure"); 258 entry->hibe_space = 0; 259 260 /* Return address managed by entry. */ 261 return hib_entry_to_addr(new_entry); 262 } 263 264 void 265 hib_getentropy(char **bufp, size_t *bufplen) 266 { 267 if (!bufp || !bufplen) 268 return; 269 270 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 271 *bufplen = PAGE_SIZE; 272 } 273 274 /* 275 * Free a pointer previously allocated from this arena. 276 * 277 * If addr is NULL, this will be silently accepted. 278 */ 279 void 280 hib_free(struct hiballoc_arena *arena, void *addr) 281 { 282 struct hiballoc_entry *entry, *prev; 283 284 if (addr == NULL) 285 return; 286 287 /* 288 * Derive entry from addr and check it is really in this arena. 289 */ 290 entry = hib_addr_to_entry(addr); 291 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 292 panic("hib_free: freed item %p not in hib arena", addr); 293 294 /* 295 * Give the space in entry to its predecessor. 296 * 297 * If entry has no predecessor, change its used space into free space 298 * instead. 299 */ 300 prev = RBT_PREV(hiballoc_addr, entry); 301 if (prev != NULL && 302 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 303 prev->hibe_use + prev->hibe_space) == entry) { 304 /* Merge entry. */ 305 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 306 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 307 entry->hibe_use + entry->hibe_space; 308 } else { 309 /* Flip used memory to free space. */ 310 entry->hibe_space += entry->hibe_use; 311 entry->hibe_use = 0; 312 } 313 } 314 315 /* 316 * Initialize hiballoc. 317 * 318 * The allocator will manage memory at ptr, which is len bytes. 319 */ 320 int 321 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 322 { 323 struct hiballoc_entry *entry; 324 caddr_t ptr; 325 size_t len; 326 327 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 328 329 /* 330 * Hib allocator enforces HIB_ALIGN alignment. 331 * Fixup ptr and len. 332 */ 333 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 334 len = p_len - ((size_t)ptr - (size_t)p_ptr); 335 len &= ~((size_t)HIB_ALIGN - 1); 336 337 /* 338 * Insufficient memory to be able to allocate and also do bookkeeping. 339 */ 340 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 341 return ENOMEM; 342 343 /* 344 * Create entry describing space. 345 */ 346 entry = (struct hiballoc_entry*)ptr; 347 entry->hibe_use = 0; 348 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 349 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 350 351 return 0; 352 } 353 354 /* 355 * Zero all free memory. 356 */ 357 void 358 uvm_pmr_zero_everything(void) 359 { 360 struct uvm_pmemrange *pmr; 361 struct vm_page *pg; 362 int i; 363 364 uvm_lock_fpageq(); 365 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 366 /* Zero single pages. */ 367 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 368 != NULL) { 369 uvm_pmr_remove(pmr, pg); 370 uvm_pagezero(pg); 371 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 372 uvmexp.zeropages++; 373 uvm_pmr_insert(pmr, pg, 0); 374 } 375 376 /* Zero multi page ranges. */ 377 while ((pg = RBT_ROOT(uvm_pmr_size, 378 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { 379 pg--; /* Size tree always has second page. */ 380 uvm_pmr_remove(pmr, pg); 381 for (i = 0; i < pg->fpgsz; i++) { 382 uvm_pagezero(&pg[i]); 383 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 384 uvmexp.zeropages++; 385 } 386 uvm_pmr_insert(pmr, pg, 0); 387 } 388 } 389 uvm_unlock_fpageq(); 390 } 391 392 /* 393 * Mark all memory as dirty. 394 * 395 * Used to inform the system that the clean memory isn't clean for some 396 * reason, for example because we just came back from hibernate. 397 */ 398 void 399 uvm_pmr_dirty_everything(void) 400 { 401 struct uvm_pmemrange *pmr; 402 struct vm_page *pg; 403 int i; 404 405 uvm_lock_fpageq(); 406 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 407 /* Dirty single pages. */ 408 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 409 != NULL) { 410 uvm_pmr_remove(pmr, pg); 411 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 412 uvm_pmr_insert(pmr, pg, 0); 413 } 414 415 /* Dirty multi page ranges. */ 416 while ((pg = RBT_ROOT(uvm_pmr_size, 417 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 418 pg--; /* Size tree always has second page. */ 419 uvm_pmr_remove(pmr, pg); 420 for (i = 0; i < pg->fpgsz; i++) 421 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 422 uvm_pmr_insert(pmr, pg, 0); 423 } 424 } 425 426 uvmexp.zeropages = 0; 427 uvm_unlock_fpageq(); 428 } 429 430 /* 431 * Allocate an area that can hold sz bytes and doesn't overlap with 432 * the piglet at piglet_pa. 433 */ 434 int 435 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 436 { 437 struct uvm_constraint_range pig_constraint; 438 struct kmem_pa_mode kp_pig = { 439 .kp_constraint = &pig_constraint, 440 .kp_maxseg = 1 441 }; 442 vaddr_t va; 443 444 sz = round_page(sz); 445 446 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 447 pig_constraint.ucr_high = -1; 448 449 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 450 if (va == 0) { 451 pig_constraint.ucr_low = 0; 452 pig_constraint.ucr_high = piglet_pa - 1; 453 454 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 455 if (va == 0) 456 return ENOMEM; 457 } 458 459 pmap_extract(pmap_kernel(), va, pa); 460 return 0; 461 } 462 463 /* 464 * Allocate a piglet area. 465 * 466 * This needs to be in DMA-safe memory. 467 * Piglets are aligned. 468 * 469 * sz and align in bytes. 470 * 471 * The call will sleep for the pagedaemon to attempt to free memory. 472 * The pagedaemon may decide its not possible to free enough memory, causing 473 * the allocation to fail. 474 */ 475 int 476 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 477 { 478 struct kmem_pa_mode kp_piglet = { 479 .kp_constraint = &dma_constraint, 480 .kp_align = align, 481 .kp_maxseg = 1 482 }; 483 484 /* Ensure align is a power of 2 */ 485 KASSERT((align & (align - 1)) == 0); 486 487 /* 488 * Fixup arguments: align must be at least PAGE_SIZE, 489 * sz will be converted to pagecount, since that is what 490 * pmemrange uses internally. 491 */ 492 if (align < PAGE_SIZE) 493 kp_piglet.kp_align = PAGE_SIZE; 494 495 sz = round_page(sz); 496 497 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 498 if (*va == 0) 499 return ENOMEM; 500 501 pmap_extract(pmap_kernel(), *va, pa); 502 return 0; 503 } 504 505 /* 506 * Free a piglet area. 507 */ 508 void 509 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 510 { 511 /* 512 * Fix parameters. 513 */ 514 sz = round_page(sz); 515 516 /* 517 * Free the physical and virtual memory. 