xref: /openbsd/sys/kern/uipc_socket.c (revision 150eb84f)
1 /*	$OpenBSD: uipc_socket.c,v 1.334 2024/05/17 19:02:04 mvs Exp $	*/
2 /*	$NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54 
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58 
59 void	sbsync(struct sockbuf *, struct mbuf *);
60 
61 int	sosplice(struct socket *, int, off_t, struct timeval *);
62 void	sounsplice(struct socket *, struct socket *, int);
63 void	soidle(void *);
64 void	sotask(void *);
65 void	soreaper(void *);
66 void	soput(void *);
67 int	somove(struct socket *, int);
68 void	sorflush(struct socket *);
69 void	sorflush_locked(struct socket *);
70 
71 void	filt_sordetach(struct knote *kn);
72 int	filt_soread(struct knote *kn, long hint);
73 void	filt_sowdetach(struct knote *kn);
74 int	filt_sowrite(struct knote *kn, long hint);
75 int	filt_soexcept(struct knote *kn, long hint);
76 
77 int	filt_sowmodify(struct kevent *kev, struct knote *kn);
78 int	filt_sowprocess(struct knote *kn, struct kevent *kev);
79 
80 int	filt_sormodify(struct kevent *kev, struct knote *kn);
81 int	filt_sorprocess(struct knote *kn, struct kevent *kev);
82 
83 const struct filterops soread_filtops = {
84 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
85 	.f_attach	= NULL,
86 	.f_detach	= filt_sordetach,
87 	.f_event	= filt_soread,
88 	.f_modify	= filt_sormodify,
89 	.f_process	= filt_sorprocess,
90 };
91 
92 const struct filterops sowrite_filtops = {
93 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
94 	.f_attach	= NULL,
95 	.f_detach	= filt_sowdetach,
96 	.f_event	= filt_sowrite,
97 	.f_modify	= filt_sowmodify,
98 	.f_process	= filt_sowprocess,
99 };
100 
101 const struct filterops soexcept_filtops = {
102 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
103 	.f_attach	= NULL,
104 	.f_detach	= filt_sordetach,
105 	.f_event	= filt_soexcept,
106 	.f_modify	= filt_sormodify,
107 	.f_process	= filt_sorprocess,
108 };
109 
110 #ifndef SOMINCONN
111 #define SOMINCONN 80
112 #endif /* SOMINCONN */
113 
114 int	somaxconn = SOMAXCONN;
115 int	sominconn = SOMINCONN;
116 
117 struct pool socket_pool;
118 #ifdef SOCKET_SPLICE
119 struct pool sosplice_pool;
120 struct taskq *sosplice_taskq;
121 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
122 #endif
123 
124 void
125 soinit(void)
126 {
127 	pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
128 	    "sockpl", NULL);
129 #ifdef SOCKET_SPLICE
130 	pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
131 	    "sosppl", NULL);
132 #endif
133 }
134 
135 struct socket *
136 soalloc(const struct protosw *prp, int wait)
137 {
138 	const struct domain *dp = prp->pr_domain;
139 	struct socket *so;
140 
141 	so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
142 	    PR_ZERO);
143 	if (so == NULL)
144 		return (NULL);
145 	rw_init_flags(&so->so_lock, dp->dom_name, RWL_DUPOK);
146 	refcnt_init(&so->so_refcnt);
147 	rw_init(&so->so_rcv.sb_lock, "sbufrcv");
148 	rw_init(&so->so_snd.sb_lock, "sbufsnd");
149 	mtx_init_flags(&so->so_rcv.sb_mtx, IPL_MPFLOOR, "sbrcv", 0);
150 	mtx_init_flags(&so->so_snd.sb_mtx, IPL_MPFLOOR, "sbsnd", 0);
151 	klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
152 	klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
153 	sigio_init(&so->so_sigio);
154 	TAILQ_INIT(&so->so_q0);
155 	TAILQ_INIT(&so->so_q);
156 
157 	switch (dp->dom_family) {
158 	case AF_INET:
159 	case AF_INET6:
160 		switch (prp->pr_type) {
161 		case SOCK_RAW:
162 			so->so_snd.sb_flags |= SB_MTXLOCK;
163 			/* FALLTHROUGH */
164 		case SOCK_DGRAM:
165 			so->so_rcv.sb_flags |= SB_MTXLOCK;
166 			break;
167 		}
168 		break;
169 	case AF_KEY:
170 	case AF_UNIX:
171 		so->so_snd.sb_flags |= SB_MTXLOCK;
172 		so->so_rcv.sb_flags |= SB_MTXLOCK;
173 		break;
174 	}
175 
176 	return (so);
177 }
178 
179 /*
180  * Socket operation routines.
181  * These routines are called by the routines in
182  * sys_socket.c or from a system process, and
183  * implement the semantics of socket operations by
184  * switching out to the protocol specific routines.
185  */
186 int
187 socreate(int dom, struct socket **aso, int type, int proto)
188 {
189 	struct proc *p = curproc;		/* XXX */
190 	const struct protosw *prp;
191 	struct socket *so;
192 	int error;
193 
194 	if (proto)
195 		prp = pffindproto(dom, proto, type);
196 	else
197 		prp = pffindtype(dom, type);
198 	if (prp == NULL || prp->pr_usrreqs == NULL)
199 		return (EPROTONOSUPPORT);
200 	if (prp->pr_type != type)
201 		return (EPROTOTYPE);
202 	so = soalloc(prp, M_WAIT);
203 	so->so_type = type;
204 	if (suser(p) == 0)
205 		so->so_state = SS_PRIV;
206 	so->so_ruid = p->p_ucred->cr_ruid;
207 	so->so_euid = p->p_ucred->cr_uid;
208 	so->so_rgid = p->p_ucred->cr_rgid;
209 	so->so_egid = p->p_ucred->cr_gid;
210 	so->so_cpid = p->p_p->ps_pid;
211 	so->so_proto = prp;
212 	so->so_snd.sb_timeo_nsecs = INFSLP;
213 	so->so_rcv.sb_timeo_nsecs = INFSLP;
214 
215 	solock(so);
216 	error = pru_attach(so, proto, M_WAIT);
217 	if (error) {
218 		so->so_state |= SS_NOFDREF;
219 		/* sofree() calls sounlock(). */
220 		sofree(so, 0);
221 		return (error);
222 	}
223 	sounlock(so);
224 	*aso = so;
225 	return (0);
226 }
227 
228 int
229 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
230 {
231 	soassertlocked(so);
232 	return pru_bind(so, nam, p);
233 }
234 
235 int
236 solisten(struct socket *so, int backlog)
237 {
238 	int somaxconn_local = READ_ONCE(somaxconn);
239 	int sominconn_local = READ_ONCE(sominconn);
240 	int error;
241 
242 	switch (so->so_type) {
243 	case SOCK_STREAM:
244 	case SOCK_SEQPACKET:
245 		break;
246 	default:
247 		return (EOPNOTSUPP);
248 	}
249 
250 	soassertlocked(so);
251 
252 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
253 		return (EINVAL);
254 #ifdef SOCKET_SPLICE
255 	if (isspliced(so) || issplicedback(so))
256 		return (EOPNOTSUPP);
257 #endif /* SOCKET_SPLICE */
258 	error = pru_listen(so);
259 	if (error)
260 		return (error);
261 	if (TAILQ_FIRST(&so->so_q) == NULL)
262 		so->so_options |= SO_ACCEPTCONN;
263 	if (backlog < 0 || backlog > somaxconn_local)
264 		backlog = somaxconn_local;
265 	if (backlog < sominconn_local)
266 		backlog = sominconn_local;
267 	so->so_qlimit = backlog;
268 	return (0);
269 }
270 
271 #define SOSP_FREEING_READ	1
272 #define SOSP_FREEING_WRITE	2
273 void
274 sofree(struct socket *so, int keep_lock)
275 {
276 	int persocket = solock_persocket(so);
277 
278 	soassertlocked(so);
279 
280 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
281 		if (!keep_lock)
282 			sounlock(so);
283 		return;
284 	}
285 	if (so->so_head) {
286 		struct socket *head = so->so_head;
287 
288 		/*
289 		 * We must not decommission a socket that's on the accept(2)
290 		 * queue.  If we do, then accept(2) may hang after select(2)
291 		 * indicated that the listening socket was ready.
292 		 */
293 		if (so->so_onq == &head->so_q) {
294 			if (!keep_lock)
295 				sounlock(so);
296 			return;
297 		}
298 
299 		if (persocket) {
300 			/*
301 			 * Concurrent close of `head' could
302 			 * abort `so' due to re-lock.
303 			 */
304 			soref(so);
305 			soref(head);
306 			sounlock(so);
307 			solock(head);
308 			solock(so);
309 
310 			if (so->so_onq != &head->so_q0) {
311 				sounlock(head);
312 				sounlock(so);
313 				sorele(head);
314 				sorele(so);
315 				return;
316 			}
317 
318 			sorele(head);
319 			sorele(so);
320 		}
321 
322 		soqremque(so, 0);
323 
324 		if (persocket)
325 			sounlock(head);
326 	}
327 
328 	if (persocket) {
329 		sounlock(so);
330 		refcnt_finalize(&so->so_refcnt, "sofinal");
331 		solock(so);
332 	}
333 
334 	sigio_free(&so->so_sigio);
335 	klist_free(&so->so_rcv.sb_klist);
336 	klist_free(&so->so_snd.sb_klist);
337 #ifdef SOCKET_SPLICE
338 	if (issplicedback(so)) {
339 		int freeing = SOSP_FREEING_WRITE;
340 
341 		if (so->so_sp->ssp_soback == so)
342 			freeing |= SOSP_FREEING_READ;
343 		sounsplice(so->so_sp->ssp_soback, so, freeing);
344 	}
345 	if (isspliced(so)) {
346 		int freeing = SOSP_FREEING_READ;
347 
348 		if (so == so->so_sp->ssp_socket)
349 			freeing |= SOSP_FREEING_WRITE;
350 		sounsplice(so, so->so_sp->ssp_socket, freeing);
351 	}
352 #endif /* SOCKET_SPLICE */
353 
354 	mtx_enter(&so->so_snd.sb_mtx);
355 	sbrelease(so, &so->so_snd);
356 	mtx_leave(&so->so_snd.sb_mtx);
357 
358 	/*
359 	 * Unlocked dispose and cleanup is safe. Socket is unlinked
360 	 * from everywhere. Even concurrent sotask() thread will not
361 	 * call somove().
