xref: /openbsd/sys/kern/uipc_socket.c (revision 62ce95a7)
1 /*	$OpenBSD: uipc_socket.c,v 1.330 2024/04/15 21:31:29 mvs Exp $	*/
2 /*	$NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54 
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58 
59 void	sbsync(struct sockbuf *, struct mbuf *);
60 
61 int	sosplice(struct socket *, int, off_t, struct timeval *);
62 void	sounsplice(struct socket *, struct socket *, int);
63 void	soidle(void *);
64 void	sotask(void *);
65 void	soreaper(void *);
66 void	soput(void *);
67 int	somove(struct socket *, int);
68 void	sorflush(struct socket *);
69 void	sorflush_locked(struct socket *);
70 
71 void	filt_sordetach(struct knote *kn);
72 int	filt_soread(struct knote *kn, long hint);
73 void	filt_sowdetach(struct knote *kn);
74 int	filt_sowrite(struct knote *kn, long hint);
75 int	filt_soexcept(struct knote *kn, long hint);
76 
77 int	filt_sowmodify(struct kevent *kev, struct knote *kn);
78 int	filt_sowprocess(struct knote *kn, struct kevent *kev);
79 
80 int	filt_sormodify(struct kevent *kev, struct knote *kn);
81 int	filt_sorprocess(struct knote *kn, struct kevent *kev);
82 
83 const struct filterops soread_filtops = {
84 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
85 	.f_attach	= NULL,
86 	.f_detach	= filt_sordetach,
87 	.f_event	= filt_soread,
88 	.f_modify	= filt_sormodify,
89 	.f_process	= filt_sorprocess,
90 };
91 
92 const struct filterops sowrite_filtops = {
93 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
94 	.f_attach	= NULL,
95 	.f_detach	= filt_sowdetach,
96 	.f_event	= filt_sowrite,
97 	.f_modify	= filt_sowmodify,
98 	.f_process	= filt_sowprocess,
99 };
100 
101 const struct filterops soexcept_filtops = {
102 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
103 	.f_attach	= NULL,
104 	.f_detach	= filt_sordetach,
105 	.f_event	= filt_soexcept,
106 	.f_modify	= filt_sormodify,
107 	.f_process	= filt_sorprocess,
108 };
109 
110 #ifndef SOMINCONN
111 #define SOMINCONN 80
112 #endif /* SOMINCONN */
113 
114 int	somaxconn = SOMAXCONN;
115 int	sominconn = SOMINCONN;
116 
117 struct pool socket_pool;
118 #ifdef SOCKET_SPLICE
119 struct pool sosplice_pool;
120 struct taskq *sosplice_taskq;
121 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
122 #endif
123 
124 void
125 soinit(void)
126 {
127 	pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
128 	    "sockpl", NULL);
129 #ifdef SOCKET_SPLICE
130 	pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
131 	    "sosppl", NULL);
132 #endif
133 }
134 
135 struct socket *
136 soalloc(const struct protosw *prp, int wait)
137 {
138 	const struct domain *dp = prp->pr_domain;
139 	struct socket *so;
140 
141 	so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
142 	    PR_ZERO);
143 	if (so == NULL)
144 		return (NULL);
145 	rw_init_flags(&so->so_lock, dp->dom_name, RWL_DUPOK);
146 	refcnt_init(&so->so_refcnt);
147 	rw_init(&so->so_rcv.sb_lock, "sbufrcv");
148 	rw_init(&so->so_snd.sb_lock, "sbufsnd");
149 	mtx_init(&so->so_rcv.sb_mtx, IPL_MPFLOOR);
150 	mtx_init(&so->so_snd.sb_mtx, IPL_MPFLOOR);
151 	klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
152 	klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
153 	sigio_init(&so->so_sigio);
154 	TAILQ_INIT(&so->so_q0);
155 	TAILQ_INIT(&so->so_q);
156 
157 	switch (dp->dom_family) {
158 	case AF_INET:
159 	case AF_INET6:
160 		switch (prp->pr_type) {
161 		case SOCK_DGRAM:
162 		case SOCK_RAW:
163 			so->so_rcv.sb_flags |= SB_MTXLOCK | SB_OWNLOCK;
164 			break;
165 		}
166 		break;
167 	case AF_UNIX:
168 		so->so_rcv.sb_flags |= SB_MTXLOCK;
169 		break;
170 	}
171 
172 	return (so);
173 }
174 
175 /*
176  * Socket operation routines.
177  * These routines are called by the routines in
178  * sys_socket.c or from a system process, and
179  * implement the semantics of socket operations by
180  * switching out to the protocol specific routines.
181  */
182 int
183 socreate(int dom, struct socket **aso, int type, int proto)
184 {
185 	struct proc *p = curproc;		/* XXX */
186 	const struct protosw *prp;
187 	struct socket *so;
188 	int error;
189 
190 	if (proto)
191 		prp = pffindproto(dom, proto, type);
192 	else
193 		prp = pffindtype(dom, type);
194 	if (prp == NULL || prp->pr_usrreqs == NULL)
195 		return (EPROTONOSUPPORT);
196 	if (prp->pr_type != type)
197 		return (EPROTOTYPE);
198 	so = soalloc(prp, M_WAIT);
199 	so->so_type = type;
200 	if (suser(p) == 0)
201 		so->so_state = SS_PRIV;
202 	so->so_ruid = p->p_ucred->cr_ruid;
203 	so->so_euid = p->p_ucred->cr_uid;
204 	so->so_rgid = p->p_ucred->cr_rgid;
205 	so->so_egid = p->p_ucred->cr_gid;
206 	so->so_cpid = p->p_p->ps_pid;
207 	so->so_proto = prp;
208 	so->so_snd.sb_timeo_nsecs = INFSLP;
209 	so->so_rcv.sb_timeo_nsecs = INFSLP;
210 
211 	solock(so);
212 	error = pru_attach(so, proto, M_WAIT);
213 	if (error) {
214 		so->so_state |= SS_NOFDREF;
215 		/* sofree() calls sounlock(). */
216 		sofree(so, 0);
217 		return (error);
218 	}
219 	sounlock(so);
220 	*aso = so;
221 	return (0);
222 }
223 
224 int
225 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
226 {
227 	soassertlocked(so);
228 	return pru_bind(so, nam, p);
229 }
230 
231 int
232 solisten(struct socket *so, int backlog)
233 {
234 	int somaxconn_local = READ_ONCE(somaxconn);
235 	int sominconn_local = READ_ONCE(sominconn);
236 	int error;
237 
238 	switch (so->so_type) {
239 	case SOCK_STREAM:
240 	case SOCK_SEQPACKET:
241 		break;
242 	default:
243 		return (EOPNOTSUPP);
244 	}
245 
246 	soassertlocked(so);
247 
248 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
249 		return (EINVAL);
250 #ifdef SOCKET_SPLICE
251 	if (isspliced(so) || issplicedback(so))
252 		return (EOPNOTSUPP);
253 #endif /* SOCKET_SPLICE */
254 	error = pru_listen(so);
255 	if (error)
256 		return (error);
257 	if (TAILQ_FIRST(&so->so_q) == NULL)
258 		so->so_options |= SO_ACCEPTCONN;
259 	if (backlog < 0 || backlog > somaxconn_local)
260 		backlog = somaxconn_local;
261 	if (backlog < sominconn_local)
262 		backlog = sominconn_local;
263 	so->so_qlimit = backlog;
264 	return (0);
265 }
266 
267 #define SOSP_FREEING_READ	1
268 #define SOSP_FREEING_WRITE	2
269 void
270 sofree(struct socket *so, int keep_lock)
271 {
272 	int persocket = solock_persocket(so);
273 
274 	soassertlocked(so);
275 
276 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
277 		if (!keep_lock)
278 			sounlock(so);
279 		return;
280 	}
281 	if (so->so_head) {
282 		struct socket *head = so->so_head;
283 
284 		/*
285 		 * We must not decommission a socket that's on the accept(2)
286 		 * queue.  If we do, then accept(2) may hang after select(2)
287 		 * indicated that the listening socket was ready.
288 		 */
289 		if (so->so_onq == &head->so_q) {
290 			if (!keep_lock)
291 				sounlock(so);
292 			return;
293 		}
294 
295 		if (persocket) {
296 			/*
297 			 * Concurrent close of `head' could
298 			 * abort `so' due to re-lock.