518 */ 519 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 520 } 521 522 /* 523 * Physmem RLE compression support. 524 * 525 * Given a physical page address, return the number of pages starting at the 526 * address that are free. Clamps to the number of pages in 527 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 528 */ 529 int 530 uvm_page_rle(paddr_t addr) 531 { 532 struct vm_page *pg, *pg_end; 533 struct vm_physseg *vmp; 534 int pseg_idx, off_idx; 535 536 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 537 if (pseg_idx == -1) 538 return 0; 539 540 vmp = &vm_physmem[pseg_idx]; 541 pg = &vmp->pgs[off_idx]; 542 if (!(pg->pg_flags & PQ_FREE)) 543 return 0; 544 545 /* 546 * Search for the first non-free page after pg. 547 * Note that the page may not be the first page in a free pmemrange, 548 * therefore pg->fpgsz cannot be used. 549 */ 550 for (pg_end = pg; pg_end <= vmp->lastpg && 551 (pg_end->pg_flags & PQ_FREE) == PQ_FREE && 552 (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++) 553 ; 554 return pg_end - pg; 555 } 556 557 /* 558 * Fills out the hibernate_info union pointed to by hib 559 * with information about this machine (swap signature block 560 * offsets, number of memory ranges, kernel in use, etc) 561 */ 562 int 563 get_hibernate_info(union hibernate_info *hib, int suspend) 564 { 565 struct disklabel dl; 566 char err_string[128], *dl_ret; 567 int part; 568 SHA2_CTX ctx; 569 void *fn; 570 571 #ifndef NO_PROPOLICE 572 /* Save propolice guard */ 573 hib->guard = __guard_local; 574 #endif /* ! NO_PROPOLICE */ 575 576 /* Determine I/O function to use */ 577 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 578 if (hib->io_func == NULL) 579 return (1); 580 581 /* Calculate hibernate device */ 582 hib->dev = swdevt[0].sw_dev; 583 584 /* Read disklabel (used to calculate signature and image offsets) */ 585 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 586 587 if (dl_ret) { 588 printf("Hibernate error reading disklabel: %s\n", dl_ret); 589 return (1); 590 } 591 592 /* Make sure we have a swap partition. */ 593 part = DISKPART(hib->dev); 594 if (dl.d_npartitions <= part || 595 dl.d_partitions[part].p_fstype != FS_SWAP || 596 DL_GETPSIZE(&dl.d_partitions[part]) == 0) 597 return (1); 598 599 /* Magic number */ 600 hib->magic = HIBERNATE_MAGIC; 601 602 /* Calculate signature block location */ 603 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part]) - 604 sizeof(union hibernate_info)/DEV_BSIZE; 605 606 SHA256Init(&ctx); 607 SHA256Update(&ctx, version, strlen(version)); 608 fn = printf; 609 SHA256Update(&ctx, &fn, sizeof(fn)); 610 fn = malloc; 611 SHA256Update(&ctx, &fn, sizeof(fn)); 612 fn = km_alloc; 613 SHA256Update(&ctx, &fn, sizeof(fn)); 614 fn = strlen; 615 SHA256Update(&ctx, &fn, sizeof(fn)); 616 SHA256Final((u_int8_t *)&hib->kern_hash, &ctx); 617 618 if (suspend) { 619 /* Grab the previously-allocated piglet addresses */ 620 hib->piglet_va = global_piglet_va; 621 hib->piglet_pa = global_piglet_pa; 622 hib->io_page = (void *)hib->piglet_va; 623 624 /* 625 * Initialization of the hibernate IO function for drivers 626 * that need to do prep work (such as allocating memory or 627 * setting up data structures that cannot safely be done 628 * during suspend without causing side effects). There is 629 * a matching HIB_DONE call performed after the write is 630 * completed. 631 */ 632 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[part]), 633 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[part]), 634 HIB_INIT, hib->io_page)) 635 goto fail; 636 637 } else { 638 /* 639 * Resuming kernels use a regular private page for the driver 640 * No need to free this I/O page as it will vanish as part of 641 * the resume. 642 */ 643 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 644 if (!hib->io_page) 645 goto fail; 646 } 647 648 if (get_hibernate_info_md(hib)) 649 goto fail; 650 651 return (0); 652 653 fail: 654 return (1); 655 } 656 657 /* 658 * Allocate nitems*size bytes from the hiballoc area presently in use 659 */ 660 void * 661 hibernate_zlib_alloc(void *unused, int nitems, int size) 662 { 663 struct hibernate_zlib_state *hibernate_state; 664 665 hibernate_state = 666 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 667 668 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 669 } 670 671 /* 672 * Free the memory pointed to by addr in the hiballoc area presently in 673 * use 674 */ 675 void 676 hibernate_zlib_free(void *unused, void *addr) 677 { 678 struct hibernate_zlib_state *hibernate_state; 679 680 hibernate_state = 681 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 682 683 hib_free(&hibernate_state->hiballoc_arena, addr); 684 } 685 686 /* 687 * Inflate next page of data from the image stream. 688 * The rle parameter is modified on exit to contain the number of pages to 689 * skip in the output stream (or 0 if this page was inflated into). 690 * 691 * Returns 0 if the stream contains additional data, or 1 if the stream is 692 * finished. 693 */ 694 int 695 hibernate_inflate_page(int *rle) 696 { 697 struct hibernate_zlib_state *hibernate_state; 698 int i; 699 700 hibernate_state = 701 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 702 703 /* Set up the stream for RLE code inflate */ 704 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 705 hibernate_state->hib_stream.avail_out = sizeof(*rle); 706 707 /* Inflate RLE code */ 708 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 709 if (i != Z_OK && i != Z_STREAM_END) { 710 /* 711 * XXX - this will likely reboot/hang most machines 712 * since the console output buffer will be unmapped, 713 * but there's not much else we can do here. 714 */ 715 panic("rle inflate stream error"); 716 } 717 718 if (hibernate_state->hib_stream.avail_out != 0) { 719 /* 720 * XXX - this will likely reboot/hang most machines 721 * since the console output buffer will be unmapped, 722 * but there's not much else we can do here. 723 */ 724 panic("rle short inflate error"); 725 } 726 727 if (*rle < 0 || *rle > 1024) { 728 /* 729 * XXX - this will likely reboot/hang most machines 730 * since the console output buffer will be unmapped, 731 * but there's not much else we can do here. 732 */ 733 panic("invalid rle count"); 734 } 735 736 if (i == Z_STREAM_END) 737 return (1); 738 739 if (*rle != 0) 740 return (0); 741 742 /* Set up the stream for page inflate */ 743 hibernate_state->hib_stream.next_out = 744 (unsigned char *)HIBERNATE_INFLATE_PAGE; 745 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 746 747 /* Process next block