362 	 */
363 	if (so->so_proto->pr_flags & PR_RIGHTS &&
364 	    so->so_proto->pr_domain->dom_dispose)
365 		(*so->so_proto->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
366 	m_purge(so->so_rcv.sb_mb);
367 
368 	if (!keep_lock)
369 		sounlock(so);
370 
371 #ifdef SOCKET_SPLICE
372 	if (so->so_sp) {
373 		/* Reuse splice idle, sounsplice() has been called before. */
374 		timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so);
375 		timeout_add(&so->so_sp->ssp_idleto, 0);
376 	} else
377 #endif /* SOCKET_SPLICE */
378 	{
379 		pool_put(&socket_pool, so);
380 	}
381 }
382 
383 static inline uint64_t
384 solinger_nsec(struct socket *so)
385 {
386 	if (so->so_linger == 0)
387 		return INFSLP;
388 
389 	return SEC_TO_NSEC(so->so_linger);
390 }
391 
392 /*
393  * Close a socket on last file table reference removal.
394  * Initiate disconnect if connected.
395  * Free socket when disconnect complete.
396  */
397 int
398 soclose(struct socket *so, int flags)
399 {
400 	struct socket *so2;
401 	int error = 0;
402 
403 	solock(so);
404 	/* Revoke async IO early. There is a final revocation in sofree(). */
405 	sigio_free(&so->so_sigio);
406 	if (so->so_state & SS_ISCONNECTED) {
407 		if (so->so_pcb == NULL)
408 			goto discard;
409 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
410 			error = sodisconnect(so);
411 			if (error)
412 				goto drop;
413 		}
414 		if (so->so_options & SO_LINGER) {
415 			if ((so->so_state & SS_ISDISCONNECTING) &&
416 			    (flags & MSG_DONTWAIT))
417 				goto drop;
418 			while (so->so_state & SS_ISCONNECTED) {
419 				error = sosleep_nsec(so, &so->so_timeo,
420 				    PSOCK | PCATCH, "netcls",
421 				    solinger_nsec(so));
422 				if (error)
423 					break;
424 			}
425 		}
426 	}
427 drop:
428 	if (so->so_pcb) {
429 		int error2;
430 		error2 = pru_detach(so);
431 		if (error == 0)
432 			error = error2;
433 	}
434 	if (so->so_options & SO_ACCEPTCONN) {
435 		int persocket = solock_persocket(so);
436 
437 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
438 			if (persocket)
439 				solock(so2);
440 			(void) soqremque(so2, 0);
441 			if (persocket)
442 				sounlock(so);
443 			soabort(so2);
444 			if (persocket)
445 				solock(so);
446 		}
447 		while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
448 			if (persocket)
449 				solock(so2);
450 			(void) soqremque(so2, 1);
451 			if (persocket)
452 				sounlock(so);
453 			soabort(so2);
454 			if (persocket)
455 				solock(so);
456 		}
457 	}
458 discard:
459 	if (so->so_state & SS_NOFDREF)
460 		panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
461 	so->so_state |= SS_NOFDREF;
462 	/* sofree() calls sounlock(). */
463 	sofree(so, 0);
464 	return (error);
465 }
466 
467 void
468 soabort(struct socket *so)
469 {
470 	soassertlocked(so);
471 	pru_abort(so);
472 }
473 
474 int
475 soaccept(struct socket *so, struct mbuf *nam)
476 {
477 	int error = 0;
478 
479 	soassertlocked(so);
480 
481 	if ((so->so_state & SS_NOFDREF) == 0)
482 		panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
483 	so->so_state &= ~SS_NOFDREF;
484 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
485 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
486 		error = pru_accept(so, nam);
487 	else
488 		error = ECONNABORTED;
489 	return (error);
490 }
491 
492 int
493 soconnect(struct socket *so, struct mbuf *nam)
494 {
495 	int error;
496 
497 	soassertlocked(so);
498 
499 	if (so->so_options & SO_ACCEPTCONN)
500 		return (EOPNOTSUPP);
501 	/*
502 	 * If protocol is connection-based, can only connect once.
503 	 * Otherwise, if connected, try to disconnect first.
504 	 * This allows user to disconnect by connecting to, e.g.,
505 	 * a null address.
506 	 */
507 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
508 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
509 	    (error = sodisconnect(so))))
510 		error = EISCONN;
511 	else
512 		error = pru_connect(so, nam);
513 	return (error);
514 }
515 
516 int
517 soconnect2(struct socket *so1, struct socket *so2)
518 {
519 	int persocket, error;
520 
521 	if ((persocket = solock_persocket(so1)))
522 		solock_pair(so1, so2);
523 	else
524 		solock(so1);
525 
526 	error = pru_connect2(so1, so2);
527 
528 	if (persocket)
529 		sounlock(so2);
530 	sounlock(so1);
531 	return (error);
532 }
533 
534 int
535 sodisconnect(struct socket *so)
536 {
537 	int error;
538 
539 	soassertlocked(so);
540 
541 	if ((so->so_state & SS_ISCONNECTED) == 0)
542 		return (ENOTCONN);
543 	if (so->so_state & SS_ISDISCONNECTING)
544 		return (EALREADY);
545 	error = pru_disconnect(so);
546 	return (error);
547 }
548 
549 int m_getuio(struct mbuf **, int, long, struct uio *);
550 
551 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
552 /*
553  * Send on a socket.
554  * If send must go all at once and message is larger than
555  * send buffering, then hard error.
556  * Lock against other senders.
557  * If must go all at once and not enough room now, then
558  * inform user that this would block and do nothing.
559  * Otherwise, if nonblocking, send as much as possible.
560  * The data to be sent is described by "uio" if nonzero,
561  * otherwise by the mbuf chain "top" (which must be null
562  * if uio is not).  Data provided in mbuf chain must be small
563  * enough to send all at once.
564  *
565  * Returns nonzero on error, timeout or signal; callers
566  * must check for short counts if EINTR/ERESTART are returned.
567  * Data and control buffers are freed on return.
568  */
569 int
570 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
571     struct mbuf *control, int flags)
572 {
573 	long space, clen = 0;
574 	size_t resid;
575 	int error;
576 	int atomic = sosendallatonce(so) || top;
577 	int dosolock = ((so->so_snd.sb_flags & SB_MTXLOCK) == 0);
578 
579 	if (uio)
580 		resid = uio->uio_resid;
581 	else
582 		resid = top->m_pkthdr.len;
583 	/* MSG_EOR on a SOCK_STREAM socket is invalid. */
584 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
585 		m_freem(top);
586 		m_freem(control);
587 		return (EINVAL);
588 	}
589 	if (uio && uio->uio_procp)
590 		uio->uio_procp->p_ru.ru_msgsnd++;
591 	if (control) {
592 		/*
593 		 * In theory clen should be unsigned (since control->m_len is).
594 		 * However, space must be signed, as it might be less than 0
595 		 * if we over-committed, and we must use a signed comparison
596 		 * of space and clen.
597 		 */
598 		clen = control->m_len;
599 		/* reserve extra space for AF_UNIX's internalize */
600 		if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
601 		    clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
602 		    mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
603 			clen = CMSG_SPACE(
604 			    (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
605 			    (sizeof(struct fdpass) / sizeof(int)));
606 	}
607 
608 #define	snderr(errno)	{ error = errno; goto release; }
609 
610 	if (dosolock)
611 		solock_shared(so);
612 restart:
613 	if ((error = sblock(so, &so->so_snd, SBLOCKWAIT(flags))) != 0)
614 		goto out;
615 	sb_mtx_lock(&so->so_snd);
616 	so->so_snd.sb_state |= SS_ISSENDING;
617 	do {
618 		if (so->so_snd.sb_state & SS_CANTSENDMORE)
619 			snderr(EPIPE);
620 		if ((error = READ_ONCE(so->so_error))) {
621 			so->so_error = 0;
622 			snderr(error);
623 		}
624 		if ((so->so_state & SS_ISCONNECTED) == 0) {
625 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
626 				if (!(resid == 0 && clen != 0))
627 					snderr(ENOTCONN);
628 			} else if (addr == NULL)
629 				snderr(EDESTADDRREQ);
630 		}
631 		space = sbspace(so, &so->so_snd);
632 		if (flags & MSG_OOB)
633 			space += 1024;
634 		if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
635 			if (atomic && resid > so->so_snd.sb_hiwat)
636 				snderr(EMSGSIZE);
637 		} else {
638 			if (clen > so->so_snd.sb_hiwat ||
639 			    (atomic && resid > so->so_snd.sb_hiwat - clen))
640 				snderr(EMSGSIZE);
641 		}
642 		if (space < clen ||
643 		    (space - clen < resid &&
644 		    (atomic || space < so->so_snd.sb_lowat))) {
645 			if (flags & MSG_DONTWAIT)
646 				snderr(EWOULDBLOCK);
647 			sbunlock(so, &so->so_snd);
648 
649 			if (so->so_snd.sb_flags & SB_MTXLOCK)
650 				error = sbwait_locked(so, &so->so_snd);
651 			else
652 				error = sbwait(so, &so->so_snd);
653 
654 			so->so_snd.sb_state &= ~SS_ISSENDING;
655 			sb_mtx_unlock(&so->so_snd);
656 			if (error)
657 				goto out;
658 			goto restart;
659 		}
660 		space -= clen;
661 		do {
662 			if (uio == NULL) {
663 				/*
664 				 * Data is prepackaged in "top".
665 				 */
666 				resid = 0;
667 				if (flags & MSG_EOR)
668 					top->m_flags |= M_EOR;
669 			} else {
670 				sb_mtx_unlock(&so->so_snd);
671 				if (dosolock)
672 					sounlock_shared(so);
673 				error = m_getuio(&top, atomic, space, uio);
674 				if (dosolock)
675 					solock_shared(so);
676 				sb_mtx_lock(&so->so_snd);
677 				if (error)
678 					goto release;
679 				space -= top->m_pkthdr.len;
680 				resid = uio->uio_resid;
681 				if (flags & MSG_EOR)
682 					top->m_flags |= M_EOR;
683 			}
684 			if (resid == 0)
685 				so->so_snd.sb_state &= ~SS_ISSENDING;
686 			if (top && so->so_options & SO_ZEROIZE)
687 				top->m_flags |= M_ZEROIZE;
688 			sb_mtx_unlock(&so->so_snd);
689 			if (!dosolock)
690 				solock_shared(so);
691 			if (flags & MSG_OOB)
692 				error = pru_sendoob(so, top, addr, control);
693 			else
694 				error = pru_send(so, top, addr, control);
695 			if (!dosolock)
696 				sounlock_shared(so);
697 			sb_mtx_lock(&so->so_snd);
698 			clen = 0;
699 			control = NULL;
700 			top = NULL;
701 			if (error)
702 				goto release;
703 		} while (resid && space > 0);
704 	} while (resid);
705 
706 release:
707 	so->so_snd.sb_state &= ~SS_ISSENDING;
708 	sb_mtx_unlock(&so->so_snd);
709 	sbunlock(so, &so->so_snd);
710 out:
711 	if (dosolock)
712 		sounlock_shared(so);
713 	m_freem(top);
714 	m_freem(control);
715 	return (error);
716 }
717 
718 int
719 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
720 {
721 	struct mbuf *m, *top = NULL;
722 	struct mbuf **nextp = &top;
723 	u_long len, mlen;
724 	size_t resid = uio->uio_resid;
725 	int error;
726 
727 	do {
728 		if (top == NULL) {
729 			MGETHDR(m, M_WAIT, MT_DATA);
730 			mlen = MHLEN;
731 			m->m_pkthdr.len = 0;
732 			m->m_pkthdr.ph_ifidx = 0;
733 		} else {
734 			MGET(m, M_WAIT, MT_DATA);
735 			mlen = MLEN;
736 		}
737 		/* chain mbuf together */
738 		*nextp = m;
739 		nextp = &m->m_next;
740 
741 		resid = ulmin(resid, space);
742 		if (resid >= MINCLSIZE) {
743 			MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
744 			if ((m->m_flags & M_EXT) == 0)
745 				MCLGETL(m, M_NOWAIT, MCLBYTES);
746 			if ((m->m_flags & M_EXT) == 0)
747 				goto nopages;
748 			mlen = m->m_ext.ext_size;
749 			len = ulmin(mlen, resid);
750 			/*
751 			 * For datagram protocols, leave room
752 			 * for protocol headers in first mbuf.