299 			 */
300 			soref(so);
301 			soref(head);
302 			sounlock(so);
303 			solock(head);
304 			solock(so);
305 
306 			if (so->so_onq != &head->so_q0) {
307 				sounlock(head);
308 				sounlock(so);
309 				sorele(head);
310 				sorele(so);
311 				return;
312 			}
313 
314 			sorele(head);
315 			sorele(so);
316 		}
317 
318 		soqremque(so, 0);
319 
320 		if (persocket)
321 			sounlock(head);
322 	}
323 
324 	if (persocket) {
325 		sounlock(so);
326 		refcnt_finalize(&so->so_refcnt, "sofinal");
327 		solock(so);
328 	}
329 
330 	sigio_free(&so->so_sigio);
331 	klist_free(&so->so_rcv.sb_klist);
332 	klist_free(&so->so_snd.sb_klist);
333 #ifdef SOCKET_SPLICE
334 	if (issplicedback(so)) {
335 		int freeing = SOSP_FREEING_WRITE;
336 
337 		if (so->so_sp->ssp_soback == so)
338 			freeing |= SOSP_FREEING_READ;
339 		sounsplice(so->so_sp->ssp_soback, so, freeing);
340 	}
341 	if (isspliced(so)) {
342 		int freeing = SOSP_FREEING_READ;
343 
344 		if (so == so->so_sp->ssp_socket)
345 			freeing |= SOSP_FREEING_WRITE;
346 		sounsplice(so, so->so_sp->ssp_socket, freeing);
347 	}
348 #endif /* SOCKET_SPLICE */
349 	sbrelease(so, &so->so_snd);
350 
351 	/*
352 	 * Regardless on '_locked' postfix, must release solock() before
353 	 * call sorflush_locked() for SB_OWNLOCK marked socket. Can't
354 	 * release solock() and call sorflush() because solock() release
355 	 * is unwanted for tcp(4) socket.
356 	 */
357 
358 	if (so->so_rcv.sb_flags & SB_OWNLOCK)
359 		sounlock(so);
360 
361 	sorflush_locked(so);
362 
363 	if (!((so->so_rcv.sb_flags & SB_OWNLOCK) || keep_lock))
364 		sounlock(so);
365 
366 #ifdef SOCKET_SPLICE
367 	if (so->so_sp) {
368 		/* Reuse splice idle, sounsplice() has been called before. */
369 		timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so);
370 		timeout_add(&so->so_sp->ssp_idleto, 0);
371 	} else
372 #endif /* SOCKET_SPLICE */
373 	{
374 		pool_put(&socket_pool, so);
375 	}
376 }
377 
378 static inline uint64_t
379 solinger_nsec(struct socket *so)
380 {
381 	if (so->so_linger == 0)
382 		return INFSLP;
383 
384 	return SEC_TO_NSEC(so->so_linger);
385 }
386 
387 /*
388  * Close a socket on last file table reference removal.
389  * Initiate disconnect if connected.
390  * Free socket when disconnect complete.
391  */
392 int
393 soclose(struct socket *so, int flags)
394 {
395 	struct socket *so2;
396 	int error = 0;
397 
398 	solock(so);
399 	/* Revoke async IO early. There is a final revocation in sofree(). */
400 	sigio_free(&so->so_sigio);
401 	if (so->so_state & SS_ISCONNECTED) {
402 		if (so->so_pcb == NULL)
403 			goto discard;
404 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
405 			error = sodisconnect(so);
406 			if (error)
407 				goto drop;
408 		}
409 		if (so->so_options & SO_LINGER) {
410 			if ((so->so_state & SS_ISDISCONNECTING) &&
411 			    (flags & MSG_DONTWAIT))
412 				goto drop;
413 			while (so->so_state & SS_ISCONNECTED) {
414 				error = sosleep_nsec(so, &so->so_timeo,
415 				    PSOCK | PCATCH, "netcls",
416 				    solinger_nsec(so));
417 				if (error)
418 					break;
419 			}
420 		}
421 	}
422 drop:
423 	if (so->so_pcb) {
424 		int error2;
425 		error2 = pru_detach(so);
426 		if (error == 0)
427 			error = error2;
428 	}
429 	if (so->so_options & SO_ACCEPTCONN) {
430 		int persocket = solock_persocket(so);
431 
432 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
433 			if (persocket)
434 				solock(so2);
435 			(void) soqremque(so2, 0);
436 			if (persocket)
437 				sounlock(so);
438 			soabort(so2);
439 			if (persocket)
440 				solock(so);
441 		}
442 		while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
443 			if (persocket)
444 				solock(so2);
445 			(void) soqremque(so2, 1);
446 			if (persocket)
447 				sounlock(so);
448 			soabort(so2);
449 			if (persocket)
450 				solock(so);
451 		}
452 	}
453 discard:
454 	if (so->so_state & SS_NOFDREF)
455 		panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
456 	so->so_state |= SS_NOFDREF;
457 	/* sofree() calls sounlock(). */
458 	sofree(so, 0);
459 	return (error);
460 }
461 
462 void
463 soabort(struct socket *so)
464 {
465 	soassertlocked(so);
466 	pru_abort(so);
467 }
468 
469 int
470 soaccept(struct socket *so, struct mbuf *nam)
471 {
472 	int error = 0;
473 
474 	soassertlocked(so);
475 
476 	if ((so->so_state & SS_NOFDREF) == 0)
477 		panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
478 	so->so_state &= ~SS_NOFDREF;
479 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
480 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
481 		error = pru_accept(so, nam);
482 	else
483 		error = ECONNABORTED;
484 	return (error);
485 }
486 
487 int
488 soconnect(struct socket *so, struct mbuf *nam)
489 {
490 	int error;
491 
492 	soassertlocked(so);
493 
494 	if (so->so_options & SO_ACCEPTCONN)
495 		return (EOPNOTSUPP);
496 	/*
497 	 * If protocol is connection-based, can only connect once.
498 	 * Otherwise, if connected, try to disconnect first.
499 	 * This allows user to disconnect by connecting to, e.g.,
500 	 * a null address.
501 	 */
502 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
503 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
504 	    (error = sodisconnect(so))))
505 		error = EISCONN;
506 	else
507 		error = pru_connect(so, nam);
508 	return (error);
509 }
510 
511 int
512 soconnect2(struct socket *so1, struct socket *so2)
513 {
514 	int persocket, error;
515 
516 	if ((persocket = solock_persocket(so1)))
517 		solock_pair(so1, so2);
518 	else
519 		solock(so1);
520 
521 	error = pru_connect2(so1, so2);
522 
523 	if (persocket)
524 		sounlock(so2);
525 	sounlock(so1);
526 	return (error);
527 }
528 
529 int
530 sodisconnect(struct socket *so)
531 {
532 	int error;
533 
534 	soassertlocked(so);
535 
536 	if ((so->so_state & SS_ISCONNECTED) == 0)
537 		return (ENOTCONN);
538 	if (so->so_state & SS_ISDISCONNECTING)
539 		return (EALREADY);
540 	error = pru_disconnect(so);
541 	return (error);
542 }
543 
544 int m_getuio(struct mbuf **, int, long, struct uio *);
545 
546 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
547 /*
548  * Send on a socket.
549  * If send must go all at once and message is larger than
550  * send buffering, then hard error.
551  * Lock against other senders.
552  * If must go all at once and not enough room now, then
553  * inform user that this would block and do nothing.
554  * Otherwise, if nonblocking, send as much as possible.
555  * The data to be sent is described by "uio" if nonzero,
556  * otherwise by the mbuf chain "top" (which must be null
557  * if uio is not).  Data provided in mbuf chain must be small
558  * enough to send all at once.
559  *
560  * Returns nonzero on error, timeout or signal; callers
561  * must check for short counts if EINTR/ERESTART are returned.
562  * Data and control buffers are freed on return.
563  */
564 int
565 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
566     struct mbuf *control, int flags)
567 {
568 	long space, clen = 0;
569 	size_t resid;
570 	int error;
571 	int atomic = sosendallatonce(so) || top;
572 
573 	if (uio)
574 		resid = uio->uio_resid;
575 	else
576 		resid = top->m_pkthdr.len;
577 	/* MSG_EOR on a SOCK_STREAM socket is invalid. */
578 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
579 		m_freem(top);
580 		m_freem(control);
581 		return (EINVAL);
582 	}
583 	if (uio && uio->uio_procp)
584 		uio->uio_procp->p_ru.ru_msgsnd++;
585 	if (control) {
586 		/*
587 		 * In theory clen should be unsigned (since control->m_len is).
588 		 * However, space must be signed, as it might be less than 0
589 		 * if we over-committed, and we must use a signed comparison
590 		 * of space and clen.