of data */ 748 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 749 if (i != Z_OK && i != Z_STREAM_END) { 750 /* 751 * XXX - this will likely reboot/hang most machines 752 * since the console output buffer will be unmapped, 753 * but there's not much else we can do here. 754 */ 755 panic("inflate error"); 756 } 757 758 /* We should always have extracted a full page ... */ 759 if (hibernate_state->hib_stream.avail_out != 0) { 760 /* 761 * XXX - this will likely reboot/hang most machines 762 * since the console output buffer will be unmapped, 763 * but there's not much else we can do here. 764 */ 765 panic("incomplete page"); 766 } 767 768 return (i == Z_STREAM_END); 769 } 770 771 /* 772 * Inflate size bytes from src into dest, skipping any pages in 773 * [src..dest] that are special (see hibernate_inflate_skip) 774 * 775 * This function executes while using the resume-time stack 776 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 777 * will likely hang or reset the machine since the console output buffer 778 * will be unmapped. 779 */ 780 void 781 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 782 paddr_t src, size_t size) 783 { 784 int end_stream = 0, rle, skip; 785 struct hibernate_zlib_state *hibernate_state; 786 787 hibernate_state = 788 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 789 790 hibernate_state->hib_stream.next_in = (unsigned char *)src; 791 hibernate_state->hib_stream.avail_in = size; 792 793 do { 794 /* 795 * Is this a special page? If yes, redirect the 796 * inflate output to a scratch page (eg, discard it) 797 */ 798 skip = hibernate_inflate_skip(hib, dest); 799 if (skip == HIB_SKIP) { 800 hibernate_enter_resume_mapping( 801 HIBERNATE_INFLATE_PAGE, 802 HIBERNATE_INFLATE_PAGE, 0); 803 } else if (skip == HIB_MOVE) { 804 /* 805 * Special case : retguard region. This gets moved 806 * temporarily into the piglet region and copied into 807 * place immediately before resume 808 */ 809 hibernate_enter_resume_mapping( 810 HIBERNATE_INFLATE_PAGE, 811 hib->piglet_pa + (110 * PAGE_SIZE) + 812 hib->retguard_ofs, 0); 813 hib->retguard_ofs += PAGE_SIZE; 814 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 815 /* 816 * XXX - this will likely reboot/hang most 817 * machines since the console output 818 * buffer will be unmapped, but there's 819 * not much else we can do here. 820 */ 821 panic("retguard move error, out of space"); 822 } 823 } else { 824 hibernate_enter_resume_mapping( 825 HIBERNATE_INFLATE_PAGE, dest, 0); 826 } 827 828 hibernate_flush(); 829 end_stream = hibernate_inflate_page(&rle); 830 831 if (rle == 0) 832 dest += PAGE_SIZE; 833 else 834 dest += (rle * PAGE_SIZE); 835 } while (!end_stream); 836 } 837 838 /* 839 * deflate from src into the I/O page, up to 'remaining' bytes 840 * 841 * Returns number of input bytes consumed, and may reset 842 * the 'remaining' parameter if not all the output space was consumed 843 * (this information is needed to know how much to write to disk) 844 */ 845 size_t 846 hibernate_deflate(union hibernate_info *hib, paddr_t src, 847 size_t *remaining) 848 { 849 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 850 struct hibernate_zlib_state *hibernate_state; 851 852 hibernate_state = 853 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 854 855 /* Set up the stream for deflate */ 856 hibernate_state->hib_stream.next_in = (unsigned char *)src; 857 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 858 hibernate_state->hib_stream.next_out = 859 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 860 hibernate_state->hib_stream.avail_out = *remaining; 861 862 /* Process next block of data */ 863 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 864 panic("hibernate zlib deflate error"); 865 866 /* Update pointers and return number of bytes consumed */ 867 *remaining = hibernate_state->hib_stream.avail_out; 868 return (PAGE_SIZE - (src & PAGE_MASK)) - 869 hibernate_state->hib_stream.avail_in; 870 } 871 872 /* 873 * Write the hibernation information specified in hiber_info 874 * to the location in swap previously calculated (last block of 875 * swap), called the "signature block". 876 */ 877 int 878 hibernate_write_signature(union hibernate_info *hib) 879 { 880 /* Write hibernate info to disk */ 881 return (hib->io_func(hib->dev, hib->sig_offset, 882 (vaddr_t)hib, DEV_BSIZE, HIB_W, 883 hib->io_page)); 884 } 885 886 /* 887 * Write the memory chunk table to the area in swap immediately 888 * preceding the signature block. The chunk table is stored 889 * in the piglet when this function is called. Returns errno. 890 */ 891 int 892 hibernate_write_chunktable(union hibernate_info *hib) 893 { 894 vaddr_t hibernate_chunk_table_start; 895 size_t hibernate_chunk_table_size; 896 int i, err; 897 898 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 899 900 hibernate_chunk_table_start = hib->piglet_va + 901 HIBERNATE_CHUNK_SIZE; 902 903 /* Write chunk table */ 904 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 905 if ((err = hib->io_func(hib->dev, 906 hib->chunktable_offset + (i/DEV_BSIZE), 907 (vaddr_t)(hibernate_chunk_table_start + i), 908 MAXPHYS, HIB_W, hib->io_page))) { 909 DPRINTF("chunktable write error: %d\n", err); 910 return (err); 911 } 912 } 913 914 return (0); 915 } 916 917 /* 918 * Write an empty hiber_info to the swap signature block, which is 919 * guaranteed to not match any valid hib. 920 */ 921 int 922 hibernate_clear_signature(union hibernate_info *hib) 923 { 924 union hibernate_info blank_hiber_info; 925 926 /* Zero out a blank hiber_info */ 927 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 928 929 /* Write (zeroed) hibernate info to disk */ 930 DPRINTF("clearing hibernate signature block location: %lld\n", 931 hib->sig_offset); 932 if (hibernate_block_io(hib, 933 hib->sig_offset, 934 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 935 printf("Warning: could not clear hibernate signature\n"); 936 937 return (0); 938 } 939 940 /* 941 * Compare two hibernate_infos to determine if they are the same (eg, 942 * we should be performing a hibernate resume on this machine. 943 * Not all fields are checked - just enough to verify that the machine 944 * has the same memory configuration and kernel as the one that 945 * wrote the signature previously. 