753 			 */
754 			if (atomic && m == top && len < mlen - max_hdr)
755 				m->m_data += max_hdr;
756 		} else {
757 nopages:
758 			len = ulmin(mlen, resid);
759 			/*
760 			 * For datagram protocols, leave room
761 			 * for protocol headers in first mbuf.
762 			 */
763 			if (atomic && m == top && len < mlen - max_hdr)
764 				m_align(m, len);
765 		}
766 
767 		error = uiomove(mtod(m, caddr_t), len, uio);
768 		if (error) {
769 			m_freem(top);
770 			return (error);
771 		}
772 
773 		/* adjust counters */
774 		resid = uio->uio_resid;
775 		space -= len;
776 		m->m_len = len;
777 		top->m_pkthdr.len += len;
778 
779 		/* Is there more space and more data? */
780 	} while (space > 0 && resid > 0);
781 
782 	*mp = top;
783 	return 0;
784 }
785 
786 /*
787  * Following replacement or removal of the first mbuf on the first
788  * mbuf chain of a socket buffer, push necessary state changes back
789  * into the socket buffer so that other consumers see the values
790  * consistently.  'nextrecord' is the callers locally stored value of
791  * the original value of sb->sb_mb->m_nextpkt which must be restored
792  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
793  */
794 void
795 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
796 {
797 
798 	/*
799 	 * First, update for the new value of nextrecord.  If necessary,
800 	 * make it the first record.
801 	 */
802 	if (sb->sb_mb != NULL)
803 		sb->sb_mb->m_nextpkt = nextrecord;
804 	else
805 		sb->sb_mb = nextrecord;
806 
807 	/*
808 	 * Now update any dependent socket buffer fields to reflect
809 	 * the new state.  This is an inline of SB_EMPTY_FIXUP, with
810 	 * the addition of a second clause that takes care of the
811 	 * case where sb_mb has been updated, but remains the last
812 	 * record.
813 	 */
814 	if (sb->sb_mb == NULL) {
815 		sb->sb_mbtail = NULL;
816 		sb->sb_lastrecord = NULL;
817 	} else if (sb->sb_mb->m_nextpkt == NULL)
818 		sb->sb_lastrecord = sb->sb_mb;
819 }
820 
821 /*
822  * Implement receive operations on a socket.
823  * We depend on the way that records are added to the sockbuf
824  * by sbappend*.  In particular, each record (mbufs linked through m_next)
825  * must begin with an address if the protocol so specifies,
826  * followed by an optional mbuf or mbufs containing ancillary data,
827  * and then zero or more mbufs of data.
828  * In order to avoid blocking network for the entire time here, we release
829  * the solock() while doing the actual copy to user space.
830  * Although the sockbuf is locked, new data may still be appended,
831  * and thus we must maintain consistency of the sockbuf during that time.
832  *
833  * The caller may receive the data as a single mbuf chain by supplying
834  * an mbuf **mp0 for use in returning the chain.  The uio is then used
835  * only for the count in uio_resid.
836  */
837 int
838 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
839     struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
840     socklen_t controllen)
841 {
842 	struct mbuf *m, **mp;
843 	struct mbuf *cm;
844 	u_long len, offset, moff;
845 	int flags, error, error2, type, uio_error = 0;
846 	const struct protosw *pr = so->so_proto;
847 	struct mbuf *nextrecord;
848 	size_t resid, orig_resid = uio->uio_resid;
849 	int dosolock = ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0);
850 
851 	mp = mp0;
852 	if (paddr)
853 		*paddr = NULL;
854 	if (controlp)
855 		*controlp = NULL;
856 	if (flagsp)
857 		flags = *flagsp &~ MSG_EOR;
858 	else
859 		flags = 0;
860 	if (flags & MSG_OOB) {
861 		m = m_get(M_WAIT, MT_DATA);
862 		solock(so);
863 		error = pru_rcvoob(so, m, flags & MSG_PEEK);
864 		sounlock(so);
865 		if (error)
866 			goto bad;
867 		do {
868 			error = uiomove(mtod(m, caddr_t),
869 			    ulmin(uio->uio_resid, m->m_len), uio);
870 			m = m_free(m);
871 		} while (uio->uio_resid && error == 0 && m);
872 bad:
873 		m_freem(m);
874 		return (error);
875 	}
876 	if (mp)
877 		*mp = NULL;
878 
879 	if (dosolock)
880 		solock_shared(so);
881 restart:
882 	if ((error = sblock(so, &so->so_rcv, SBLOCKWAIT(flags))) != 0)
883 		goto out;
884 	sb_mtx_lock(&so->so_rcv);
885 
886 	m = so->so_rcv.sb_mb;
887 #ifdef SOCKET_SPLICE
888 	if (isspliced(so))
889 		m = NULL;
890 #endif /* SOCKET_SPLICE */
891 	/*
892 	 * If we have less data than requested, block awaiting more
893 	 * (subject to any timeout) if:
894 	 *   1. the current count is less than the low water mark,
895 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
896 	 *	receive operation at once if we block (resid <= hiwat), or
897 	 *   3. MSG_DONTWAIT is not set.
898 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
899 	 * we have to do the receive in sections, and thus risk returning
900 	 * a short count if a timeout or signal occurs after we start.
901 	 */
902 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
903 	    so->so_rcv.sb_cc < uio->uio_resid) &&
904 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
905 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
906 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
907 #ifdef DIAGNOSTIC
908 		if (m == NULL && so->so_rcv.sb_cc)
909 #ifdef SOCKET_SPLICE
910 		    if (!isspliced(so))
911 #endif /* SOCKET_SPLICE */
912 			panic("receive 1: so %p, so_type %d, sb_cc %lu",
913 			    so, so->so_type, so->so_rcv.sb_cc);
914 #endif
915 		if ((error2 = READ_ONCE(so->so_error))) {
916 			if (m)
917 				goto dontblock;
918 			error = error2;
919 			if ((flags & MSG_PEEK) == 0)
920 				so->so_error = 0;
921 			goto release;
922 		}
923 		if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
924 			if (m)
925 				goto dontblock;
926 			else if (so->so_rcv.sb_cc == 0)
927 				goto release;
928 		}
929 		for (; m; m = m->m_next)
930 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
931 				m = so->so_rcv.sb_mb;
932 				goto dontblock;
933 			}
934 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
935 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
936 			error = ENOTCONN;
937 			goto release;
938 		}
939 		if (uio->uio_resid == 0 && controlp == NULL)
940 			goto release;
941 		if (flags & MSG_DONTWAIT) {
942 			error = EWOULDBLOCK;
943 			goto release;
944 		}
945 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
946 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
947 
948 		if (so->so_rcv.sb_flags & SB_MTXLOCK) {
949 			sbunlock_locked(so, &so->so_rcv);
950 			if (dosolock)
951 				sounlock_shared(so);
952 			error = sbwait_locked(so, &so->so_rcv);
953 			sb_mtx_unlock(&so->so_rcv);
954 			if (error)
955 				return (error);
956 			if (dosolock)
957 				solock_shared(so);
958 		} else {
959 			sb_mtx_unlock(&so->so_rcv);
960 			sbunlock(so, &so->so_rcv);
961 			error = sbwait(so, &so->so_rcv);
962 			if (error) {
963 				sounlock_shared(so);
964 				return (error);
965 			}
966 		}
967 		goto restart;
968 	}
969 dontblock:
970 	/*
971 	 * On entry here, m points to the first record of the socket buffer.
972 	 * From this point onward, we maintain 'nextrecord' as a cache of the
973 	 * pointer to the next record in the socket buffer.  We must keep the
974 	 * various socket buffer pointers and local stack versions of the
975 	 * pointers in sync, pushing out modifications before operations that
976 	 * may sleep, and re-reading them afterwards.
977 	 *
978 	 * Otherwise, we will race with the network stack appending new data
979 	 * or records onto the socket buffer by using inconsistent/stale
980 	 * versions of the field, possibly resulting in socket buffer
981 	 * corruption.
982 	 */
983 	if (uio->uio_procp)
984 		uio->uio_procp->p_ru.ru_msgrcv++;
985 	KASSERT(m == so->so_rcv.sb_mb);
986 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
987 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
988 	nextrecord = m->m_nextpkt;
989 	if (pr->pr_flags & PR_ADDR) {
990 #ifdef DIAGNOSTIC
991 		if (m->m_type != MT_SONAME)
992 			panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
993 			    so, so->so_type, m, m->m_type);
994 #endif
995 		orig_resid = 0;
996 		if (flags & MSG_PEEK) {
997 			if (paddr)
998 				*paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
999 			m = m->m_next;
1000 		} else {
1001 			sbfree(so, &so->so_rcv, m);
1002 			if (paddr) {
1003 				*paddr = m;
1004 				so->so_rcv.sb_mb = m->m_next;
1005 				m->m_next = NULL;
1006 				m = so->so_rcv.sb_mb;
1007 			} else {
1008 				so->so_rcv.sb_mb = m_free(m);
1009 				m = so->so_rcv.sb_mb;
1010 			}
1011 			sbsync(&so->so_rcv, nextrecord);
1012 		}
1013 	}
1014 	while (m && m->m_type == MT_CONTROL && error == 0) {
1015 		int skip = 0;
1016 		if (flags & MSG_PEEK) {
1017 			if (mtod(m, struct cmsghdr *)->cmsg_type ==
1018 			    SCM_RIGHTS) {
1019 				/* don't leak internalized SCM_RIGHTS msgs */
1020 				skip = 1;
1021 			} else if (controlp)
1022 				*controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
1023 			m = m->m_next;
1024 		} else {
1025 			sbfree(so, &so->so_rcv, m);
1026 			so->so_rcv.sb_mb = m->m_next;
1027 			m->m_nextpkt = m->m_next = NULL;
1028 			cm = m;
1029 			m = so->so_rcv.sb_mb;
1030 			sbsync(&so->so_rcv, nextrecord);
1031 			if (controlp) {
1032 				if (pr->pr_domain->dom_externalize) {
1033 					sb_mtx_unlock(&so->so_rcv);
1034 					if (dosolock)
1035 						sounlock_shared(so);
1036 					error =
1037 					    (*pr->pr_domain->dom_externalize)
1038 					    (cm, controllen, flags);
1039 					if (dosolock)
1040 						solock_shared(so);
1041 					sb_mtx_lock(&so->so_rcv);
1042 				}
1043 				*controlp = cm;
1044 			} else {
1045 				/*
1046 				 * Dispose of any SCM_RIGHTS message that went
1047 				 * through the read path rather than recv.