591 		 */
592 		clen = control->m_len;
593 		/* reserve extra space for AF_UNIX's internalize */
594 		if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
595 		    clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
596 		    mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
597 			clen = CMSG_SPACE(
598 			    (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
599 			    (sizeof(struct fdpass) / sizeof(int)));
600 	}
601 
602 #define	snderr(errno)	{ error = errno; goto release; }
603 
604 	solock_shared(so);
605 restart:
606 	if ((error = sblock(so, &so->so_snd, SBLOCKWAIT(flags))) != 0)
607 		goto out;
608 	so->so_snd.sb_state |= SS_ISSENDING;
609 	do {
610 		if (so->so_snd.sb_state & SS_CANTSENDMORE)
611 			snderr(EPIPE);
612 		if (so->so_error) {
613 			error = so->so_error;
614 			so->so_error = 0;
615 			snderr(error);
616 		}
617 		if ((so->so_state & SS_ISCONNECTED) == 0) {
618 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
619 				if (!(resid == 0 && clen != 0))
620 					snderr(ENOTCONN);
621 			} else if (addr == NULL)
622 				snderr(EDESTADDRREQ);
623 		}
624 		space = sbspace(so, &so->so_snd);
625 		if (flags & MSG_OOB)
626 			space += 1024;
627 		if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
628 			if (atomic && resid > so->so_snd.sb_hiwat)
629 				snderr(EMSGSIZE);
630 		} else {
631 			if (clen > so->so_snd.sb_hiwat ||
632 			    (atomic && resid > so->so_snd.sb_hiwat - clen))
633 				snderr(EMSGSIZE);
634 		}
635 		if (space < clen ||
636 		    (space - clen < resid &&
637 		    (atomic || space < so->so_snd.sb_lowat))) {
638 			if (flags & MSG_DONTWAIT)
639 				snderr(EWOULDBLOCK);
640 			sbunlock(so, &so->so_snd);
641 			error = sbwait(so, &so->so_snd);
642 			so->so_snd.sb_state &= ~SS_ISSENDING;
643 			if (error)
644 				goto out;
645 			goto restart;
646 		}
647 		space -= clen;
648 		do {
649 			if (uio == NULL) {
650 				/*
651 				 * Data is prepackaged in "top".
652 				 */
653 				resid = 0;
654 				if (flags & MSG_EOR)
655 					top->m_flags |= M_EOR;
656 			} else {
657 				sounlock_shared(so);
658 				error = m_getuio(&top, atomic, space, uio);
659 				solock_shared(so);
660 				if (error)
661 					goto release;
662 				space -= top->m_pkthdr.len;
663 				resid = uio->uio_resid;
664 				if (flags & MSG_EOR)
665 					top->m_flags |= M_EOR;
666 			}
667 			if (resid == 0)
668 				so->so_snd.sb_state &= ~SS_ISSENDING;
669 			if (top && so->so_options & SO_ZEROIZE)
670 				top->m_flags |= M_ZEROIZE;
671 			if (flags & MSG_OOB)
672 				error = pru_sendoob(so, top, addr, control);
673 			else
674 				error = pru_send(so, top, addr, control);
675 			clen = 0;
676 			control = NULL;
677 			top = NULL;
678 			if (error)
679 				goto release;
680 		} while (resid && space > 0);
681 	} while (resid);
682 
683 release:
684 	so->so_snd.sb_state &= ~SS_ISSENDING;
685 	sbunlock(so, &so->so_snd);
686 out:
687 	sounlock_shared(so);
688 	m_freem(top);
689 	m_freem(control);
690 	return (error);
691 }
692 
693 int
694 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
695 {
696 	struct mbuf *m, *top = NULL;
697 	struct mbuf **nextp = &top;
698 	u_long len, mlen;
699 	size_t resid = uio->uio_resid;
700 	int error;
701 
702 	do {
703 		if (top == NULL) {
704 			MGETHDR(m, M_WAIT, MT_DATA);
705 			mlen = MHLEN;
706 			m->m_pkthdr.len = 0;
707 			m->m_pkthdr.ph_ifidx = 0;
708 		} else {
709 			MGET(m, M_WAIT, MT_DATA);
710 			mlen = MLEN;
711 		}
712 		/* chain mbuf together */
713 		*nextp = m;
714 		nextp = &m->m_next;
715 
716 		resid = ulmin(resid, space);
717 		if (resid >= MINCLSIZE) {
718 			MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
719 			if ((m->m_flags & M_EXT) == 0)
720 				MCLGETL(m, M_NOWAIT, MCLBYTES);
721 			if ((m->m_flags & M_EXT) == 0)
722 				goto nopages;
723 			mlen = m->m_ext.ext_size;
724 			len = ulmin(mlen, resid);
725 			/*
726 			 * For datagram protocols, leave room
727 			 * for protocol headers in first mbuf.
728 			 */
729 			if (atomic && m == top && len < mlen - max_hdr)
730 				m->m_data += max_hdr;
731 		} else {
732 nopages:
733 			len = ulmin(mlen, resid);
734 			/*
735 			 * For datagram protocols, leave room
736 			 * for protocol headers in first mbuf.
737 			 */
738 			if (atomic && m == top && len < mlen - max_hdr)
739 				m_align(m, len);
740 		}
741 
742 		error = uiomove(mtod(m, caddr_t), len, uio);
743 		if (error) {
744 			m_freem(top);
745 			return (error);
746 		}
747 
748 		/* adjust counters */
749 		resid = uio->uio_resid;
750 		space -= len;
751 		m->m_len = len;
752 		top->m_pkthdr.len += len;
753 
754 		/* Is there more space and more data? */
755 	} while (space > 0 && resid > 0);
756 
757 	*mp = top;
758 	return 0;
759 }
760 
761 /*
762  * Following replacement or removal of the first mbuf on the first
763  * mbuf chain of a socket buffer, push necessary state changes back
764  * into the socket buffer so that other consumers see the values
765  * consistently.  'nextrecord' is the callers locally stored value of
766  * the original value of sb->sb_mb->m_nextpkt which must be restored
767  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
768  */
769 void
770 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
771 {
772 
773 	/*
774 	 * First, update for the new value of nextrecord.  If necessary,
775 	 * make it the first record.
776 	 */
777 	if (sb->sb_mb != NULL)
778 		sb->sb_mb->m_nextpkt = nextrecord;
779 	else
780 		sb->sb_mb = nextrecord;
781 
782 	/*
783 	 * Now update any dependent socket buffer fields to reflect
784 	 * the new state.  This is an inline of SB_EMPTY_FIXUP, with
785 	 * the addition of a second clause that takes care of the
786 	 * case where sb_mb has been updated, but remains the last
787 	 * record.
788 	 */
789 	if (sb->sb_mb == NULL) {
790 		sb->sb_mbtail = NULL;
791 		sb->sb_lastrecord = NULL;
792 	} else if (sb->sb_mb->m_nextpkt == NULL)
793 		sb->sb_lastrecord = sb->sb_mb;
794 }
795 
796 /*
797  * Implement receive operations on a socket.
798  * We depend on the way that records are added to the sockbuf
799  * by sbappend*.  In particular, each record (mbufs linked through m_next)
800  * must begin with an address if the protocol so specifies,
801  * followed by an optional mbuf or mbufs containing ancillary data,
802  * and then zero or more mbufs of data.
803  * In order to avoid blocking network for the entire time here, we release
804  * the solock() while doing the actual copy to user space.
805  * Although the sockbuf is locked, new data may still be appended,
806  * and thus we must maintain consistency of the sockbuf during that time.
807  *
808  * The caller may receive the data as a single mbuf chain by supplying
809  * an mbuf **mp0 for use in returning the chain.  The uio is then used
810  * only for the count in uio_resid.
811  */
812 int
813 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
814     struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
815     socklen_t controllen)
816 {
817 	struct mbuf *m, **mp;
818 	struct mbuf *cm;
819 	u_long len, offset, moff;
820 	int flags, error, error2, type, uio_error = 0;
821 	const struct protosw *pr = so->so_proto;
822 	struct mbuf *nextrecord;
823 	size_t resid, orig_resid = uio->uio_resid;
824 	int dosolock = ((so->so_rcv.sb_flags & SB_OWNLOCK) == 0);
825 
826 	mp = mp0;
827 	if (paddr)
828 		*paddr = NULL;
829 	if (controlp)
830 		*controlp = NULL;
831 	if (flagsp)
832 		flags = *flagsp &~ MSG_EOR;
833 	else
834 		flags = 0;
835 	if (flags & MSG_OOB) {
836 		m = m_get(M_WAIT, MT_DATA);
837 		solock(so);
838 		error = pru_rcvoob(so, m, flags & MSG_PEEK);
839 		sounlock(so);
840 		if (error)
841 			goto bad;
842 		do {
843 			error = uiomove(mtod(m, caddr_t),
844 			    ulmin(uio->uio_resid, m->m_len), uio);
845 			m = m_free(m);
846 		} while (uio->uio_resid && error == 0 && m);
847 bad:
848 		m_freem(m);
849 		return (error);
850 	}
851 	if (mp)
852 		*mp = NULL;
853 
854 	if (dosolock)
855 		solock_shared(so);
856 restart:
857 	if ((error = sblock(so, &so->so_rcv, SBLOCKWAIT(flags))) != 0)
858 		goto out;
859 	sb_mtx_lock(&so->so_rcv);
860 
861 	m = so->so_rcv.sb_mb;
862 #ifdef SOCKET_SPLICE
863 	if (isspliced(so))
864 		m = NULL;
865 #endif /* SOCKET_SPLICE */
866 	/*
867 	 * If we have less data than requested, block awaiting more
868 	 * (subject to any timeout) if:
869 	 *   1. the current count is less than the low water mark,
870 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
871 	 *	receive operation at once if we block (resid <= hiwat), or
872 	 *   3. MSG_DONTWAIT is not set.