946 */ 947 int 948 hibernate_compare_signature(union hibernate_info *mine, 949 union hibernate_info *disk) 950 { 951 u_int i; 952 953 if (mine->nranges != disk->nranges) { 954 printf("unhibernate failed: memory layout changed\n"); 955 return (1); 956 } 957 958 if (bcmp(mine->kern_hash, disk->kern_hash, SHA256_DIGEST_LENGTH) != 0) { 959 printf("unhibernate failed: original kernel changed\n"); 960 return (1); 961 } 962 963 for (i = 0; i < mine->nranges; i++) { 964 if ((mine->ranges[i].base != disk->ranges[i].base) || 965 (mine->ranges[i].end != disk->ranges[i].end) ) { 966 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 967 i, 968 (void *)mine->ranges[i].base, 969 (void *)mine->ranges[i].end, 970 (void *)disk->ranges[i].base, 971 (void *)disk->ranges[i].end); 972 printf("unhibernate failed: memory size changed\n"); 973 return (1); 974 } 975 } 976 977 return (0); 978 } 979 980 /* 981 * Transfers xfer_size bytes between the hibernate device specified in 982 * hib_info at offset blkctr and the vaddr specified at dest. 983 * 984 * Separate offsets and pages are used to handle misaligned reads (reads 985 * that span a page boundary). 986 * 987 * blkctr specifies a relative offset (relative to the start of swap), 988 * not an absolute disk offset 989 * 990 */ 991 int 992 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 993 size_t xfer_size, vaddr_t dest, int iswrite) 994 { 995 struct buf *bp; 996 struct bdevsw *bdsw; 997 int error; 998 999 bp = geteblk(xfer_size); 1000 bdsw = &bdevsw[major(hib->dev)]; 1001 1002 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1003 if (error) { 1004 printf("hibernate_block_io open failed\n"); 1005 return (1); 1006 } 1007 1008 if (iswrite) 1009 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1010 1011 bp->b_bcount = xfer_size; 1012 bp->b_blkno = blkctr; 1013 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1014 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1015 bp->b_dev = hib->dev; 1016 (*bdsw->d_strategy)(bp); 1017 1018 error = biowait(bp); 1019 if (error) { 1020 printf("hib block_io biowait error %d blk %lld size %zu\n", 1021 error, (long long)blkctr, xfer_size); 1022 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1023 curproc); 1024 if (error) 1025 printf("hibernate_block_io error close failed\n"); 1026 return (1); 1027 } 1028 1029 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1030 if (error) { 1031 printf("hibernate_block_io close failed\n"); 1032 return (1); 1033 } 1034 1035 if (!iswrite) 1036 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1037 1038 bp->b_flags |= B_INVAL; 1039 brelse(bp); 1040 1041 return (0); 1042 } 1043 1044 /* 1045 * Preserve one page worth of random data, generated from the resuming 1046 * kernel's arc4random. After resume, this preserved entropy can be used 1047 * to further improve the un-hibernated machine's entropy pool. This 1048 * random data is stored in the piglet, which is preserved across the 1049 * unpack operation, and is restored later in the resume process (see 1050 * hib_getentropy) 1051 */ 1052 void 1053 hibernate_preserve_entropy(union hibernate_info *hib) 1054 { 1055 void *entropy; 1056 1057 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1058 1059 if (!entropy) 1060 return; 1061 1062 pmap_activate(curproc); 1063 pmap_kenter_pa((vaddr_t)entropy, 1064 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1065 PROT_READ | PROT_WRITE); 1066 1067 arc4random_buf((void *)entropy, PAGE_SIZE); 1068 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1069 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1070 } 1071 1072 #ifndef NO_PROPOLICE 1073 vaddr_t 1074 hibernate_unprotect_ssp(void) 1075 { 1076 struct kmem_dyn_mode kd_avoidalias; 1077 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1078 paddr_t pa; 1079 1080 pmap_extract(pmap_kernel(), va, &pa); 1081 1082 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1083 kd_avoidalias.kd_prefer = pa; 1084 kd_avoidalias.kd_waitok = 1; 1085 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1086 if (!va) 1087 panic("hibernate_unprotect_ssp"); 1088 1089 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1090 pmap_update(pmap_kernel()); 1091 1092 return va; 1093 } 1094 1095 void 1096 hibernate_reprotect_ssp(vaddr_t va) 1097 { 1098 pmap_kremove(va, PAGE_SIZE); 1099 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1100 } 1101 #endif /* NO_PROPOLICE */ 1102 1103 /* 1104 * Reads the signature block from swap, checks against the current machine's 1105 * information. If the information matches, perform a resume by reading the 1106 * saved image into the pig area, and unpacking. 1107 * 1108 * Must be called with interrupts enabled. 1109 */ 1110 void 1111 hibernate_resume(void) 1112 { 1113 union hibernate_info hib; 1114 int s; 1115 #ifndef NO_PROPOLICE 1116 vsize_t off = (vaddr_t)&__guard_local - 1117 trunc_page((vaddr_t)&__guard_local); 1118 vaddr_t guard_va; 1119 #endif 1120 1121 /* Get current running machine's hibernate info */ 1122 memset(&hib, 0, sizeof(hib)); 1123 if (get_hibernate_info(&hib, 0)) { 1124 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1125 return; 1126 } 1127 1128 /* Read hibernate info from disk */ 1129 s = splbio(); 1130 1131 DPRINTF("reading hibernate signature block location: %lld\n", 1132 hib.sig_offset); 1133 1134 if (hibernate_block_io(&hib, 1135 hib.sig_offset, 1136 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1137 DPRINTF("error in hibernate read"); 1138 splx(s); 1139 return; 1140 } 1141 1142 /* Check magic number */ 1143 if (disk_hib.magic != HIBERNATE_MAGIC) { 1144 DPRINTF("wrong magic number in hibernate signature: %x\n", 1145 disk_hib.magic); 1146 splx(s); 1147 return; 1148 } 1149 1150 /* 1151 * We (possibly) found a hibernate signature. Clear signature first, 1152 * to prevent accidental resume or endless resume cycles later. 1153 */ 1154 if (hibernate_clear_signature(&hib)) { 1155 DPRINTF("error clearing hibernate signature block\n"); 1156 splx(s); 1157 return; 1158 } 1159 1160 /* 1161 * If on-disk and in-memory hibernate signatures match, 1162 * this means we should do a resume from hibernate. 1163 */ 1164 if (hibernate_compare_signature(&hib, &disk_hib)) { 1165 DPRINTF("mismatched hibernate signature block\n"); 1166 splx(s); 1167 return; 1168 } 1169 disk_hib.dev = hib.dev; 1170 1171 #ifdef MULTIPROCESSOR 1172 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1173 DPRINTF("hibernate: quiescing APs\n"); 1174 hibernate_quiesce_cpus(); 1175 #endif /* MULTIPROCESSOR */ 1176 1177 /* Read the image from disk into the image (pig) area */ 1178 if (hibernate_read_image(&disk_hib)) 1179 goto fail; 1180 1181 DPRINTF("hibernate: quiescing devices\n"); 1182 if (config_suspend_all(DVACT_QUIESCE) != 0) 1183 goto fail; 1184 1185 #ifndef NO_PROPOLICE 1186 guard_va = hibernate_unprotect_ssp(); 1187 #endif /* NO_PROPOLICE */ 1188 1189 (void) splhigh(); 1190 hibernate_disable_intr_machdep(); 1191 cold = 2; 1192 1193 DPRINTF("hibernate: suspending devices\n"); 1194 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1195 cold = 0; 1196 hibernate_enable_intr_machdep(); 1197 #ifndef NO_PROPOLICE 1198 hibernate_reprotect_ssp(guard_va); 1199 #endif /* ! NO_PROPOLICE */ 1200 goto fail; 1201 } 1202 1203 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1204 &retguard_start_phys); 1205 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1206 &retguard_end_phys); 1207 1208 hibernate_preserve_entropy(&disk_hib); 1209 1210 printf("Unpacking image...