1048 				 */
1049 				if (pr->pr_domain->dom_dispose) {
1050 					sb_mtx_unlock(&so->so_rcv);
1051 					pr->pr_domain->dom_dispose(cm);
1052 					sb_mtx_lock(&so->so_rcv);
1053 				}
1054 				m_free(cm);
1055 			}
1056 		}
1057 		if (m != NULL)
1058 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1059 		else
1060 			nextrecord = so->so_rcv.sb_mb;
1061 		if (controlp && !skip)
1062 			controlp = &(*controlp)->m_next;
1063 		orig_resid = 0;
1064 	}
1065 
1066 	/* If m is non-NULL, we have some data to read. */
1067 	if (m) {
1068 		type = m->m_type;
1069 		if (type == MT_OOBDATA)
1070 			flags |= MSG_OOB;
1071 		if (m->m_flags & M_BCAST)
1072 			flags |= MSG_BCAST;
1073 		if (m->m_flags & M_MCAST)
1074 			flags |= MSG_MCAST;
1075 	}
1076 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1077 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1078 
1079 	moff = 0;
1080 	offset = 0;
1081 	while (m && uio->uio_resid > 0 && error == 0) {
1082 		if (m->m_type == MT_OOBDATA) {
1083 			if (type != MT_OOBDATA)
1084 				break;
1085 		} else if (type == MT_OOBDATA) {
1086 			break;
1087 		} else if (m->m_type == MT_CONTROL) {
1088 			/*
1089 			 * If there is more than one control message in the
1090 			 * stream, we do a short read.  Next can be received
1091 			 * or disposed by another system call.
1092 			 */
1093 			break;
1094 #ifdef DIAGNOSTIC
1095 		} else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1096 			panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1097 			    so, so->so_type, m, m->m_type);
1098 #endif
1099 		}
1100 		so->so_rcv.sb_state &= ~SS_RCVATMARK;
1101 		len = uio->uio_resid;
1102 		if (so->so_oobmark && len > so->so_oobmark - offset)
1103 			len = so->so_oobmark - offset;
1104 		if (len > m->m_len - moff)
1105 			len = m->m_len - moff;
1106 		/*
1107 		 * If mp is set, just pass back the mbufs.
1108 		 * Otherwise copy them out via the uio, then free.
1109 		 * Sockbuf must be consistent here (points to current mbuf,
1110 		 * it points to next record) when we drop priority;
1111 		 * we must note any additions to the sockbuf when we
1112 		 * block interrupts again.
1113 		 */
1114 		if (mp == NULL && uio_error == 0) {
1115 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1116 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1117 			resid = uio->uio_resid;
1118 			sb_mtx_unlock(&so->so_rcv);
1119 			if (dosolock)
1120 				sounlock_shared(so);
1121 			uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1122 			if (dosolock)
1123 				solock_shared(so);
1124 			sb_mtx_lock(&so->so_rcv);
1125 			if (uio_error)
1126 				uio->uio_resid = resid - len;
1127 		} else
1128 			uio->uio_resid -= len;
1129 		if (len == m->m_len - moff) {
1130 			if (m->m_flags & M_EOR)
1131 				flags |= MSG_EOR;
1132 			if (flags & MSG_PEEK) {
1133 				m = m->m_next;
1134 				moff = 0;
1135 				orig_resid = 0;
1136 			} else {
1137 				nextrecord = m->m_nextpkt;
1138 				sbfree(so, &so->so_rcv, m);
1139 				if (mp) {
1140 					*mp = m;
1141 					mp = &m->m_next;
1142 					so->so_rcv.sb_mb = m = m->m_next;
1143 					*mp = NULL;
1144 				} else {
1145 					so->so_rcv.sb_mb = m_free(m);
1146 					m = so->so_rcv.sb_mb;
1147 				}
1148 				/*
1149 				 * If m != NULL, we also know that
1150 				 * so->so_rcv.sb_mb != NULL.
1151 				 */
1152 				KASSERT(so->so_rcv.sb_mb == m);
1153 				if (m) {
1154 					m->m_nextpkt = nextrecord;
1155 					if (nextrecord == NULL)
1156 						so->so_rcv.sb_lastrecord = m;
1157 				} else {
1158 					so->so_rcv.sb_mb = nextrecord;
1159 					SB_EMPTY_FIXUP(&so->so_rcv);
1160 				}
1161 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1162 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1163 			}
1164 		} else {
1165 			if (flags & MSG_PEEK) {
1166 				moff += len;
1167 				orig_resid = 0;
1168 			} else {
1169 				if (mp)
1170 					*mp = m_copym(m, 0, len, M_WAIT);
1171 				m->m_data += len;
1172 				m->m_len -= len;
1173 				so->so_rcv.sb_cc -= len;
1174 				so->so_rcv.sb_datacc -= len;
1175 			}
1176 		}
1177 		if (so->so_oobmark) {
1178 			if ((flags & MSG_PEEK) == 0) {
1179 				so->so_oobmark -= len;
1180 				if (so->so_oobmark == 0) {
1181 					so->so_rcv.sb_state |= SS_RCVATMARK;
1182 					break;
1183 				}
1184 			} else {
1185 				offset += len;
1186 				if (offset == so->so_oobmark)
1187 					break;
1188 			}
1189 		}
1190 		if (flags & MSG_EOR)
1191 			break;
1192 		/*
1193 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1194 		 * we must not quit until "uio->uio_resid == 0" or an error
1195 		 * termination.  If a signal/timeout occurs, return
1196 		 * with a short count but without error.
1197 		 * Keep sockbuf locked against other readers.
1198 		 */
1199 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1200 		    !sosendallatonce(so) && !nextrecord) {
1201 			if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1202 			    so->so_error)
1203 				break;
1204 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1205 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1206 			if (dosolock) {
1207 				sb_mtx_unlock(&so->so_rcv);
1208 				error = sbwait(so, &so->so_rcv);
1209 				if (error) {
1210 					sbunlock(so, &so->so_rcv);
1211 					sounlock_shared(so);
1212 					return (0);
1213 				}
1214 				sb_mtx_lock(&so->so_rcv);
1215 			} else {
1216 				if (sbwait_locked(so, &so->so_rcv)) {
1217 					sb_mtx_unlock(&so->so_rcv);
1218 					sbunlock(so, &so->so_rcv);
1219 					return (0);
1220 				}
1221 			}
1222 			if ((m = so->so_rcv.sb_mb) != NULL)
1223 				nextrecord = m->m_nextpkt;
1224 		}
1225 	}
1226 
1227 	if (m && pr->pr_flags & PR_ATOMIC) {
1228 		flags |= MSG_TRUNC;
1229 		if ((flags & MSG_PEEK) == 0)
1230 			(void) sbdroprecord(so, &so->so_rcv);
1231 	}
1232 	if ((flags & MSG_PEEK) == 0) {
1233 		if (m == NULL) {
1234 			/*
1235 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1236 			 * part makes sure sb_lastrecord is up-to-date if
1237 			 * there is still data in the socket buffer.