873 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
874 	 * we have to do the receive in sections, and thus risk returning
875 	 * a short count if a timeout or signal occurs after we start.
876 	 */
877 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
878 	    so->so_rcv.sb_cc < uio->uio_resid) &&
879 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
880 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
881 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
882 #ifdef DIAGNOSTIC
883 		if (m == NULL && so->so_rcv.sb_cc)
884 #ifdef SOCKET_SPLICE
885 		    if (!isspliced(so))
886 #endif /* SOCKET_SPLICE */
887 			panic("receive 1: so %p, so_type %d, sb_cc %lu",
888 			    so, so->so_type, so->so_rcv.sb_cc);
889 #endif
890 		if ((error2 = READ_ONCE(so->so_error))) {
891 			if (m)
892 				goto dontblock;
893 			error = error2;
894 			if ((flags & MSG_PEEK) == 0)
895 				so->so_error = 0;
896 			goto release;
897 		}
898 		if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
899 			if (m)
900 				goto dontblock;
901 			else if (so->so_rcv.sb_cc == 0)
902 				goto release;
903 		}
904 		for (; m; m = m->m_next)
905 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
906 				m = so->so_rcv.sb_mb;
907 				goto dontblock;
908 			}
909 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
910 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
911 			error = ENOTCONN;
912 			goto release;
913 		}
914 		if (uio->uio_resid == 0 && controlp == NULL)
915 			goto release;
916 		if (flags & MSG_DONTWAIT) {
917 			error = EWOULDBLOCK;
918 			goto release;
919 		}
920 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
921 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
922 
923 		if (so->so_rcv.sb_flags & (SB_MTXLOCK | SB_OWNLOCK)) {
924 			sbunlock_locked(so, &so->so_rcv);
925 			if (dosolock)
926 				sounlock_shared(so);
927 			error = sbwait_locked(so, &so->so_rcv);
928 			sb_mtx_unlock(&so->so_rcv);
929 			if (error)
930 				return (error);
931 			if (dosolock)
932 				solock_shared(so);
933 		} else {
934 			sb_mtx_unlock(&so->so_rcv);
935 			sbunlock(so, &so->so_rcv);
936 			error = sbwait(so, &so->so_rcv);
937 			if (error) {
938 				sounlock_shared(so);
939 				return (error);
940 			}
941 		}
942 		goto restart;
943 	}
944 dontblock:
945 	/*
946 	 * On entry here, m points to the first record of the socket buffer.
947 	 * From this point onward, we maintain 'nextrecord' as a cache of the
948 	 * pointer to the next record in the socket buffer.  We must keep the
949 	 * various socket buffer pointers and local stack versions of the
950 	 * pointers in sync, pushing out modifications before operations that
951 	 * may sleep, and re-reading them afterwards.
952 	 *
953 	 * Otherwise, we will race with the network stack appending new data
954 	 * or records onto the socket buffer by using inconsistent/stale
955 	 * versions of the field, possibly resulting in socket buffer
956 	 * corruption.
957 	 */
958 	if (uio->uio_procp)
959 		uio->uio_procp->p_ru.ru_msgrcv++;
960 	KASSERT(m == so->so_rcv.sb_mb);
961 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
962 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
963 	nextrecord = m->m_nextpkt;
964 	if (pr->pr_flags & PR_ADDR) {
965 #ifdef DIAGNOSTIC
966 		if (m->m_type != MT_SONAME)
967 			panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
968 			    so, so->so_type, m, m->m_type);
969 #endif
970 		orig_resid = 0;
971 		if (flags & MSG_PEEK) {
972 			if (paddr)
973 				*paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
974 			m = m->m_next;
975 		} else {
976 			sbfree(so, &so->so_rcv, m);
977 			if (paddr) {
978 				*paddr = m;
979 				so->so_rcv.sb_mb = m->m_next;
980 				m->m_next = NULL;
981 				m = so->so_rcv.sb_mb;
982 			} else {
983 				so->so_rcv.sb_mb = m_free(m);
984 				m = so->so_rcv.sb_mb;
985 			}
986 			sbsync(&so->so_rcv, nextrecord);
987 		}
988 	}
989 	while (m && m->m_type == MT_CONTROL && error == 0) {
990 		int skip = 0;
991 		if (flags & MSG_PEEK) {
992 			if (mtod(m, struct cmsghdr *)->cmsg_type ==
993 			    SCM_RIGHTS) {
994 				/* don't leak internalized SCM_RIGHTS msgs */
995 				skip = 1;
996 			} else if (controlp)
997 				*controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
998 			m = m->m_next;
999 		} else {
1000 			sbfree(so, &so->so_rcv, m);
1001 			so->so_rcv.sb_mb = m->m_next;
1002 			m->m_nextpkt = m->m_next = NULL;
1003 			cm = m;
1004 			m = so->so_rcv.sb_mb;
1005 			sbsync(&so->so_rcv, nextrecord);
1006 			if (controlp) {
1007 				if (pr->pr_domain->dom_externalize) {
1008 					sb_mtx_unlock(&so->so_rcv);
1009 					if (dosolock)
1010 						sounlock_shared(so);
1011 					error =
1012 					    (*pr->pr_domain->dom_externalize)
1013 					    (cm, controllen, flags);
1014 					if (dosolock)
1015 						solock_shared(so);
1016 					sb_mtx_lock(&so->so_rcv);
1017 				}
1018 				*controlp = cm;
1019 			} else {
1020 				/*
1021 				 * Dispose of any SCM_RIGHTS message that went
1022 				 * through the read path rather than recv.
1023 				 */
1024 				if (pr->pr_domain->dom_dispose) {
1025 					sb_mtx_unlock(&so->so_rcv);
1026 					pr->pr_domain->dom_dispose(cm);
1027 					sb_mtx_lock(&so->so_rcv);
1028 				}
1029 				m_free(cm);
1030 			}
1031 		}
1032 		if (m != NULL)
1033 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1034 		else
1035 			nextrecord = so->so_rcv.sb_mb;
1036 		if (controlp && !skip)
1037 			controlp = &(*controlp)->m_next;
1038 		orig_resid = 0;
1039 	}
1040 
1041 	/* If m is non-NULL, we have some data to read. */
1042 	if (m) {
1043 		type = m->m_type;
1044 		if (type == MT_OOBDATA)
1045 			flags |= MSG_OOB;
1046 		if (m->m_flags & M_BCAST)
1047 			flags |= MSG_BCAST;
1048 		if (m->m_flags & M_MCAST)
1049 			flags |= MSG_MCAST;
1050 	}
1051 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1052 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1053 
1054 	moff = 0;
1055 	offset = 0;
1056 	while (m && uio->uio_resid > 0 && error == 0) {
1057 		if (m->m_type == MT_OOBDATA) {
1058 			if (type != MT_OOBDATA)
1059 				break;
1060 		} else if (type == MT_OOBDATA) {
1061 			break;
1062 		} else if (m->m_type == MT_CONTROL) {
1063 			/*
1064 			 * If there is more than one control message in the
1065 			 * stream, we do a short read.  Next can be received
1066 			 * or disposed by another system call.
1067 			 */
1068 			break;
1069 #ifdef DIAGNOSTIC
1070 		} else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1071 			panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1072 			    so, so->so_type, m, m->m_type);
1073 #endif
1074 		}
1075 		so->so_rcv.sb_state &= ~SS_RCVATMARK;
1076 		len = uio->uio_resid;
1077 		if (so->so_oobmark && len > so->so_oobmark - offset)
1078 			len = so->so_oobmark - offset;
1079 		if (len > m->m_len - moff)
1080 			len = m->m_len - moff;
1081 		/*
1082 		 * If mp is set, just pass back the mbufs.
1083 		 * Otherwise copy them out via the uio, then free.
1084 		 * Sockbuf must be consistent here (points to current mbuf,
1085 		 * it points to next record) when we drop priority;
1086 		 * we must note any additions to the sockbuf when we
1087 		 * block interrupts again.