\n"); 1211 1212 /* Switch stacks */ 1213 DPRINTF("hibernate: switching stacks\n"); 1214 hibernate_switch_stack_machdep(); 1215 1216 #ifndef NO_PROPOLICE 1217 /* Start using suspended kernel's propolice guard */ 1218 *(long *)(guard_va + off) = disk_hib.guard; 1219 hibernate_reprotect_ssp(guard_va); 1220 #endif /* ! NO_PROPOLICE */ 1221 1222 /* Unpack and resume */ 1223 hibernate_unpack_image(&disk_hib); 1224 1225 fail: 1226 splx(s); 1227 printf("\nUnable to resume hibernated image\n"); 1228 } 1229 1230 /* 1231 * Unpack image from pig area to original location by looping through the 1232 * list of output chunks in the order they should be restored (fchunks). 1233 * 1234 * Note that due to the stack smash protector and the fact that we have 1235 * switched stacks, it is not permitted to return from this function. 1236 */ 1237 void 1238 hibernate_unpack_image(union hibernate_info *hib) 1239 { 1240 struct hibernate_disk_chunk *chunks; 1241 union hibernate_info local_hib; 1242 paddr_t image_cur = global_pig_start; 1243 short i, *fchunks; 1244 char *pva; 1245 1246 /* Piglet will be identity mapped (VA == PA) */ 1247 pva = (char *)hib->piglet_pa; 1248 1249 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1250 1251 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1252 1253 /* Can't use hiber_info that's passed in after this point */ 1254 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1255 local_hib.retguard_ofs = 0; 1256 1257 /* VA == PA */ 1258 local_hib.piglet_va = local_hib.piglet_pa; 1259 1260 /* 1261 * Point of no return. Once we pass this point, only kernel code can 1262 * be accessed. No global variables or other kernel data structures 1263 * are guaranteed to be coherent after unpack starts. 1264 * 1265 * The image is now in high memory (pig area), we unpack from the pig 1266 * to the correct location in memory. We'll eventually end up copying 1267 * on top of ourself, but we are assured the kernel code here is the 1268 * same between the hibernated and resuming kernel, and we are running 1269 * on our own stack, so the overwrite is ok. 1270 */ 1271 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1272 hibernate_activate_resume_pt_machdep(); 1273 1274 for (i = 0; i < local_hib.chunk_ctr; i++) { 1275 /* Reset zlib for inflate */ 1276 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1277 panic("hibernate failed to reset zlib for inflate"); 1278 1279 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1280 image_cur); 1281 1282 image_cur += chunks[fchunks[i]].compressed_size; 1283 } 1284 1285 /* 1286 * Resume the loaded kernel by jumping to the MD resume vector. 1287 * We won't be returning from this call. We pass the location of 1288 * the retguard save area so the MD code can replace it before 1289 * resuming. See the piglet layout at the top of this file for 1290 * more information on the layout of the piglet area. 1291 * 1292 * We use 'global_piglet_va' here since by the time we are at 1293 * this point, we have already unpacked the image, and we want 1294 * the suspended kernel's view of what the piglet was, before 1295 * suspend occurred (since we will need to use that in the retguard 1296 * copy code in hibernate_resume_machdep.) 1297 */ 1298 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1299 } 1300 1301 /* 1302 * Bounce a compressed image chunk to the piglet, entering mappings for the 1303 * copied pages as needed 1304 */ 1305 void 1306 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1307 { 1308 size_t ct, ofs; 1309 paddr_t src = img_cur; 1310 vaddr_t dest = piglet; 1311 1312 /* Copy first partial page */ 1313 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1314 ofs = (src & PAGE_MASK); 1315 1316 if (ct < PAGE_SIZE) { 1317 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1318 (src - ofs), 0); 1319 hibernate_flush(); 1320 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1321 src += ct; 1322 dest += ct; 1323 } 1324 1325 /* Copy remaining pages */ 1326 while (src < size + img_cur) { 1327 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1328 hibernate_flush(); 1329 ct = PAGE_SIZE; 1330 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1331 hibernate_flush(); 1332 src += ct; 1333 dest += ct; 1334 } 1335 } 1336 1337 /* 1338 * Process a chunk by bouncing it to the piglet, followed by unpacking 1339 */ 1340 void 1341 hibernate_process_chunk(union hibernate_info *hib, 1342 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1343 { 1344 char *pva = (char *)hib->piglet_va; 1345 1346 hibernate_copy_chunk_to_piglet(img_cur, 1347 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1348 hibernate_inflate_region(hib, chunk->base, 1349 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1350 chunk->compressed_size); 1351 } 1352 1353 /* 1354 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1355 * inaddr and range_end. 1356 */ 1357 int 1358 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1359 { 1360 int rle; 1361 1362 rle = uvm_page_rle(inaddr); 1363 KASSERT(rle >= 0 && rle <= MAX_RLE); 1364 1365 /* Clamp RLE to range end */ 1366 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1367 rle = (range_end - inaddr) / PAGE_SIZE; 1368 1369 return (rle); 1370 } 1371 1372 /* 1373 * Write the RLE byte for page at 'inaddr' to the output stream. 1374 * Returns the number of pages to be skipped at 'inaddr'. 