1238 			 */
1239 			so->so_rcv.sb_mb = nextrecord;
1240 			if (so->so_rcv.sb_mb == NULL) {
1241 				so->so_rcv.sb_mbtail = NULL;
1242 				so->so_rcv.sb_lastrecord = NULL;
1243 			} else if (nextrecord->m_nextpkt == NULL)
1244 				so->so_rcv.sb_lastrecord = nextrecord;
1245 		}
1246 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1247 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1248 		if (pr->pr_flags & PR_WANTRCVD) {
1249 			sb_mtx_unlock(&so->so_rcv);
1250 			if (!dosolock)
1251 				solock_shared(so);
1252 			pru_rcvd(so);
1253 			if (!dosolock)
1254 				sounlock_shared(so);
1255 			sb_mtx_lock(&so->so_rcv);
1256 		}
1257 	}
1258 	if (orig_resid == uio->uio_resid && orig_resid &&
1259 	    (flags & MSG_EOR) == 0 &&
1260 	    (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1261 		sb_mtx_unlock(&so->so_rcv);
1262 		sbunlock(so, &so->so_rcv);
1263 		goto restart;
1264 	}
1265 
1266 	if (uio_error)
1267 		error = uio_error;
1268 
1269 	if (flagsp)
1270 		*flagsp |= flags;
1271 release:
1272 	sb_mtx_unlock(&so->so_rcv);
1273 	sbunlock(so, &so->so_rcv);
1274 out:
1275 	if (dosolock)
1276 		sounlock_shared(so);
1277 	return (error);
1278 }
1279 
1280 int
1281 soshutdown(struct socket *so, int how)
1282 {
1283 	int error = 0;
1284 
1285 	switch (how) {
1286 	case SHUT_RD:
1287 		sorflush(so);
1288 		break;
1289 	case SHUT_RDWR:
1290 		sorflush(so);
1291 		/* FALLTHROUGH */
1292 	case SHUT_WR:
1293 		solock(so);
1294 		error = pru_shutdown(so);
1295 		sounlock(so);
1296 		break;
1297 	default:
1298 		error = EINVAL;
1299 		break;
1300 	}
1301 
1302 	return (error);
1303 }
1304 
1305 void
1306 sorflush_locked(struct socket *so)
1307 {
1308 	struct sockbuf *sb = &so->so_rcv;
1309 	struct mbuf *m;
1310 	const struct protosw *pr = so->so_proto;
1311 	int error;
1312 
1313 	if ((sb->sb_flags & SB_MTXLOCK) == 0)
1314 		soassertlocked(so);
1315 
1316 	error = sblock(so, sb, SBL_WAIT | SBL_NOINTR);
1317 	/* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1318 	KASSERT(error == 0);
1319 
1320 	if (sb->sb_flags & SB_MTXLOCK)
1321 		solock(so);
1322 	socantrcvmore(so);
1323 	if (sb->sb_flags & SB_MTXLOCK)
1324 		sounlock(so);
1325 
1326 	mtx_enter(&sb->sb_mtx);
1327 	m = sb->sb_mb;
1328 	memset(&sb->sb_startzero, 0,
1329 	     (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1330 	sb->sb_timeo_nsecs = INFSLP;
1331 	mtx_leave(&sb->sb_mtx);
1332 	sbunlock(so, sb);
1333 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1334 		(*pr->pr_domain->dom_dispose)(m);
1335 	m_purge(m);
1336 }
1337 
1338 void
1339 sorflush(struct socket *so)
1340 {
1341 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1342 		solock_shared(so);
1343 	sorflush_locked(so);
1344 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1345 		sounlock_shared(so);
1346 }
1347 
1348 #ifdef SOCKET_SPLICE
1349 
1350 #define so_splicelen	so_sp->ssp_len
1351 #define so_splicemax	so_sp->ssp_max
1352 #define so_idletv	so_sp->ssp_idletv
1353 #define so_idleto	so_sp->ssp_idleto
1354 #define so_splicetask	so_sp->ssp_task
1355 
1356 int
1357 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1358 {
1359 	struct file	*fp = NULL;
1360 	struct socket	*sosp;
1361 	struct taskq	*tq;
1362 	int		 error = 0;
1363 
1364 	if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1365 		return (EPROTONOSUPPORT);
1366 	if (max && max < 0)
1367 		return (EINVAL);
1368 	if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1369 		return (EINVAL);
1370 
1371 	if (sosplice_taskq == NULL) {
1372 		rw_enter_write(&sosplice_lock);
1373 		if (sosplice_taskq == NULL) {
1374 			tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1375 			    TASKQ_MPSAFE);
1376 			if (tq == NULL) {
1377 				rw_exit_write(&sosplice_lock);
1378 				return (ENOMEM);
1379 			}
1380 			/* Ensure the taskq is fully visible to other CPUs. */
1381 			membar_producer();
1382 			sosplice_taskq = tq;
1383 		}
1384 		rw_exit_write(&sosplice_lock);
1385 	} else {
1386 		/* Ensure the taskq is fully visible on this CPU. */
1387 		membar_consumer();
1388 	}
1389 
1390 	if (so->so_rcv.sb_flags & SB_MTXLOCK) {
1391 		if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0)
1392 			return (error);
1393 		solock(so);
1394 	} else {
1395 		solock(so);
1396 		if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0) {
1397 			sounlock(so);
1398 			return (error);
1399 		}
1400 	}
1401 
1402 	if (so->so_options & SO_ACCEPTCONN) {
1403 		error = EOPNOTSUPP;
1404 		goto out;
1405 	}
1406 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1407 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1408 		error = ENOTCONN;
1409 		goto out;
1410 	}
1411 	if (so->so_sp == NULL)
1412 		so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1413 
1414 	/* If no fd is given, unsplice by removing existing link. */
1415 	if (fd < 0) {
1416 		if (so->so_sp->ssp_socket)
1417 			sounsplice(so, so->so_sp->ssp_socket, 0);
1418 		goto out;
1419 	}
1420 
1421 	/* Find sosp, the drain socket where data will be spliced into. */
1422 	if ((error = getsock(curproc, fd, &fp)) != 0)
1423 		goto out;
1424 	sosp = fp->f_data;
1425 	if (sosp->so_proto->pr_usrreqs->pru_send !=
1426 	    so->so_proto->pr_usrreqs->pru_send) {
1427 		error = EPROTONOSUPPORT;
1428 		goto out;
1429 	}
1430 	if (sosp->so_sp == NULL)
1431 		sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1432 
1433 	if ((error = sblock(sosp, &sosp->so_snd, SBL_WAIT)) != 0) {
1434 		goto out;
1435 	}
1436 
1437 	if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1438 		error = EBUSY;
1439 		goto release;
1440 	}
1441 	if (sosp->so_options & SO_ACCEPTCONN) {
1442 		error = EOPNOTSUPP;
1443 		goto release;
1444 	}
1445 	if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1446 		error = ENOTCONN;
1447 		goto release;
1448 	}
1449 
1450 	/* Splice so and sosp together. */
1451 	mtx_enter(&so->so_rcv.sb_mtx);
1452 	so->so_sp->ssp_socket = sosp;
1453 	sosp->so_sp->ssp_soback = so;
1454 	mtx_leave(&so->so_rcv.sb_mtx);
1455 	so->so_splicelen = 0;
1456 	so->so_splicemax = max;
1457 	if (tv)
1458 		so->so_idletv = *tv;
1459 	else
1460 		timerclear(&so->so_idletv);
1461 	timeout_set_proc(&so->so_idleto, soidle, so);
1462 	task_set(&so->so_splicetask, sotask, so);
1463 
1464 	/*
1465 	 * To prevent softnet interrupt from calling somove() while
1466 	 * we sleep, the socket buffers are not marked as spliced yet.
1467 	 */
1468 	if (somove(so, M_WAIT)) {
1469 		mtx_enter(&so->so_rcv.sb_mtx);
1470 		so->so_rcv.sb_flags |= SB_SPLICE;
1471 		mtx_leave(&so->so_rcv.sb_mtx);
1472 		sosp->so_snd.sb_flags |= SB_SPLICE;
1473 	}
1474 
1475  release:
1476 	sbunlock(sosp, &sosp->so_snd);
1477  out:
1478 	if (so->so_rcv.sb_flags & SB_MTXLOCK) {
1479 		sounlock(so);
1480 		sbunlock(so, &so->so_rcv);
1481 	} else {
1482 		sbunlock(so, &so->so_rcv);
1483 		sounlock(so);
1484 	}
1485 
1486 	if (fp)
1487 		FRELE(fp, curproc);
1488 
1489 	return (error);
1490 }
1491 
1492 void
1493 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1494 {
1495 	soassertlocked(so);
1496 
1497 	task_del(sosplice_taskq, &so->so_splicetask);
1498 	timeout_del(&so->so_idleto);
1499 	sosp->so_snd.sb_flags &= ~SB_SPLICE;
1500 
1501 	mtx_enter(&so->so_rcv.sb_mtx);
1502 	so->so_rcv.sb_flags &= ~SB_SPLICE;
1503 	so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1504 	mtx_leave(&so->so_rcv.sb_mtx);
1505 
1506 	/* Do not wakeup a socket that is about to be freed. */
1507 	if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so))
1508 		sorwakeup(so);
1509 	if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp))
1510 		sowwakeup(sosp);
1511 }
1512 
1513 void
1514 soidle(void *arg)
1515 {
1516 	struct socket *so = arg;
1517 
1518 	solock(so);
1519 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1520 		so->so_error = ETIMEDOUT;
1521 		sounsplice(so, so->so_sp->ssp_socket, 0);
1522 	}
1523 	sounlock(so);
1524 }
1525 
1526 void
1527 sotask(void *arg)
1528 {
1529 	struct socket *so = arg;
1530 
1531 	solock(so);
1532 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1533 		/*
1534 		 * We may not sleep here as sofree() and unsplice() may be
1535 		 * called from softnet interrupt context.  This would remove
1536 		 * the socket during somove().
1537 		 */
1538 		somove(so, M_DONTWAIT);
1539 	}
1540 	sounlock(so);
1541 
1542 	/* Avoid user land starvation. */
1543 	yield();
1544 }
1545 
1546 /*
1547  * The socket splicing task or idle timeout may sleep while grabbing the net
1548  * lock.  As sofree() can be called anytime, sotask() or soidle() could access
1549  * the socket memory of a freed socket after wakeup.  So delay the pool_put()
1550  * after all pending socket splicing tasks or timeouts have finished.  Do this
1551  * by scheduling it on the same threads.
1552  */
1553 void
1554 soreaper(void *arg)
1555 {
1556 	struct socket *so = arg;
1557 
1558 	/* Reuse splice task, sounsplice() has been called before. */
1559 	task_set(&so->so_sp->ssp_task, soput, so);
1560 	task_add(sosplice_taskq, &so->so_sp->ssp_task);
1561 }
1562 
1563 void
1564 soput(void *arg)
1565 {
1566 	struct socket *so = arg;
1567 
1568 	pool_put(&sosplice_pool, so->so_sp);
1569 	pool_put(&socket_pool, so);
1570 }
1571 
1572 /*
1573  * Move data from receive buffer of spliced source socket to send
1574  * buffer of drain socket.  Try to move as much as possible in one
1575  * big chunk.  It is a TCP only implementation.
1576  * Return value 0 means splicing has been finished, 1 continue.
1577  */
1578 int
1579 somove(struct socket *so, int wait)
1580 {
1581 	struct socket	*sosp = so->so_sp->ssp_socket;
1582 	struct mbuf	*m, **mp, *nextrecord;
1583 	u_long		 len, off, oobmark;
1584 	long		 space;
1585 	int		 error = 0, maxreached = 0;
1586 	unsigned int	 rcvstate;
1587 
1588 	soassertlocked(so);
1589 
1590  nextpkt:
1591 	if (so->so_error) {
1592 		error = so->so_error;
1593 		goto release;
1594 	}
1595 	if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1596 		error = EPIPE;
1597 		goto release;
1598 	}
1599 	if (sosp->so_error && sosp->so_error != ETIMEDOUT &&
1600 	    sosp->so_error != EFBIG && sosp->so_error != ELOOP) {
1601 		error = sosp->so_error;
1602 		goto release;
1603 	}
1604 	if ((sosp->so_state & SS_ISCONNECTED) == 0)
1605 		goto release;
1606 
1607 	/* Calculate how many bytes can be copied now. */
1608 	len = so->so_rcv.sb_datacc;
1609 	if (so->so_splicemax) {
1610 		KASSERT(so->so_splicelen < so->so_splicemax);
1611 		if (so->so_splicemax <= so->so_splicelen + len) {
1612 			len = so->so_splicemax - so->so_splicelen;
1613 			maxreached = 1;
1614 		}
1615 	}
1616 	space = sbspace(sosp, &sosp->so_snd);
1617 	if (so->so_oobmark && so->so_oobmark < len &&
1618 	    so->so_oobmark < space + 1024)
1619 		space += 1024;
1620 	if (space <= 0) {
1621 		maxreached = 0;
1622 		goto release;
1623 	}
1624 	if (space < len) {
1625 		maxreached = 0;
1626 		if (space < sosp->so_snd.sb_lowat)
1627 			goto release;
1628 		len = space;
1629 	}
1630 	sosp->so_snd.sb_state |= SS_ISSENDING;
1631 
1632 	SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1633 	SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1634 	m = so->so_rcv.sb_mb;
1635 	if (m == NULL)
1636 		goto release;
1637 	nextrecord = m->m_nextpkt;
1638 
1639 	/* Drop address and control information not used with splicing. */
1640 	if (so->so_proto->pr_flags & PR_ADDR) {
1641 #ifdef DIAGNOSTIC
1642 		if (m->m_type != MT_SONAME)
1643 			panic("somove soname: so %p, so_type %d, m %p, "
1644 			    "m_type %d", so, so->so_type, m, m->m_type);
1645 #endif
1646 		m = m->m_next;
1647 	}
1648 	while (m && m->m_type == MT_CONTROL)
1649 		m = m->m_next;
1650 	if (m == NULL) {
1651 		sbdroprecord(so, &so->so_rcv);
1652 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1653 			pru_rcvd(so);
1654 		goto nextpkt;
1655 	}
1656 
1657 	/*
1658 	 * By splicing sockets connected to localhost, userland might create a
1659 	 * loop.  Dissolve splicing with error if loop is detected by counter.