1088 		 */
1089 		if (mp == NULL && uio_error == 0) {
1090 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1091 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1092 			resid = uio->uio_resid;
1093 			sb_mtx_unlock(&so->so_rcv);
1094 			if (dosolock)
1095 				sounlock_shared(so);
1096 			uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1097 			if (dosolock)
1098 				solock_shared(so);
1099 			sb_mtx_lock(&so->so_rcv);
1100 			if (uio_error)
1101 				uio->uio_resid = resid - len;
1102 		} else
1103 			uio->uio_resid -= len;
1104 		if (len == m->m_len - moff) {
1105 			if (m->m_flags & M_EOR)
1106 				flags |= MSG_EOR;
1107 			if (flags & MSG_PEEK) {
1108 				m = m->m_next;
1109 				moff = 0;
1110 				orig_resid = 0;
1111 			} else {
1112 				nextrecord = m->m_nextpkt;
1113 				sbfree(so, &so->so_rcv, m);
1114 				if (mp) {
1115 					*mp = m;
1116 					mp = &m->m_next;
1117 					so->so_rcv.sb_mb = m = m->m_next;
1118 					*mp = NULL;
1119 				} else {
1120 					so->so_rcv.sb_mb = m_free(m);
1121 					m = so->so_rcv.sb_mb;
1122 				}
1123 				/*
1124 				 * If m != NULL, we also know that
1125 				 * so->so_rcv.sb_mb != NULL.
1126 				 */
1127 				KASSERT(so->so_rcv.sb_mb == m);
1128 				if (m) {
1129 					m->m_nextpkt = nextrecord;
1130 					if (nextrecord == NULL)
1131 						so->so_rcv.sb_lastrecord = m;
1132 				} else {
1133 					so->so_rcv.sb_mb = nextrecord;
1134 					SB_EMPTY_FIXUP(&so->so_rcv);
1135 				}
1136 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1137 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1138 			}
1139 		} else {
1140 			if (flags & MSG_PEEK) {
1141 				moff += len;
1142 				orig_resid = 0;
1143 			} else {
1144 				if (mp)
1145 					*mp = m_copym(m, 0, len, M_WAIT);
1146 				m->m_data += len;
1147 				m->m_len -= len;
1148 				so->so_rcv.sb_cc -= len;
1149 				so->so_rcv.sb_datacc -= len;
1150 			}
1151 		}
1152 		if (so->so_oobmark) {
1153 			if ((flags & MSG_PEEK) == 0) {
1154 				so->so_oobmark -= len;
1155 				if (so->so_oobmark == 0) {
1156 					so->so_rcv.sb_state |= SS_RCVATMARK;
1157 					break;
1158 				}
1159 			} else {
1160 				offset += len;
1161 				if (offset == so->so_oobmark)
1162 					break;
1163 			}
1164 		}
1165 		if (flags & MSG_EOR)
1166 			break;
1167 		/*
1168 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1169 		 * we must not quit until "uio->uio_resid == 0" or an error
1170 		 * termination.  If a signal/timeout occurs, return
1171 		 * with a short count but without error.
1172 		 * Keep sockbuf locked against other readers.
1173 		 */
1174 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1175 		    !sosendallatonce(so) && !nextrecord) {
1176 			if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1177 			    so->so_error)
1178 				break;
1179 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1180 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1181 			if (dosolock) {
1182 				sb_mtx_unlock(&so->so_rcv);
1183 				error = sbwait(so, &so->so_rcv);
1184 				if (error) {
1185 					sbunlock(so, &so->so_rcv);
1186 					sounlock_shared(so);
1187 					return (0);
1188 				}
1189 				sb_mtx_lock(&so->so_rcv);
1190 			} else {
1191 				if (sbwait_locked(so, &so->so_rcv)) {
1192 					sb_mtx_unlock(&so->so_rcv);
1193 					sbunlock(so, &so->so_rcv);
1194 					return (0);
1195 				}
1196 			}
1197 			if ((m = so->so_rcv.sb_mb) != NULL)
1198 				nextrecord = m->m_nextpkt;
1199 		}
1200 	}
1201 
1202 	if (m && pr->pr_flags & PR_ATOMIC) {
1203 		flags |= MSG_TRUNC;
1204 		if ((flags & MSG_PEEK) == 0)
1205 			(void) sbdroprecord(so, &so->so_rcv);
1206 	}
1207 	if ((flags & MSG_PEEK) == 0) {
1208 		if (m == NULL) {
1209 			/*
1210 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1211 			 * part makes sure sb_lastrecord is up-to-date if
1212 			 * there is still data in the socket buffer.
1213 			 */
1214 			so->so_rcv.sb_mb = nextrecord;
1215 			if (so->so_rcv.sb_mb == NULL) {
1216 				so->so_rcv.sb_mbtail = NULL;
1217 				so->so_rcv.sb_lastrecord = NULL;
1218 			} else if (nextrecord->m_nextpkt == NULL)
1219 				so->so_rcv.sb_lastrecord = nextrecord;
1220 		}
1221 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1222 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1223 		if (pr->pr_flags & PR_WANTRCVD) {
1224 			sb_mtx_unlock(&so->so_rcv);
1225 			pru_rcvd(so);
1226 			sb_mtx_lock(&so->so_rcv);
1227 		}
1228 	}
1229 	if (orig_resid == uio->uio_resid && orig_resid &&
1230 	    (flags & MSG_EOR) == 0 &&
1231 	    (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1232 		sb_mtx_unlock(&so->so_rcv);
1233 		sbunlock(so, &so->so_rcv);
1234 		goto restart;
1235 	}
1236 
1237 	if (uio_error)
1238 		error = uio_error;
1239 
1240 	if (flagsp)
1241 		*flagsp |= flags;
1242 release:
1243 	sb_mtx_unlock(&so->so_rcv);
1244 	sbunlock(so, &so->so_rcv);
1245 out:
1246 	if (dosolock)
1247 		sounlock_shared(so);
1248 	return (error);
1249 }
1250 
1251 int
1252 soshutdown(struct socket *so, int how)
1253 {
1254 	int error = 0;
1255 
1256 	switch (how) {
1257 	case SHUT_RD:
1258 		sorflush(so);
1259 		break;
1260 	case SHUT_RDWR:
1261 		sorflush(so);
1262 		/* FALLTHROUGH */
1263 	case SHUT_WR:
1264 		solock(so);
1265 		error = pru_shutdown(so);
1266 		sounlock(so);
1267 		break;
1268 	default:
1269 		error = EINVAL;
1270 		break;
1271 	}
1272 
1273 	return (error);
1274 }
1275 
1276 void
1277 sorflush_locked(struct socket *so)
1278 {
1279 	struct sockbuf *sb = &so->so_rcv;
1280 	struct mbuf *m;
1281 	const struct protosw *pr = so->so_proto;
1282 	int error;
1283 
1284 	if ((sb->sb_flags & SB_OWNLOCK) == 0)
1285 		soassertlocked(so);
1286 
1287 	error = sblock(so, sb, SBL_WAIT | SBL_NOINTR);
1288 	/* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1289 	KASSERT(error == 0);
1290 
1291 	if (sb->sb_flags & SB_OWNLOCK)
1292 		solock(so);
1293 	socantrcvmore(so);
1294 	if (sb->sb_flags & SB_OWNLOCK)
1295 		sounlock(so);
1296 
1297 	mtx_enter(&sb->sb_mtx);
1298 	m = sb->sb_mb;
1299 	memset(&sb->sb_startzero, 0,
1300 	     (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1301 	sb->sb_timeo_nsecs = INFSLP;
1302 	mtx_leave(&sb->sb_mtx);
1303 	sbunlock(so, sb);
1304 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1305 		(*pr->pr_domain->dom_dispose)(m);
1306 	m_purge(m);
1307 }
1308 
1309 void
1310 sorflush(struct socket *so)
1311 {
1312 	if ((so->so_rcv.sb_flags & SB_OWNLOCK) == 0)
1313 		solock_shared(so);
1314 	sorflush_locked(so);
1315 	if ((so->so_rcv.sb_flags & SB_OWNLOCK) == 0)
1316 		sounlock_shared(so);
1317 }
1318 
1319 #ifdef SOCKET_SPLICE
1320 
1321 #define so_splicelen	so_sp->ssp_len
1322 #define so_splicemax	so_sp->ssp_max
1323 #define so_idletv	so_sp->ssp_idletv
1324 #define so_idleto	so_sp->ssp_idleto
1325 #define so_splicetask	so_sp->ssp_task
1326 
1327 int
1328 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1329 {
1330 	struct file	*fp = NULL;
1331 	struct socket	*sosp;
1332 	struct taskq	*tq;
1333 	int		 error = 0;
1334 
1335 	if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1336 		return (EPROTONOSUPPORT);
1337 	if (max && max < 0)
1338 		return (EINVAL);
1339 	if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1340 		return (EINVAL);
1341 
1342 	if (sosplice_taskq == NULL) {
1343 		rw_enter_write(&sosplice_lock);
1344 		if (sosplice_taskq == NULL) {
1345 			tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1346 			    TASKQ_MPSAFE);
1347 			if (tq == NULL) {
1348 				rw_exit_write(&sosplice_lock);
1349 				return (ENOMEM);
1350 			}
1351 			/* Ensure the taskq is fully visible to other CPUs. */
1352 			membar_producer();
1353 			sosplice_taskq = tq;
1354 		}
1355 		rw_exit_write(&sosplice_lock);
1356 	} else {
1357 		/* Ensure the taskq is fully visible on this CPU. */
1358 		membar_consumer();
1359 	}
1360 
1361 	if (so->so_rcv.sb_flags & SB_OWNLOCK) {