1375 */ 1376 int 1377 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1378 paddr_t range_end, daddr_t *blkctr, 1379 size_t *out_remaining) 1380 { 1381 int rle, err, *rleloc; 1382 struct hibernate_zlib_state *hibernate_state; 1383 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1384 1385 hibernate_state = 1386 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1387 1388 rle = hibernate_calc_rle(inaddr, range_end); 1389 1390 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1391 *rleloc = rle; 1392 1393 /* Deflate the RLE byte into the stream */ 1394 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1395 1396 /* Did we fill the output page? If so, flush to disk */ 1397 if (*out_remaining == 0) { 1398 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1399 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1400 hib->io_page))) { 1401 DPRINTF("hib write error %d\n", err); 1402 return (err); 1403 } 1404 1405 *blkctr += PAGE_SIZE / DEV_BSIZE; 1406 *out_remaining = PAGE_SIZE; 1407 1408 /* If we didn't deflate the entire RLE byte, finish it now */ 1409 if (hibernate_state->hib_stream.avail_in != 0) 1410 hibernate_deflate(hib, 1411 (vaddr_t)hibernate_state->hib_stream.next_in, 1412 out_remaining); 1413 } 1414 1415 return (rle); 1416 } 1417 1418 /* 1419 * Write a compressed version of this machine's memory to disk, at the 1420 * precalculated swap offset: 1421 * 1422 * end of swap - signature block size - chunk table size - memory size 1423 * 1424 * The function begins by looping through each phys mem range, cutting each 1425 * one into MD sized chunks. These chunks are then compressed individually 1426 * and written out to disk, in phys mem order. Some chunks might compress 1427 * more than others, and for this reason, each chunk's size is recorded 1428 * in the chunk table, which is written to disk after the image has 1429 * properly been compressed and written (in hibernate_write_chunktable). 1430 * 1431 * When this function is called, the machine is nearly suspended - most 1432 * devices are quiesced/suspended, interrupts are off, and cold has 1433 * been set. This means that there can be no side effects once the 1434 * write has started, and the write function itself can also have no 1435 * side effects. This also means no printfs are permitted (since printf 1436 * has side effects.) 1437 * 1438 * Return values : 1439 * 1440 * 0 - success 1441 * EIO - I/O error occurred writing the chunks 1442 * EINVAL - Failed to write a complete range 1443 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1444 */ 1445 int 1446 hibernate_write_chunks(union hibernate_info *hib) 1447 { 1448 paddr_t range_base, range_end, inaddr, temp_inaddr; 1449 size_t nblocks, out_remaining, used; 1450 struct hibernate_disk_chunk *chunks; 1451 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1452 daddr_t blkctr = 0; 1453 int i, rle, err; 1454 struct hibernate_zlib_state *hibernate_state; 1455 1456 hibernate_state = 1457 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1458 1459 hib->chunk_ctr = 0; 1460 1461 /* 1462 * Map the utility VAs to the piglet. See the piglet map at the 1463 * top of this file for piglet layout information. 1464 */ 1465 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1466 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1467 1468 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1469 HIBERNATE_CHUNK_SIZE); 1470 1471 /* Calculate the chunk regions */ 1472 for (i = 0; i < hib->nranges; i++) { 1473 range_base = hib->ranges[i].base; 1474 range_end = hib->ranges[i].end; 1475 1476 inaddr = range_base; 1477 1478 while (inaddr < range_end) { 1479 chunks[hib->chunk_ctr].base = inaddr; 1480 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1481 chunks[hib->chunk_ctr].end = inaddr + 1482 HIBERNATE_CHUNK_SIZE; 1483 else 1484 chunks[hib->chunk_ctr].end = range_end; 1485 1486 inaddr += HIBERNATE_CHUNK_SIZE; 1487 hib->chunk_ctr ++; 1488 } 1489 } 1490 1491 uvm_pmr_dirty_everything(); 1492 uvm_pmr_zero_everything(); 1493 1494 /* Compress and write the chunks in the chunktable */ 1495 for (i = 0; i < hib->chunk_ctr; i++) { 1496 range_base = chunks[i].base; 1497 range_end = chunks[i].end; 1498 1499 chunks[i].offset = blkctr + hib->image_offset; 1500 1501 /* Reset zlib for deflate */ 1502 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1503 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1504 return (ENOMEM); 1505 } 1506 1507 inaddr = range_base; 1508 1509 /* 1510 * For each range, loop through its phys mem region 1511 * and write out the chunks (the last chunk might be 1512 * smaller than the chunk size). 1513 */ 1514 while (inaddr < range_end) { 1515 out_remaining = PAGE_SIZE; 1516 while (out_remaining > 0 && inaddr < range_end) { 1517 /* 1518 * Adjust for regions that are not evenly 1519 * divisible by PAGE_SIZE or overflowed 1520 * pages from the previous iteration. 1521 */ 1522 temp_inaddr = (inaddr & PAGE_MASK) + 1523 hibernate_copy_page; 1524 1525 /* Deflate from temp_inaddr to IO page */ 1526 if (inaddr != range_end) { 1527 if (inaddr % PAGE_SIZE == 0) { 1528 rle = hibernate_write_rle(hib, 1529 inaddr, 1530 range_end, 1531 &blkctr, 1532 &out_remaining); 1533 } 1534 1535 if (rle == 0) { 1536 pmap_kenter_pa(hibernate_temp_page, 1537 inaddr & PMAP_PA_MASK, 1538 PROT_READ); 1539 1540 bcopy((caddr_t)hibernate_temp_page, 1541 (caddr_t)hibernate_copy_page, 1542 PAGE_SIZE); 1543 inaddr += hibernate_deflate(hib, 1544 temp_inaddr, 1545 &out_remaining); 1546 } else { 1547 inaddr += rle * PAGE_SIZE; 1548 if (inaddr > range_end) 1549 inaddr = range_end; 1550 } 1551 1552 } 1553 1554 if (out_remaining == 0) { 1555 /* Filled up the page */ 1556 nblocks = PAGE_SIZE / DEV_BSIZE; 1557 1558 if ((err = hib->io_func(hib->dev, 1559 blkctr + hib->image_offset, 1560 (vaddr_t)hibernate_io_page, 1561 PAGE_SIZE, HIB_W, hib->io_page))) { 1562 DPRINTF("hib write error %d\n", 1563 err); 1564 return (err); 1565 } 1566 1567 blkctr += nblocks; 1568 } 1569 } 1570 } 1571 1572 if (inaddr != range_end) { 1573 DPRINTF("deflate range ended prematurely\n"); 1574 return (EINVAL); 1575 } 1576 1577 /* 1578 * End of range. Round up to next secsize bytes 1579 * after finishing compress 1580 */ 1581 if (out_remaining == 0) 1582 out_remaining = PAGE_SIZE; 1583 1584 /* Finish compress */ 1585 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1586 hibernate_state->hib_stream.avail_in = 0; 1587 hibernate_state->hib_stream.next_out = 1588 (unsigned char *)hibernate_io_page + 1589 (PAGE_SIZE - out_remaining); 1590 1591 /* We have an extra output page available for finalize */ 1592 hibernate_state->hib_stream.avail_out = 1593 out_remaining + PAGE_SIZE; 1594 1595 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1596 Z_STREAM_END) { 1597 DPRINTF("deflate error in output stream: %d\n", err); 1598 return (err); 1599 } 1600 1601 out_remaining = hibernate_state->hib_stream.avail_out; 1602 1603 used = 2 * PAGE_SIZE - out_remaining; 1604 nblocks = used / DEV_BSIZE; 1605 1606 /* Round up to next block if needed */ 1607 if (used % DEV_BSIZE != 0) 1608 nblocks ++; 1609 1610 /* Write final block(s) for this chunk */ 1611 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1612 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1613 HIB_W, hib->io_page))) { 1614 DPRINTF("hib final write error %d\n", err); 1615 return (err); 1616 } 1617 1618 blkctr += nblocks; 1619 1620 chunks[i].compressed_size = (blkctr + hib->image_offset - 1621 chunks[i].offset) * DEV_BSIZE; 1622 } 1623 1624 hib->chunktable_offset = hib->image_offset + blkctr; 1625 return (0); 1626 } 1627 1628 /* 1629 * Reset the zlib stream state and allocate a new hiballoc area for either 1630 * inflate or deflate. This function is called once for each hibernate chunk. 