1660 	 *
1661 	 * If we deal with looped broadcast/multicast packet we bail out with
1662 	 * no error to suppress splice termination.
1663 	 */
1664 	if ((m->m_flags & M_PKTHDR) &&
1665 	    ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1666 	    ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1667 		error = ELOOP;
1668 		goto release;
1669 	}
1670 
1671 	if (so->so_proto->pr_flags & PR_ATOMIC) {
1672 		if ((m->m_flags & M_PKTHDR) == 0)
1673 			panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1674 			    "m_type %d", so, so->so_type, m, m->m_type);
1675 		if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1676 			error = EMSGSIZE;
1677 			goto release;
1678 		}
1679 		if (len < m->m_pkthdr.len)
1680 			goto release;
1681 		if (m->m_pkthdr.len < len) {
1682 			maxreached = 0;
1683 			len = m->m_pkthdr.len;
1684 		}
1685 		/*
1686 		 * Throw away the name mbuf after it has been assured
1687 		 * that the whole first record can be processed.
1688 		 */
1689 		m = so->so_rcv.sb_mb;
1690 		sbfree(so, &so->so_rcv, m);
1691 		so->so_rcv.sb_mb = m_free(m);
1692 		sbsync(&so->so_rcv, nextrecord);
1693 	}
1694 	/*
1695 	 * Throw away the control mbufs after it has been assured
1696 	 * that the whole first record can be processed.
1697 	 */
1698 	m = so->so_rcv.sb_mb;
1699 	while (m && m->m_type == MT_CONTROL) {
1700 		sbfree(so, &so->so_rcv, m);
1701 		so->so_rcv.sb_mb = m_free(m);
1702 		m = so->so_rcv.sb_mb;
1703 		sbsync(&so->so_rcv, nextrecord);
1704 	}
1705 
1706 	SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1707 	SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1708 
1709 	/* Take at most len mbufs out of receive buffer. */
1710 	for (off = 0, mp = &m; off <= len && *mp;
1711 	    off += (*mp)->m_len, mp = &(*mp)->m_next) {
1712 		u_long size = len - off;
1713 
1714 #ifdef DIAGNOSTIC
1715 		if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1716 			panic("somove type: so %p, so_type %d, m %p, "
1717 			    "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1718 #endif
1719 		if ((*mp)->m_len > size) {
1720 			/*
1721 			 * Move only a partial mbuf at maximum splice length or
1722 			 * if the drain buffer is too small for this large mbuf.
1723 			 */
1724 			if (!maxreached && so->so_snd.sb_datacc > 0) {
1725 				len -= size;
1726 				break;
1727 			}
1728 			*mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1729 			if (*mp == NULL) {
1730 				len -= size;
1731 				break;
1732 			}
1733 			so->so_rcv.sb_mb->m_data += size;
1734 			so->so_rcv.sb_mb->m_len -= size;
1735 			so->so_rcv.sb_cc -= size;
1736 			so->so_rcv.sb_datacc -= size;
1737 		} else {
1738 			*mp = so->so_rcv.sb_mb;
1739 			sbfree(so, &so->so_rcv, *mp);
1740 			so->so_rcv.sb_mb = (*mp)->m_next;
1741 			sbsync(&so->so_rcv, nextrecord);
1742 		}
1743 	}
1744 	*mp = NULL;
1745 
1746 	SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1747 	SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1748 	SBCHECK(so, &so->so_rcv);
1749 	if (m == NULL)
1750 		goto release;
1751 	m->m_nextpkt = NULL;
1752 	if (m->m_flags & M_PKTHDR) {
1753 		m_resethdr(m);
1754 		m->m_pkthdr.len = len;
1755 	}
1756 
1757 	/* Send window update to source peer as receive buffer has changed. */
1758 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1759 		pru_rcvd(so);
1760 
1761 	/* Receive buffer did shrink by len bytes, adjust oob. */
1762 	mtx_enter(&so->so_rcv.sb_mtx);
1763 	rcvstate = so->so_rcv.sb_state;
1764 	so->so_rcv.sb_state &= ~SS_RCVATMARK;
1765 	oobmark = so->so_oobmark;
1766 	so->so_oobmark = oobmark > len ? oobmark - len : 0;
1767 	if (oobmark) {
1768 		if (oobmark == len)
1769 			so->so_rcv.sb_state |= SS_RCVATMARK;
1770 		if (oobmark >= len)
1771 			oobmark = 0;
1772 	}
1773 	mtx_leave(&so->so_rcv.sb_mtx);
1774 
1775 	/*
1776 	 * Handle oob data.  If any malloc fails, ignore error.
1777 	 * TCP urgent data is not very reliable anyway.
1778 	 */
1779 	while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1780 	    (so->so_options & SO_OOBINLINE)) {
1781 		struct mbuf *o = NULL;
1782 
1783 		if (rcvstate & SS_RCVATMARK) {
1784 			o = m_get(wait, MT_DATA);
1785 			rcvstate &= ~SS_RCVATMARK;
1786 		} else if (oobmark) {
1787 			o = m_split(m, oobmark, wait);
1788 			if (o) {
1789 				error = pru_send(sosp, m, NULL, NULL);
1790 				if (error) {
1791 					if (sosp->so_snd.sb_state &
1792 					    SS_CANTSENDMORE)
1793 						error = EPIPE;
1794 					m_freem(o);
1795 					goto release;
1796 				}
1797 				len -= oobmark;
1798 				so->so_splicelen += oobmark;
1799 				m = o;
1800 				o = m_get(wait, MT_DATA);
1801 			}
1802 			oobmark = 0;
1803 		}
1804 		if (o) {
1805 			o->m_len = 1;
1806 			*mtod(o, caddr_t) = *mtod(m, caddr_t);
1807 			error = pru_sendoob(sosp, o, NULL, NULL);
1808 			if (error) {
1809 				if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1810 					error = EPIPE;
1811 				m_freem(m);
1812 				goto release;
1813 			}
1814 			len -= 1;
1815 			so->so_splicelen += 1;
1816 			if (oobmark) {
1817 				oobmark -= 1;
1818 				if (oobmark == 0)
1819 					rcvstate |= SS_RCVATMARK;
1820 			}
1821 			m_adj(m, 1);
1822 		}
1823 	}
1824 
1825 	/* Append all remaining data to drain socket. */
1826 	if (so->so_rcv.sb_cc == 0 || maxreached)
1827 		sosp->so_snd.sb_state &= ~SS_ISSENDING;
1828 	error = pru_send(sosp, m, NULL, NULL);
1829 	if (error) {
1830 		if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1831 			error = EPIPE;
1832 		goto release;
1833 	}
1834 	so->so_splicelen += len;
1835 
1836 	/* Move several packets if possible. */
1837 	if (!maxreached && nextrecord)
1838 		goto nextpkt;
1839 
1840  release:
1841 	sosp->so_snd.sb_state &= ~SS_ISSENDING;
1842 	if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1843 		error = EFBIG;
1844 	if (error)
1845 		so->so_error = error;
1846 	if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1847 	    so->so_rcv.sb_cc == 0) ||
1848 	    (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1849 	    maxreached || error) {
1850 		sounsplice(so, sosp, 0);
1851 		return (0);
1852 	}
1853 	if (timerisset(&so->so_idletv))
1854 		timeout_add_tv(&so->so_idleto, &so->so_idletv);
1855 	return (1);
1856 }
1857 
1858 #endif /* SOCKET_SPLICE */
1859 
1860 void
1861 sorwakeup(struct socket *so)
1862 {
1863 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1864 		soassertlocked_readonly(so);
1865 
1866 #ifdef SOCKET_SPLICE
1867 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1868 		/*
1869 		 * TCP has a sendbuffer that can handle multiple packets
1870 		 * at once.  So queue the stream a bit to accumulate data.
1871 		 * The sosplice thread will call somove() later and send
1872 		 * the packets calling tcp_output() only once.
1873 		 * In the UDP case, send out the packets immediately.
1874 		 * Using a thread would make things slower.
1875 		 */
1876 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1877 			task_add(sosplice_taskq, &so->so_splicetask);
1878 		else
1879 			somove(so, M_DONTWAIT);
1880 	}
1881 	if (isspliced(so))
1882 		return;
1883 #endif
1884 	sowakeup(so, &so->so_rcv);
1885 	if (so->so_upcall)
1886 		(*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1887 }
1888 
1889 void
1890 sowwakeup(struct socket *so)
1891 {
1892 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
1893 		soassertlocked_readonly(so);
1894 
1895 #ifdef SOCKET_SPLICE
1896 	if (so->so_snd.sb_flags & SB_SPLICE)
1897 		task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask);
1898 	if (issplicedback(so))
1899 		return;
1900 #endif
1901 	sowakeup(so, &so->so_snd);
1902 }
1903 
1904 int
1905 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1906 {
1907 	int error = 0;
1908 
1909 	if (level != SOL_SOCKET) {
1910 		if (so->so_proto->pr_ctloutput) {
1911 			solock(so);
1912 			error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
1913 			    level, optname, m);
1914 			sounlock(so);
1915 			return (error);
1916 		}
1917 		error = ENOPROTOOPT;
1918 	} else {
1919 		switch (optname) {
1920 
1921 		case SO_LINGER:
1922 			if (m == NULL || m->m_len != sizeof (struct linger) ||
1923 			    mtod(m, struct linger *)->l_linger < 0 ||
1924 			    mtod(m, struct linger *)->l_linger > SHRT_MAX)
1925 				return (EINVAL);
1926 
1927 			solock(so);
1928 			so->so_linger = mtod(m, struct linger *)->l_linger;
1929 			if (*mtod(m, int *))
1930 				so->so_options |= optname;
1931 			else
1932 				so->so_options &= ~optname;
1933 			sounlock(so);
1934 
1935 			break;
1936 		case SO_BINDANY:
1937 			if ((error = suser(curproc)) != 0)	/* XXX */
1938 				return (error);
1939 			/* FALLTHROUGH */
1940 
1941 		case SO_DEBUG:
1942 		case SO_KEEPALIVE:
1943 		case SO_USELOOPBACK:
1944 		case SO_BROADCAST:
1945 		case SO_REUSEADDR:
1946 		case SO_REUSEPORT:
1947 		case SO_OOBINLINE:
1948 		case SO_TIMESTAMP:
1949 		case SO_ZEROIZE:
1950 			if (m == NULL || m->m_len < sizeof (int))
1951 				return (EINVAL);
1952 
1953 			solock(so);
1954 			if (*mtod(m, int *))
1955 				so->so_options |= optname;
1956 			else
1957 				so->so_options &= ~optname;
1958 			sounlock(so);
1959 
1960 			break;
1961 		case SO_DONTROUTE:
1962 			if (m == NULL || m->m_len < sizeof (int))
1963 				return (EINVAL);
1964 			if (*mtod(m, int *))
1965 				error = EOPNOTSUPP;
1966 			break;
1967 
1968 		case SO_SNDBUF:
1969 		case SO_RCVBUF:
1970 		case SO_SNDLOWAT:
1971 		case SO_RCVLOWAT:
1972 		    {
1973 			struct sockbuf *sb = (optname == SO_SNDBUF ||
1974 			    optname == SO_SNDLOWAT ?