1362 		if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0)
1363 			return (error);
1364 		solock(so);
1365 	} else {
1366 		solock(so);
1367 		if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0) {
1368 			sounlock(so);
1369 			return (error);
1370 		}
1371 	}
1372 
1373 	if (so->so_options & SO_ACCEPTCONN) {
1374 		error = EOPNOTSUPP;
1375 		goto out;
1376 	}
1377 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1378 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1379 		error = ENOTCONN;
1380 		goto out;
1381 	}
1382 	if (so->so_sp == NULL)
1383 		so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1384 
1385 	/* If no fd is given, unsplice by removing existing link. */
1386 	if (fd < 0) {
1387 		if (so->so_sp->ssp_socket)
1388 			sounsplice(so, so->so_sp->ssp_socket, 0);
1389 		goto out;
1390 	}
1391 
1392 	/* Find sosp, the drain socket where data will be spliced into. */
1393 	if ((error = getsock(curproc, fd, &fp)) != 0)
1394 		goto out;
1395 	sosp = fp->f_data;
1396 	if (sosp->so_proto->pr_usrreqs->pru_send !=
1397 	    so->so_proto->pr_usrreqs->pru_send) {
1398 		error = EPROTONOSUPPORT;
1399 		goto out;
1400 	}
1401 	if (sosp->so_sp == NULL)
1402 		sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1403 
1404 	if ((error = sblock(so, &sosp->so_snd, SBL_WAIT)) != 0) {
1405 		goto out;
1406 	}
1407 
1408 	if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1409 		error = EBUSY;
1410 		goto release;
1411 	}
1412 	if (sosp->so_options & SO_ACCEPTCONN) {
1413 		error = EOPNOTSUPP;
1414 		goto release;
1415 	}
1416 	if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1417 		error = ENOTCONN;
1418 		goto release;
1419 	}
1420 
1421 	/* Splice so and sosp together. */
1422 	mtx_enter(&so->so_rcv.sb_mtx);
1423 	so->so_sp->ssp_socket = sosp;
1424 	sosp->so_sp->ssp_soback = so;
1425 	mtx_leave(&so->so_rcv.sb_mtx);
1426 	so->so_splicelen = 0;
1427 	so->so_splicemax = max;
1428 	if (tv)
1429 		so->so_idletv = *tv;
1430 	else
1431 		timerclear(&so->so_idletv);
1432 	timeout_set_proc(&so->so_idleto, soidle, so);
1433 	task_set(&so->so_splicetask, sotask, so);
1434 
1435 	/*
1436 	 * To prevent softnet interrupt from calling somove() while
1437 	 * we sleep, the socket buffers are not marked as spliced yet.
1438 	 */
1439 	if (somove(so, M_WAIT)) {
1440 		mtx_enter(&so->so_rcv.sb_mtx);
1441 		so->so_rcv.sb_flags |= SB_SPLICE;
1442 		mtx_leave(&so->so_rcv.sb_mtx);
1443 		sosp->so_snd.sb_flags |= SB_SPLICE;
1444 	}
1445 
1446  release:
1447 	sbunlock(sosp, &sosp->so_snd);
1448  out:
1449 	if (so->so_rcv.sb_flags & SB_OWNLOCK) {
1450 		sounlock(so);
1451 		sbunlock(so, &so->so_rcv);
1452 	} else {
1453 		sbunlock(so, &so->so_rcv);
1454 		sounlock(so);
1455 	}
1456 
1457 	if (fp)
1458 		FRELE(fp, curproc);
1459 
1460 	return (error);
1461 }
1462 
1463 void
1464 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1465 {
1466 	soassertlocked(so);
1467 
1468 	task_del(sosplice_taskq, &so->so_splicetask);
1469 	timeout_del(&so->so_idleto);
1470 	sosp->so_snd.sb_flags &= ~SB_SPLICE;
1471 
1472 	mtx_enter(&so->so_rcv.sb_mtx);
1473 	so->so_rcv.sb_flags &= ~SB_SPLICE;
1474 	so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1475 	mtx_leave(&so->so_rcv.sb_mtx);
1476 
1477 	/* Do not wakeup a socket that is about to be freed. */
1478 	if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so))
1479 		sorwakeup(so);
1480 	if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp))
1481 		sowwakeup(sosp);
1482 }
1483 
1484 void
1485 soidle(void *arg)
1486 {
1487 	struct socket *so = arg;
1488 
1489 	solock(so);
1490 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1491 		so->so_error = ETIMEDOUT;
1492 		sounsplice(so, so->so_sp->ssp_socket, 0);
1493 	}
1494 	sounlock(so);
1495 }
1496 
1497 void
1498 sotask(void *arg)
1499 {
1500 	struct socket *so = arg;
1501 
1502 	solock(so);
1503 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1504 		/*
1505 		 * We may not sleep here as sofree() and unsplice() may be
1506 		 * called from softnet interrupt context.  This would remove
1507 		 * the socket during somove().
1508 		 */
1509 		somove(so, M_DONTWAIT);
1510 	}
1511 	sounlock(so);
1512 
1513 	/* Avoid user land starvation. */
1514 	yield();
1515 }
1516 
1517 /*
1518  * The socket splicing task or idle timeout may sleep while grabbing the net
1519  * lock.  As sofree() can be called anytime, sotask() or soidle() could access
1520  * the socket memory of a freed socket after wakeup.  So delay the pool_put()
1521  * after all pending socket splicing tasks or timeouts have finished.  Do this
1522  * by scheduling it on the same threads.
1523  */
1524 void
1525 soreaper(void *arg)
1526 {
1527 	struct socket *so = arg;
1528 
1529 	/* Reuse splice task, sounsplice() has been called before. */
1530 	task_set(&so->so_sp->ssp_task, soput, so);
1531 	task_add(sosplice_taskq, &so->so_sp->ssp_task);
1532 }
1533 
1534 void
1535 soput(void *arg)
1536 {
1537 	struct socket *so = arg;
1538 
1539 	pool_put(&sosplice_pool, so->so_sp);
1540 	pool_put(&socket_pool, so);
1541 }
1542 
1543 /*
1544  * Move data from receive buffer of spliced source socket to send
1545  * buffer of drain socket.  Try to move as much as possible in one
1546  * big chunk.  It is a TCP only implementation.
1547  * Return value 0 means splicing has been finished, 1 continue.
1548  */
1549 int
1550 somove(struct socket *so, int wait)
1551 {
1552 	struct socket	*sosp = so->so_sp->ssp_socket;
1553 	struct mbuf	*m, **mp, *nextrecord;
1554 	u_long		 len, off, oobmark;
1555 	long		 space;
1556 	int		 error = 0, maxreached = 0;
1557 	unsigned int	 rcvstate;
1558 
1559 	soassertlocked(so);
1560 
1561  nextpkt:
1562 	if (so->so_error) {
1563 		error = so->so_error;
1564 		goto release;
1565 	}
1566 	if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1567 		error = EPIPE;
1568 		goto release;
1569 	}
1570 	if (sosp->so_error && sosp->so_error != ETIMEDOUT &&
1571 	    sosp->so_error != EFBIG && sosp->so_error != ELOOP) {
1572 		error = sosp->so_error;
1573 		goto release;
1574 	}
1575 	if ((sosp->so_state & SS_ISCONNECTED) == 0)
1576 		goto release;
1577 
1578 	/* Calculate how many bytes can be copied now. */
1579 	len = so->so_rcv.sb_datacc;
1580 	if (so->so_splicemax) {
1581 		KASSERT(so->so_splicelen < so->so_splicemax);
1582 		if (so->so_splicemax <= so->so_splicelen + len) {
1583 			len = so->so_splicemax - so->so_splicelen;
1584 			maxreached = 1;
1585 		}
1586 	}
1587 	space = sbspace(sosp, &sosp->so_snd);
1588 	if (so->so_oobmark && so->so_oobmark < len &&
1589 	    so->so_oobmark < space + 1024)
1590 		space += 1024;
1591 	if (space <= 0) {
1592 		maxreached = 0;
1593 		goto release;
1594 	}
1595 	if (space < len) {
1596 		maxreached = 0;
1597 		if (space < sosp->so_snd.sb_lowat)
1598 			goto release;
1599 		len = space;
1600 	}
1601 	sosp->so_snd.sb_state |= SS_ISSENDING;
1602 
1603 	SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1604 	SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1605 	m = so->so_rcv.sb_mb;
1606 	if (m == NULL)
1607 		goto release;
1608 	nextrecord = m->m_nextpkt;
1609 
1610 	/* Drop address and control information not used with splicing. */
1611 	if (so->so_proto->pr_flags & PR_ADDR) {
1612 #ifdef DIAGNOSTIC
1613 		if (m->m_type != MT_SONAME)
1614 			panic("somove soname: so %p, so_type %d, m %p, "
1615 			    "m_type %d", so, so->so_type, m, m->m_type);
1616 #endif
1617 		m = m->m_next;
1618 	}
1619 	while (m && m->m_type == MT_CONTROL)
1620 		m = m->m_next;
1621 	if (m == NULL) {
1622 		sbdroprecord(so, &so->so_rcv);
1623 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1624 			pru_rcvd(so);
1625 		goto nextpkt;
1626 	}
1627 
1628 	/*
1629 	 * By splicing sockets connected to localhost, userland might create a
1630 	 * loop.  Dissolve splicing with error if loop is detected by counter.