1631 * Calling hiballoc_init multiple times is acceptable since the memory it is 1632 * provided is unmanaged memory (stolen). We use the memory provided to us 1633 * by the piglet allocated via the supplied hib. 1634 */ 1635 int 1636 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1637 { 1638 vaddr_t hibernate_zlib_start; 1639 size_t hibernate_zlib_size; 1640 char *pva = (char *)hib->piglet_va; 1641 struct hibernate_zlib_state *hibernate_state; 1642 1643 hibernate_state = 1644 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1645 1646 if (!deflate) 1647 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1648 1649 /* 1650 * See piglet layout information at the start of this file for 1651 * information on the zlib page assignments. 1652 */ 1653 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1654 hibernate_zlib_size = 80 * PAGE_SIZE; 1655 1656 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1657 memset(hibernate_state, 0, PAGE_SIZE); 1658 1659 /* Set up stream structure */ 1660 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1661 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1662 1663 /* Initialize the hiballoc arena for zlib allocs/frees */ 1664 hiballoc_init(&hibernate_state->hiballoc_arena, 1665 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1666 1667 if (deflate) { 1668 return deflateInit(&hibernate_state->hib_stream, 1669 Z_BEST_SPEED); 1670 } else 1671 return inflateInit(&hibernate_state->hib_stream); 1672 } 1673 1674 /* 1675 * Reads the hibernated memory image from disk, whose location and 1676 * size are recorded in hib. Begin by reading the persisted 1677 * chunk table, which records the original chunk placement location 1678 * and compressed size for each. Next, allocate a pig region of 1679 * sufficient size to hold the compressed image. Next, read the 1680 * chunks into the pig area (calling hibernate_read_chunks to do this), 1681 * and finally, if all of the above succeeds, clear the hibernate signature. 1682 * The function will then return to hibernate_resume, which will proceed 1683 * to unpack the pig image to the correct place in memory. 1684 */ 1685 int 1686 hibernate_read_image(union hibernate_info *hib) 1687 { 1688 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1689 paddr_t image_start, image_end, pig_start, pig_end; 1690 struct hibernate_disk_chunk *chunks; 1691 daddr_t blkctr; 1692 vaddr_t chunktable = (vaddr_t)NULL; 1693 paddr_t piglet_chunktable = hib->piglet_pa + 1694 HIBERNATE_CHUNK_SIZE; 1695 int i, status; 1696 1697 status = 0; 1698 pmap_activate(curproc); 1699 1700 /* Calculate total chunk table size in disk blocks */ 1701 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1702 1703 blkctr = hib->chunktable_offset; 1704 1705 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1706 &kp_none, &kd_nowait); 1707 1708 if (!chunktable) 1709 return (1); 1710 1711 /* Map chunktable pages */ 1712 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1713 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1714 PROT_READ | PROT_WRITE); 1715 pmap_update(pmap_kernel()); 1716 1717 /* Read the chunktable from disk into the piglet chunktable */ 1718 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1719 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1720 hibernate_block_io(hib, blkctr, MAXPHYS, 1721 chunktable + i, 0); 1722 1723 blkctr = hib->image_offset; 1724 compressed_size = 0; 1725 1726 chunks = (struct hibernate_disk_chunk *)chunktable; 1727 1728 for (i = 0; i < hib->chunk_ctr; i++) 1729 compressed_size += chunks[i].compressed_size; 1730 1731 disk_size = compressed_size; 1732 1733 printf("unhibernating @ block %lld length %luMB\n", 1734 hib->sig_offset - chunktable_size, 1735 compressed_size / (1024 * 1024)); 1736 1737 /* Allocate the pig area */ 1738 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1739 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1740 status = 1; 1741 goto unmap; 1742 } 1743 1744 pig_end = pig_start + pig_sz; 1745 1746 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1747 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1748 image_start = image_end - disk_size; 1749 1750 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1751 chunks); 1752 1753 /* Prepare the resume time pmap/page table */ 1754 hibernate_populate_resume_pt(hib, image_start, image_end); 1755 1756 unmap: 1757 /* Unmap chunktable pages */ 1758 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1759 pmap_update(pmap_kernel()); 1760 1761 return (status); 1762 } 1763 1764 /* 1765 * Read the hibernated memory chunks from disk (chunk information at this 1766 * point is stored in the piglet) into the pig area specified by 1767 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1768 * only chunk with overlap possibilities. 1769 */ 1770 int 1771 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1772 paddr_t pig_end, size_t image_compr_size, 1773 struct hibernate_disk_chunk *chunks) 1774 { 1775 paddr_t img_cur, piglet_base; 1776 daddr_t blkctr; 1777 size_t processed, compressed_size, read_size; 1778 int nchunks, nfchunks, num_io_pages; 1779 vaddr_t tempva, hibernate_fchunk_area; 1780 short *fchunks, i, j; 1781 1782 tempva = (vaddr_t)NULL; 1783 hibernate_fchunk_area = (vaddr_t)NULL; 1784 nfchunks = 0; 1785 piglet_base = hib->piglet_pa; 1786 global_pig_start = pig_start; 1787 1788 /* 1789 * These mappings go into the resuming kernel's page table, and are 1790 * used only during image read. They disappear from existence 1791 * when the suspended kernel is unpacked on top of us. 1792 */ 1793 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1794 &kd_nowait); 1795 if (!tempva) 1796 return (1); 1797 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1798 &kp_none, &kd_nowait); 1799 if (!hibernate_fchunk_area) 1800 return (1); 1801 1802 /* Final output chunk ordering VA */ 1803 fchunks = (short *)hibernate_fchunk_area; 1804 1805 /* Map the chunk ordering region */ 1806 for(i = 0; i < 24 ; i++) 1807 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1808 piglet_base + ((4 + i) * PAGE_SIZE), 1809 PROT_READ | PROT_WRITE); 1810 pmap_update(pmap_kernel()); 1811 1812 nchunks = hib->chunk_ctr; 1813 1814 /* Initially start all chunks as unplaced */ 1815 for (i = 0; i < nchunks; i++) 1816 chunks[i].flags = 0; 1817 1818 /* 1819 * Search the list for chunks that are outside the pig area. These 1820 * can be placed first in the final output list. 1821 */ 1822 for (i = 0; i < nchunks; i++) { 1823 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1824 fchunks[nfchunks] = i; 1825 nfchunks++; 1826 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1827 } 1828 } 1829 1830 /* 1831 * Walk the ordering, place the chunks in ascending memory order. 