1975 			    &so->so_snd : &so->so_rcv);
1976 			u_long cnt;
1977 
1978 			if (m == NULL || m->m_len < sizeof (int))
1979 				return (EINVAL);
1980 			cnt = *mtod(m, int *);
1981 			if ((long)cnt <= 0)
1982 				cnt = 1;
1983 
1984 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
1985 				solock(so);
1986 			mtx_enter(&sb->sb_mtx);
1987 
1988 			switch (optname) {
1989 			case SO_SNDBUF:
1990 			case SO_RCVBUF:
1991 				if (sb->sb_state &
1992 				    (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
1993 					error = EINVAL;
1994 					break;
1995 				}
1996 				if (sbcheckreserve(cnt, sb->sb_wat) ||
1997 				    sbreserve(so, sb, cnt)) {
1998 					error = ENOBUFS;
1999 					break;
2000 				}
2001 				sb->sb_wat = cnt;
2002 				break;
2003 			case SO_SNDLOWAT:
2004 			case SO_RCVLOWAT:
2005 				sb->sb_lowat = (cnt > sb->sb_hiwat) ?
2006 				    sb->sb_hiwat : cnt;
2007 				break;
2008 			}
2009 
2010 			mtx_leave(&sb->sb_mtx);
2011 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
2012 				sounlock(so);
2013 
2014 			break;
2015 		    }
2016 
2017 		case SO_SNDTIMEO:
2018 		case SO_RCVTIMEO:
2019 		    {
2020 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2021 			    &so->so_snd : &so->so_rcv);
2022 			struct timeval tv;
2023 			uint64_t nsecs;
2024 
2025 			if (m == NULL || m->m_len < sizeof (tv))
2026 				return (EINVAL);
2027 			memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
2028 			if (!timerisvalid(&tv))
2029 				return (EINVAL);
2030 			nsecs = TIMEVAL_TO_NSEC(&tv);
2031 			if (nsecs == UINT64_MAX)
2032 				return (EDOM);
2033 			if (nsecs == 0)
2034 				nsecs = INFSLP;
2035 
2036 			mtx_enter(&sb->sb_mtx);
2037 			sb->sb_timeo_nsecs = nsecs;
2038 			mtx_leave(&sb->sb_mtx);
2039 			break;
2040 		    }
2041 
2042 		case SO_RTABLE:
2043 			if (so->so_proto->pr_domain &&
2044 			    so->so_proto->pr_domain->dom_protosw &&
2045 			    so->so_proto->pr_ctloutput) {
2046 				const struct domain *dom =
2047 				    so->so_proto->pr_domain;
2048 
2049 				level = dom->dom_protosw->pr_protocol;
2050 				solock(so);
2051 				error = (*so->so_proto->pr_ctloutput)
2052 				    (PRCO_SETOPT, so, level, optname, m);
2053 				sounlock(so);
2054 			} else
2055 				error = ENOPROTOOPT;
2056 			break;
2057 #ifdef SOCKET_SPLICE
2058 		case SO_SPLICE:
2059 			if (m == NULL) {
2060 				error = sosplice(so, -1, 0, NULL);
2061 			} else if (m->m_len < sizeof(int)) {
2062 				error = EINVAL;
2063 			} else if (m->m_len < sizeof(struct splice)) {
2064 				error = sosplice(so, *mtod(m, int *), 0, NULL);
2065 			} else {
2066 				error = sosplice(so,
2067 				    mtod(m, struct splice *)->sp_fd,
2068 				    mtod(m, struct splice *)->sp_max,
2069 				   &mtod(m, struct splice *)->sp_idle);
2070 			}
2071 			break;
2072 #endif /* SOCKET_SPLICE */
2073 
2074 		default:
2075 			error = ENOPROTOOPT;
2076 			break;
2077 		}
2078 	}
2079 
2080 	return (error);
2081 }
2082 
2083 int
2084 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2085 {
2086 	int error = 0;
2087 
2088 	if (level != SOL_SOCKET) {
2089 		if (so->so_proto->pr_ctloutput) {
2090 			m->m_len = 0;
2091 
2092 			solock(so);
2093 			error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2094 			    level, optname, m);
2095 			sounlock(so);
2096 			return (error);
2097 		} else
2098 			return (ENOPROTOOPT);
2099 	} else {
2100 		m->m_len = sizeof (int);
2101 
2102 		switch (optname) {
2103 
2104 		case SO_LINGER:
2105 			m->m_len = sizeof (struct linger);
2106 			solock_shared(so);
2107 			mtod(m, struct linger *)->l_onoff =
2108 				so->so_options & SO_LINGER;
2109 			mtod(m, struct linger *)->l_linger = so->so_linger;
2110 			sounlock_shared(so);
2111 			break;
2112 
2113 		case SO_BINDANY:
2114 		case SO_USELOOPBACK:
2115 		case SO_DEBUG:
2116 		case SO_KEEPALIVE:
2117 		case SO_REUSEADDR:
2118 		case SO_REUSEPORT:
2119 		case SO_BROADCAST:
2120 		case SO_OOBINLINE:
2121 		case SO_ACCEPTCONN:
2122 		case SO_TIMESTAMP:
2123 		case SO_ZEROIZE:
2124 			*mtod(m, int *) = so->so_options & optname;
2125 			break;
2126 
2127 		case SO_DONTROUTE:
2128 			*mtod(m, int *) = 0;
2129 			break;
2130 
2131 		case SO_TYPE:
2132 			*mtod(m, int *) = so->so_type;
2133 			break;
2134 
2135 		case SO_ERROR:
2136 			solock(so);
2137 			*mtod(m, int *) = so->so_error;
2138 			so->so_error = 0;
2139 			sounlock(so);
2140 
2141 			break;
2142 
2143 		case SO_DOMAIN:
2144 			*mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2145 			break;
2146 
2147 		case SO_PROTOCOL:
2148 			*mtod(m, int *) = so->so_proto->pr_protocol;
2149 			break;
2150 
2151 		case SO_SNDBUF:
2152 			*mtod(m, int *) = so->so_snd.sb_hiwat;
2153 			break;
2154 
2155 		case SO_RCVBUF:
2156 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
2157 			break;
2158 
2159 		case SO_SNDLOWAT:
2160 			*mtod(m, int *) = so->so_snd.sb_lowat;
2161 			break;
2162 
2163 		case SO_RCVLOWAT:
2164 			*mtod(m, int *) = so->so_rcv.sb_lowat;
2165 			break;
2166 
2167 		case SO_SNDTIMEO:
2168 		case SO_RCVTIMEO:
2169 		    {
2170 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2171 			    &so->so_snd : &so->so_rcv);
2172 			struct timeval tv;
2173 			uint64_t nsecs;
2174 
2175 			mtx_enter(&sb->sb_mtx);
2176 			nsecs = sb->sb_timeo_nsecs;
2177 			mtx_leave(&sb->sb_mtx);
2178 
2179 			m->m_len = sizeof(struct timeval);
2180 			memset(&tv, 0, sizeof(tv));
2181 			if (nsecs != INFSLP)
2182 				NSEC_TO_TIMEVAL(nsecs, &tv);
2183 			memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2184 			break;
2185 		    }
2186 
2187 		case SO_RTABLE:
2188 			if (so->so_proto->pr_domain &&
2189 			    so->so_proto->pr_domain->dom_protosw &&
2190 			    so->so_proto->pr_ctloutput) {
2191 				const struct domain *dom =
2192 				    so->so_proto->pr_domain;
2193 
2194 				level = dom->dom_protosw->pr_protocol;
2195 				solock(so);
2196 				error = (*so->so_proto->pr_ctloutput)
2197 				    (PRCO_GETOPT, so, level, optname, m);
2198 				sounlock(so);
2199 				if (error)
2200 					return (error);
2201 				break;
2202 			}
2203 			return (ENOPROTOOPT);
2204 
2205 #ifdef SOCKET_SPLICE
2206 		case SO_SPLICE:
2207 		    {
2208 			off_t len;
2209 
2210 			m->m_len = sizeof(off_t);
2211 			solock_shared(so);
2212 			len = so->so_sp ? so->so_sp->ssp_len : 0;
2213 			sounlock_shared(so);
2214 			memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2215 			break;
2216 		    }
2217 #endif /* SOCKET_SPLICE */
2218 
2219 		case SO_PEERCRED:
2220 			if (so->so_proto->pr_protocol == AF_UNIX) {
2221 				struct unpcb *unp = sotounpcb(so);
2222 
2223 				solock(so);
2224 				if (unp->unp_flags & UNP_FEIDS) {
2225 					m->m_len = sizeof(unp->unp_connid);
2226 					memcpy(mtod(m, caddr_t),
2227 					    &(unp->unp_connid), m->m_len);
2228 					sounlock(so);
2229 					break;
2230 				}
2231 				sounlock(so);
2232 
2233 				return (ENOTCONN);
2234 			}
2235 			return (EOPNOTSUPP);
2236 
2237 		default:
2238 			return (ENOPROTOOPT);
2239 		}
2240 		return (0);
2241 	}
2242 }
2243 
2244 void
2245 sohasoutofband(struct socket *so)
2246 {
2247 	pgsigio(&so->so_sigio, SIGURG, 0);
2248 	knote(&so->so_rcv.sb_klist, 0);
2249 }
2250 
2251 void
2252 sofilt_lock(struct socket *so, struct sockbuf *sb)
2253 {
2254 	switch (so->so_proto->pr_domain->dom_family) {
2255 	case PF_INET:
2256 	case PF_INET6:
2257 		NET_LOCK_SHARED();
2258 		break;
2259 	default:
2260 		rw_enter_write(&so->so_lock);
2261 		break;
2262 	}
2263 
2264 	mtx_enter(&sb->sb_mtx);
2265 }
2266 
2267 void
2268 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2269 {
2270 	mtx_leave(&sb->sb_mtx);
2271 
2272 	switch (so->so_proto->pr_domain->dom_family) {
2273 	case PF_INET:
2274 	case PF_INET6:
2275 		NET_UNLOCK_SHARED();
2276 		break;
2277 	default:
2278 		rw_exit_write(&so->so_lock);
2279 		break;
2280 	}
2281 }
2282 
2283 int
2284 soo_kqfilter(struct file *fp, struct knote *kn)
2285 {
2286 	struct socket *so = kn->kn_fp->f_data;
2287 	struct sockbuf *sb;
2288 
2289 	switch (kn->kn_filter) {
2290 	case EVFILT_READ:
2291 		kn->kn_fop = &soread_filtops;
2292 		sb = &so->so_rcv;
2293 		break;
2294 	case EVFILT_WRITE:
2295 		kn->kn_fop = &sowrite_filtops;