1631 	 *
1632 	 * If we deal with looped broadcast/multicast packet we bail out with
1633 	 * no error to suppress splice termination.
1634 	 */
1635 	if ((m->m_flags & M_PKTHDR) &&
1636 	    ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1637 	    ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1638 		error = ELOOP;
1639 		goto release;
1640 	}
1641 
1642 	if (so->so_proto->pr_flags & PR_ATOMIC) {
1643 		if ((m->m_flags & M_PKTHDR) == 0)
1644 			panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1645 			    "m_type %d", so, so->so_type, m, m->m_type);
1646 		if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1647 			error = EMSGSIZE;
1648 			goto release;
1649 		}
1650 		if (len < m->m_pkthdr.len)
1651 			goto release;
1652 		if (m->m_pkthdr.len < len) {
1653 			maxreached = 0;
1654 			len = m->m_pkthdr.len;
1655 		}
1656 		/*
1657 		 * Throw away the name mbuf after it has been assured
1658 		 * that the whole first record can be processed.
1659 		 */
1660 		m = so->so_rcv.sb_mb;
1661 		sbfree(so, &so->so_rcv, m);
1662 		so->so_rcv.sb_mb = m_free(m);
1663 		sbsync(&so->so_rcv, nextrecord);
1664 	}
1665 	/*
1666 	 * Throw away the control mbufs after it has been assured
1667 	 * that the whole first record can be processed.
1668 	 */
1669 	m = so->so_rcv.sb_mb;
1670 	while (m && m->m_type == MT_CONTROL) {
1671 		sbfree(so, &so->so_rcv, m);
1672 		so->so_rcv.sb_mb = m_free(m);
1673 		m = so->so_rcv.sb_mb;
1674 		sbsync(&so->so_rcv, nextrecord);
1675 	}
1676 
1677 	SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1678 	SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1679 
1680 	/* Take at most len mbufs out of receive buffer. */
1681 	for (off = 0, mp = &m; off <= len && *mp;
1682 	    off += (*mp)->m_len, mp = &(*mp)->m_next) {
1683 		u_long size = len - off;
1684 
1685 #ifdef DIAGNOSTIC
1686 		if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1687 			panic("somove type: so %p, so_type %d, m %p, "
1688 			    "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1689 #endif
1690 		if ((*mp)->m_len > size) {
1691 			/*
1692 			 * Move only a partial mbuf at maximum splice length or
1693 			 * if the drain buffer is too small for this large mbuf.
1694 			 */
1695 			if (!maxreached && so->so_snd.sb_datacc > 0) {
1696 				len -= size;
1697 				break;
1698 			}
1699 			*mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1700 			if (*mp == NULL) {
1701 				len -= size;
1702 				break;
1703 			}
1704 			so->so_rcv.sb_mb->m_data += size;
1705 			so->so_rcv.sb_mb->m_len -= size;
1706 			so->so_rcv.sb_cc -= size;
1707 			so->so_rcv.sb_datacc -= size;
1708 		} else {
1709 			*mp = so->so_rcv.sb_mb;
1710 			sbfree(so, &so->so_rcv, *mp);
1711 			so->so_rcv.sb_mb = (*mp)->m_next;
1712 			sbsync(&so->so_rcv, nextrecord);
1713 		}
1714 	}
1715 	*mp = NULL;
1716 
1717 	SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1718 	SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1719 	SBCHECK(so, &so->so_rcv);
1720 	if (m == NULL)
1721 		goto release;
1722 	m->m_nextpkt = NULL;
1723 	if (m->m_flags & M_PKTHDR) {
1724 		m_resethdr(m);
1725 		m->m_pkthdr.len = len;
1726 	}
1727 
1728 	/* Send window update to source peer as receive buffer has changed. */
1729 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1730 		pru_rcvd(so);
1731 
1732 	/* Receive buffer did shrink by len bytes, adjust oob. */
1733 	mtx_enter(&so->so_rcv.sb_mtx);
1734 	rcvstate = so->so_rcv.sb_state;
1735 	so->so_rcv.sb_state &= ~SS_RCVATMARK;
1736 	oobmark = so->so_oobmark;
1737 	so->so_oobmark = oobmark > len ? oobmark - len : 0;
1738 	if (oobmark) {
1739 		if (oobmark == len)
1740 			so->so_rcv.sb_state |= SS_RCVATMARK;
1741 		if (oobmark >= len)
1742 			oobmark = 0;
1743 	}
1744 	mtx_leave(&so->so_rcv.sb_mtx);
1745 
1746 	/*
1747 	 * Handle oob data.  If any malloc fails, ignore error.
1748 	 * TCP urgent data is not very reliable anyway.
1749 	 */
1750 	while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1751 	    (so->so_options & SO_OOBINLINE)) {
1752 		struct mbuf *o = NULL;
1753 
1754 		if (rcvstate & SS_RCVATMARK) {
1755 			o = m_get(wait, MT_DATA);
1756 			rcvstate &= ~SS_RCVATMARK;
1757 		} else if (oobmark) {
1758 			o = m_split(m, oobmark, wait);
1759 			if (o) {
1760 				error = pru_send(sosp, m, NULL, NULL);
1761 				if (error) {
1762 					if (sosp->so_snd.sb_state &
1763 					    SS_CANTSENDMORE)
1764 						error = EPIPE;
1765 					m_freem(o);
1766 					goto release;
1767 				}
1768 				len -= oobmark;
1769 				so->so_splicelen += oobmark;
1770 				m = o;
1771 				o = m_get(wait, MT_DATA);
1772 			}
1773 			oobmark = 0;
1774 		}
1775 		if (o) {
1776 			o->m_len = 1;
1777 			*mtod(o, caddr_t) = *mtod(m, caddr_t);
1778 			error = pru_sendoob(sosp, o, NULL, NULL);
1779 			if (error) {
1780 				if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1781 					error = EPIPE;
1782 				m_freem(m);
1783 				goto release;
1784 			}
1785 			len -= 1;
1786 			so->so_splicelen += 1;
1787 			if (oobmark) {
1788 				oobmark -= 1;
1789 				if (oobmark == 0)
1790 					rcvstate |= SS_RCVATMARK;
1791 			}
1792 			m_adj(m, 1);
1793 		}
1794 	}
1795 
1796 	/* Append all remaining data to drain socket. */
1797 	if (so->so_rcv.sb_cc == 0 || maxreached)
1798 		sosp->so_snd.sb_state &= ~SS_ISSENDING;
1799 	error = pru_send(sosp, m, NULL, NULL);
1800 	if (error) {
1801 		if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1802 			error = EPIPE;
1803 		goto release;
1804 	}
1805 	so->so_splicelen += len;
1806 
1807 	/* Move several packets if possible. */
1808 	if (!maxreached && nextrecord)
1809 		goto nextpkt;
1810 
1811  release:
1812 	sosp->so_snd.sb_state &= ~SS_ISSENDING;
1813 	if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1814 		error = EFBIG;
1815 	if (error)
1816 		so->so_error = error;
1817 	if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1818 	    so->so_rcv.sb_cc == 0) ||
1819 	    (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1820 	    maxreached || error) {
1821 		sounsplice(so, sosp, 0);
1822 		return (0);
1823 	}
1824 	if (timerisset(&so->so_idletv))
1825 		timeout_add_tv(&so->so_idleto, &so->so_idletv);
1826 	return (1);
1827 }
1828 
1829 #endif /* SOCKET_SPLICE */
1830 
1831 void
1832 sorwakeup(struct socket *so)
1833 {
1834 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1835 		soassertlocked_readonly(so);
1836 
1837 #ifdef SOCKET_SPLICE
1838 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1839 		/*
1840 		 * TCP has a sendbuffer that can handle multiple packets
1841 		 * at once.  So queue the stream a bit to accumulate data.