1832 */ 1833 for (i = 0; i < nchunks; i++) { 1834 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1835 fchunks[nfchunks] = i; 1836 nfchunks++; 1837 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1838 } 1839 } 1840 1841 img_cur = pig_start; 1842 1843 for (i = 0; i < nfchunks; i++) { 1844 blkctr = chunks[fchunks[i]].offset; 1845 processed = 0; 1846 compressed_size = chunks[fchunks[i]].compressed_size; 1847 1848 while (processed < compressed_size) { 1849 if (compressed_size - processed >= MAXPHYS) 1850 read_size = MAXPHYS; 1851 else 1852 read_size = compressed_size - processed; 1853 1854 /* 1855 * We're reading read_size bytes, offset from the 1856 * start of a page by img_cur % PAGE_SIZE, so the 1857 * end will be read_size + (img_cur % PAGE_SIZE) 1858 * from the start of the first page. Round that 1859 * up to the next page size. 1860 */ 1861 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1862 + PAGE_SIZE - 1) / PAGE_SIZE; 1863 1864 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1865 1866 /* Map pages for this read */ 1867 for (j = 0; j < num_io_pages; j ++) 1868 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1869 img_cur + j * PAGE_SIZE, 1870 PROT_READ | PROT_WRITE); 1871 1872 pmap_update(pmap_kernel()); 1873 1874 hibernate_block_io(hib, blkctr, read_size, 1875 tempva + (img_cur & PAGE_MASK), 0); 1876 1877 blkctr += (read_size / DEV_BSIZE); 1878 1879 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1880 pmap_update(pmap_kernel()); 1881 1882 processed += read_size; 1883 img_cur += read_size; 1884 } 1885 } 1886 1887 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1888 pmap_update(pmap_kernel()); 1889 1890 return (0); 1891 } 1892 1893 /* 1894 * Hibernating a machine comprises the following operations: 1895 * 1. Calculating this machine's hibernate_info information 1896 * 2. Allocating a piglet and saving the piglet's physaddr 1897 * 3. Calculating the memory chunks 1898 * 4. Writing the compressed chunks to disk 1899 * 5. Writing the chunk table 1900 * 6. Writing the signature block (hibernate_info) 1901 * 1902 * On most architectures, the function calling hibernate_suspend would 1903 * then power off the machine using some MD-specific implementation. 1904 */ 1905 int 1906 hibernate_suspend(void) 1907 { 1908 union hibernate_info hib; 1909 u_long start, end; 1910 1911 /* 1912 * Calculate memory ranges, swap offsets, etc. 1913 * This also allocates a piglet whose physaddr is stored in 1914 * hib->piglet_pa and vaddr stored in hib->piglet_va 1915 */ 1916 if (get_hibernate_info(&hib, 1)) { 1917 DPRINTF("failed to obtain hibernate info\n"); 1918 return (1); 1919 } 1920 1921 /* Find a page-addressed region in swap [start,end] */ 1922 if (uvm_hibswap(hib.dev, &start, &end)) { 1923 printf("hibernate: cannot find any swap\n"); 1924 return (1); 1925 } 1926 1927 if (end - start < 1000) { 1928 printf("hibernate: insufficient swap (%lu is too small)\n", 1929 end - start + 1); 1930 return (1); 1931 } 1932 1933 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1934 &retguard_start_phys); 1935 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1936 &retguard_end_phys); 1937 1938 /* Calculate block offsets in swap */ 1939 hib.image_offset = ctod(start); 1940 1941 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1942 hib.image_offset, ctod(end) - ctod(start) + 1); 1943 1944 pmap_activate(curproc); 1945 DPRINTF("hibernate: writing chunks\n"); 1946 if (hibernate_write_chunks(&hib)) { 1947 DPRINTF("hibernate_write_chunks failed\n"); 1948 return (1); 1949 } 1950 1951 DPRINTF("hibernate: writing chunktable\n"); 1952 if (hibernate_write_chunktable(&hib)) { 1953 DPRINTF("hibernate_write_chunktable failed\n"); 1954 return (1); 1955 } 1956 1957 DPRINTF("hibernate: writing signature\n"); 1958 if (hibernate_write_signature(&hib)) { 1959 DPRINTF("hibernate_write_signature failed\n"); 1960 return (1); 1961 } 1962 1963 /* Allow the disk to settle */ 1964 delay(500000); 1965 1966 /* 1967 * Give the device-specific I/O function a notification that we're 1968 * done, and that it can clean up or shutdown as needed. 1969 */ 1970 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1971 return (0); 1972 } 1973 1974 int 1975 hibernate_alloc(void) 1976 { 1977 KASSERT(global_piglet_va == 0); 1978 KASSERT(hibernate_temp_page == 0); 1979 1980 pmap_activate(curproc); 1981 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1982 PROT_READ | PROT_WRITE); 1983 1984 /* Allocate a piglet, store its addresses in the supplied globals */ 1985 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1986 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1987 goto unmap; 1988 1989 /* 1990 * Allocate VA for the temp page. 1991 * 1992 * This will become part of the suspended kernel and will 1993 * be freed in hibernate_free, upon resume (or hibernate 1994 * failure) 1995 */ 1996 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1997 &kp_none, &kd_nowait); 1998 if (!hibernate_temp_page) { 1999 uvm_pmr_free_piglet(global_piglet_va, 4 * HIBERNATE_CHUNK_SIZE); 2000 global_piglet_va = 0; 2001 goto unmap; 2002 } 2003 return (0); 2004 unmap: 2005 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2006 pmap_update(pmap_kernel()); 2007 return (ENOMEM); 2008 } 2009 2010 /* 2011 * Free items allocated by hibernate_alloc() 2012 */ 2013 void 2014 hibernate_free(void) 2015 { 2016 pmap_activate(curproc); 2017 2018 if (global_piglet_va) 2019 uvm_pmr_free_piglet(global_piglet_va, 2020 4 * HIBERNATE_CHUNK_SIZE); 2021 2022 if (hibernate_temp_page) { 2023 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2024 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2025 &kv_any, &kp_none); 2026 } 2027 2028 global_piglet_va = 0; 2029 hibernate_temp_page = 0; 2030 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2031 pmap_update(pmap_kernel()); 2032 } 2033