2296 		sb = &so->so_snd;
2297 		break;
2298 	case EVFILT_EXCEPT:
2299 		kn->kn_fop = &soexcept_filtops;
2300 		sb = &so->so_rcv;
2301 		break;
2302 	default:
2303 		return (EINVAL);
2304 	}
2305 
2306 	klist_insert(&sb->sb_klist, kn);
2307 
2308 	return (0);
2309 }
2310 
2311 void
2312 filt_sordetach(struct knote *kn)
2313 {
2314 	struct socket *so = kn->kn_fp->f_data;
2315 
2316 	klist_remove(&so->so_rcv.sb_klist, kn);
2317 }
2318 
2319 int
2320 filt_soread(struct knote *kn, long hint)
2321 {
2322 	struct socket *so = kn->kn_fp->f_data;
2323 	int rv = 0;
2324 
2325 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2326 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2327 		soassertlocked_readonly(so);
2328 
2329 	if (so->so_options & SO_ACCEPTCONN) {
2330 		if (so->so_rcv.sb_flags & SB_MTXLOCK)
2331 			soassertlocked_readonly(so);
2332 
2333 		kn->kn_data = so->so_qlen;
2334 		rv = (kn->kn_data != 0);
2335 
2336 		if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2337 			if (so->so_state & SS_ISDISCONNECTED) {
2338 				kn->kn_flags |= __EV_HUP;
2339 				rv = 1;
2340 			} else {
2341 				rv = soreadable(so);
2342 			}
2343 		}
2344 
2345 		return rv;
2346 	}
2347 
2348 	kn->kn_data = so->so_rcv.sb_cc;
2349 #ifdef SOCKET_SPLICE
2350 	if (isspliced(so)) {
2351 		rv = 0;
2352 	} else
2353 #endif /* SOCKET_SPLICE */
2354 	if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2355 		kn->kn_flags |= EV_EOF;
2356 		if (kn->kn_flags & __EV_POLL) {
2357 			if (so->so_state & SS_ISDISCONNECTED)
2358 				kn->kn_flags |= __EV_HUP;
2359 		}
2360 		kn->kn_fflags = so->so_error;
2361 		rv = 1;
2362 	} else if (so->so_error) {
2363 		rv = 1;
2364 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2365 		rv = (kn->kn_data >= kn->kn_sdata);
2366 	} else {
2367 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2368 	}
2369 
2370 	return rv;
2371 }
2372 
2373 void
2374 filt_sowdetach(struct knote *kn)
2375 {
2376 	struct socket *so = kn->kn_fp->f_data;
2377 
2378 	klist_remove(&so->so_snd.sb_klist, kn);
2379 }
2380 
2381 int
2382 filt_sowrite(struct knote *kn, long hint)
2383 {
2384 	struct socket *so = kn->kn_fp->f_data;
2385 	int rv;
2386 
2387 	MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2388 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
2389 		soassertlocked_readonly(so);
2390 
2391 	kn->kn_data = sbspace(so, &so->so_snd);
2392 	if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2393 		kn->kn_flags |= EV_EOF;
2394 		if (kn->kn_flags & __EV_POLL) {
2395 			if (so->so_state & SS_ISDISCONNECTED)
2396 				kn->kn_flags |= __EV_HUP;
2397 		}
2398 		kn->kn_fflags = so->so_error;
2399 		rv = 1;
2400 	} else if (so->so_error) {
2401 		rv = 1;
2402 	} else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2403 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2404 		rv = 0;
2405 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2406 		rv = (kn->kn_data >= kn->kn_sdata);
2407 	} else {
2408 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2409 	}
2410 
2411 	return (rv);
2412 }
2413 
2414 int
2415 filt_soexcept(struct knote *kn, long hint)
2416 {
2417 	struct socket *so = kn->kn_fp->f_data;
2418 	int rv = 0;
2419 
2420 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2421 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2422 		soassertlocked_readonly(so);
2423 
2424 #ifdef SOCKET_SPLICE
2425 	if (isspliced(so)) {
2426 		rv = 0;
2427 	} else
2428 #endif /* SOCKET_SPLICE */
2429 	if (kn->kn_sfflags & NOTE_OOB) {
2430 		if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2431 			kn->kn_fflags |= NOTE_OOB;
2432 			kn->kn_data -= so->so_oobmark;
2433 			rv = 1;
2434 		}
2435 	}
2436 
2437 	if (kn->kn_flags & __EV_POLL) {
2438 		if (so->so_state & SS_ISDISCONNECTED) {
2439 			kn->kn_flags |= __EV_HUP;
2440 			rv = 1;
2441 		}
2442 	}
2443 
2444 	return rv;
2445 }
2446 
2447 int
2448 filt_sowmodify(struct kevent *kev, struct knote *kn)
2449 {
2450 	struct socket *so = kn->kn_fp->f_data;
2451 	int rv;
2452 
2453 	sofilt_lock(so, &so->so_snd);
2454 	rv = knote_modify(kev, kn);
2455 	sofilt_unlock(so, &so->so_snd);
2456 
2457 	return (rv);
2458 }
2459 
2460 int
2461 filt_sowprocess(struct knote *kn, struct kevent *kev)
2462 {
2463 	struct socket *so = kn->kn_fp->f_data;
2464 	int rv;
2465 
2466 	sofilt_lock(so, &so->so_snd);
2467 	rv = knote_process(kn, kev);
2468 	sofilt_unlock(so, &so->so_snd);
2469 
2470 	return (rv);
2471 }
2472 
2473 int
2474 filt_sormodify(struct kevent *kev, struct knote *kn)
2475 {
2476 	struct socket *so = kn->kn_fp->f_data;
2477 	int rv;
2478 
2479 	sofilt_lock(so, &so->so_rcv);
2480 	rv = knote_modify(kev, kn);
2481 	sofilt_unlock(so, &so->so_rcv);
2482 
2483 	return (rv);
2484 }
2485 
2486 int
2487 filt_sorprocess(struct knote *kn, struct kevent *kev)
2488 {
2489 	struct socket *so = kn->kn_fp->f_data;
2490 	int rv;
2491 
2492 	sofilt_lock(so, &so->so_rcv);
2493 	rv = knote_process(kn, kev);
2494 	sofilt_unlock(so, &so->so_rcv);
2495 
2496 	return (rv);
2497 }
2498 
2499 #ifdef DDB
2500 void
2501 sobuf_print(struct sockbuf *,
2502     int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2503 
2504 void
2505 sobuf_print(struct sockbuf *sb,
2506     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2507 {
2508 	(*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2509 	(*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2510 	(*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2511 	(*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2512 	(*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2513 	(*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2514 	(*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2515 	(*pr)("\tsb_mb: %p\n", sb->sb_mb);
2516 	(*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2517 	(*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2518 	(*pr)("\tsb_sel: ...\n");
2519 	(*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2520 	(*pr)("\tsb_state: %04x\n", sb->sb_state);
2521 	(*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2522 }
2523 
2524 void
2525 so_print(void *v,
2526     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2527 {
2528 	struct socket *so = v;
2529 
2530 	(*pr)("socket %p\n", so);
2531 	(*pr)("so_type: %i\n", so->so_type);
2532 	(*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2533 	(*pr)("so_linger: %i\n", so->so_linger);
2534 	(*pr)("so_state: 0x%04x\n", so->so_state);
2535 	(*pr)("so_pcb: %p\n", so->so_pcb);
2536 	(*pr)("so_proto: %p\n", so->so_proto);
2537 	(*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2538 
2539 	(*pr)("so_head: %p\n", so->so_head);
2540 	(*pr)("so_onq: %p\n", so->so_onq);
2541 	(*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2542 	(*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2543 	(*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2544 	(*pr)("so_q0len: %i\n", so->so_q0len);
2545 	(*pr)("so_qlen: %i\n", so->so_qlen);
2546 	(*pr)("so_qlimit: %i\n", so->so_qlimit);
2547 	(*pr)("so_timeo: %i\n", so->so_timeo);
2548 	(*pr)("so_obmark: %lu\n", so->so_oobmark);
2549 
2550 	(*pr)("so_sp: %p\n", so->so_sp);
2551 	if (so->so_sp != NULL) {
2552 		(*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2553 		(*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2554 		(*pr)("\tssp_len: %lld\n",
2555 		    (unsigned long long)so->so_sp->ssp_len);
2556 		(*pr)("\tssp_max: %lld\n",
2557 		    (unsigned long long)so->so_sp->ssp_max);
2558 		(*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2559 		    so->so_sp->ssp_idletv.tv_usec);
2560 		(*pr)("\tssp_idleto: %spending (@%i)\n",
2561 		    timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2562 		    so->so_sp->ssp_idleto.to_time);
2563 	}
2564 
2565 	(*pr)("so_rcv:\n");
2566 	sobuf_print(&so->so_rcv, pr);
2567 	(*pr)("so_snd:\n");
2568 	sobuf_print(&so->so_snd, pr);
2569 
2570 	(*pr)("so_upcall: %p so_upcallarg: %p\n",
2571 	    so->so_upcall, so->so_upcallarg);
2572 
2573 	(*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2574 	(*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2575 	(*pr)("so_cpid: %d\n", so->so_cpid);
2576 }
2577 #endif
2578