1842 		 * The sosplice thread will call somove() later and send
1843 		 * the packets calling tcp_output() only once.
1844 		 * In the UDP case, send out the packets immediately.
1845 		 * Using a thread would make things slower.
1846 		 */
1847 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1848 			task_add(sosplice_taskq, &so->so_splicetask);
1849 		else
1850 			somove(so, M_DONTWAIT);
1851 	}
1852 	if (isspliced(so))
1853 		return;
1854 #endif
1855 	sowakeup(so, &so->so_rcv);
1856 	if (so->so_upcall)
1857 		(*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1858 }
1859 
1860 void
1861 sowwakeup(struct socket *so)
1862 {
1863 	soassertlocked_readonly(so);
1864 
1865 #ifdef SOCKET_SPLICE
1866 	if (so->so_snd.sb_flags & SB_SPLICE)
1867 		task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask);
1868 	if (issplicedback(so))
1869 		return;
1870 #endif
1871 	sowakeup(so, &so->so_snd);
1872 }
1873 
1874 int
1875 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1876 {
1877 	int error = 0;
1878 
1879 	if (level != SOL_SOCKET) {
1880 		if (so->so_proto->pr_ctloutput) {
1881 			solock(so);
1882 			error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
1883 			    level, optname, m);
1884 			sounlock(so);
1885 			return (error);
1886 		}
1887 		error = ENOPROTOOPT;
1888 	} else {
1889 		switch (optname) {
1890 
1891 		case SO_LINGER:
1892 			if (m == NULL || m->m_len != sizeof (struct linger) ||
1893 			    mtod(m, struct linger *)->l_linger < 0 ||
1894 			    mtod(m, struct linger *)->l_linger > SHRT_MAX)
1895 				return (EINVAL);
1896 
1897 			solock(so);
1898 			so->so_linger = mtod(m, struct linger *)->l_linger;
1899 			if (*mtod(m, int *))
1900 				so->so_options |= optname;
1901 			else
1902 				so->so_options &= ~optname;
1903 			sounlock(so);
1904 
1905 			break;
1906 		case SO_BINDANY:
1907 			if ((error = suser(curproc)) != 0)	/* XXX */
1908 				return (error);
1909 			/* FALLTHROUGH */
1910 
1911 		case SO_DEBUG:
1912 		case SO_KEEPALIVE:
1913 		case SO_USELOOPBACK:
1914 		case SO_BROADCAST:
1915 		case SO_REUSEADDR:
1916 		case SO_REUSEPORT:
1917 		case SO_OOBINLINE:
1918 		case SO_TIMESTAMP:
1919 		case SO_ZEROIZE:
1920 			if (m == NULL || m->m_len < sizeof (int))
1921 				return (EINVAL);
1922 
1923 			solock(so);
1924 			if (*mtod(m, int *))
1925 				so->so_options |= optname;
1926 			else
1927 				so->so_options &= ~optname;
1928 			sounlock(so);
1929 
1930 			break;
1931 		case SO_DONTROUTE:
1932 			if (m == NULL || m->m_len < sizeof (int))
1933 				return (EINVAL);
1934 			if (*mtod(m, int *))
1935 				error = EOPNOTSUPP;
1936 			break;
1937 
1938 		case SO_SNDBUF:
1939 		case SO_RCVBUF:
1940 		case SO_SNDLOWAT:
1941 		case SO_RCVLOWAT:
1942 		    {
1943 			struct sockbuf *sb = (optname == SO_SNDBUF ||
1944 			    optname == SO_SNDLOWAT ?
1945 			    &so->so_snd : &so->so_rcv);
1946 			u_long cnt;
1947 
1948 			if (m == NULL || m->m_len < sizeof (int))
1949 				return (EINVAL);
1950 			cnt = *mtod(m, int *);
1951 			if ((long)cnt <= 0)
1952 				cnt = 1;
1953 
1954 			if (((sb->sb_flags & SB_OWNLOCK) == 0))
1955 				solock(so);
1956 			mtx_enter(&sb->sb_mtx);
1957 
1958 			switch (optname) {
1959 			case SO_SNDBUF:
1960 			case SO_RCVBUF:
1961 				if (sb->sb_state &
1962 				    (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
1963 					error = EINVAL;
1964 					break;
1965 				}
1966 				if (sbcheckreserve(cnt, sb->sb_wat) ||
1967 				    sbreserve(so, sb, cnt)) {
1968 					error = ENOBUFS;
1969 					break;
1970 				}
1971 				sb->sb_wat = cnt;
1972 				break;
1973 			case SO_SNDLOWAT:
1974 			case SO_RCVLOWAT:
1975 				sb->sb_lowat = (cnt > sb->sb_hiwat) ?
1976 				    sb->sb_hiwat : cnt;
1977 				break;
1978 			}
1979 
1980 			mtx_leave(&sb->sb_mtx);
1981 			if (((sb->sb_flags & SB_OWNLOCK) == 0))
1982 				sounlock(so);
1983 
1984 			break;
1985 		    }
1986 
1987 		case SO_SNDTIMEO:
1988 		case SO_RCVTIMEO:
1989 		    {
1990 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
1991 			    &so->so_snd : &so->so_rcv);
1992 			struct timeval tv;
1993 			uint64_t nsecs;
1994 
1995 			if (m == NULL || m->m_len < sizeof (tv))
1996 				return (EINVAL);
1997 			memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
1998 			if (!timerisvalid(&tv))
1999 				return (EINVAL);
2000 			nsecs = TIMEVAL_TO_NSEC(&tv);
2001 			if (nsecs == UINT64_MAX)
2002 				return (EDOM);
2003 			if (nsecs == 0)
2004 				nsecs = INFSLP;
2005 
2006 			mtx_enter(&sb->sb_mtx);
2007 			sb->sb_timeo_nsecs = nsecs;
2008 			mtx_leave(&sb->sb_mtx);
2009 			break;
2010 		    }
2011 
2012 		case SO_RTABLE:
2013 			if (so->so_proto->pr_domain &&
2014 			    so->so_proto->pr_domain->dom_protosw &&
2015 			    so->so_proto->pr_ctloutput) {
2016 				const struct domain *dom =
2017 				    so->so_proto->pr_domain;
2018 
2019 				level = dom->dom_protosw->pr_protocol;
2020 				solock(so);
2021 				error = (*so->so_proto->pr_ctloutput)
2022 				    (PRCO_SETOPT, so, level, optname, m);
2023 				sounlock(so);
2024 			} else
2025 				error = ENOPROTOOPT;
2026 			break;
2027 #ifdef SOCKET_SPLICE
2028 		case SO_SPLICE:
2029 			if (m == NULL) {
2030 				error = sosplice(so, -1, 0, NULL);
2031 			} else if (m->m_len < sizeof(int)) {
2032 				error = EINVAL;
2033 			} else if (m->m_len < sizeof(struct splice)) {
2034 				error = sosplice(so, *mtod(m, int *), 0, NULL);
2035 			} else {
2036 				error = sosplice(so,
2037 				    mtod(m, struct splice *)->sp_fd,
2038 				    mtod(m, struct splice *)->sp_max,
2039 				   &mtod(m, struct splice *)->sp_idle);
2040 			}
2041 			break;
2042 #endif /* SOCKET_SPLICE */
2043 
2044 		default:
2045 			error = ENOPROTOOPT;
2046 			break;
2047 		}
2048 	}
2049 
2050 	return (error);
2051 }
2052 
2053 int
2054 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2055 {
2056 	int error = 0;
2057 
2058 	if (level != SOL_SOCKET) {
2059 		if (so->so_proto->pr_ctloutput) {
2060 			m->m_len = 0;
2061 
2062 			solock(so);
2063 			error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2064 			    level, optname, m);
2065 			sounlock(so);
2066 			return (error);
2067 		} else
2068 			return (ENOPROTOOPT);
2069 	} else {
2070 		m->m_len = sizeof (int);
2071 
2072 		switch (optname) {
2073 
2074 		case SO_LINGER:
2075 			m->m_len = sizeof (struct linger);
2076 			solock_shared(so);
2077 			mtod(m, struct linger *)->l_onoff =
2078 				so->so_options & SO_LINGER;
2079 			mtod(m, struct linger *)->l_linger = so->so_linger;
2080 			sounlock_shared(so);
2081 			break;
2082 
2083 		case SO_BINDANY:
2084 		case SO_USELOOPBACK:
2085 		case SO_DEBUG:
2086 		case SO_KEEPALIVE:
2087 		case SO_REUSEADDR:
2088 		case SO_REUSEPORT:
2089 		case SO_BROADCAST:
2090 		case SO_OOBINLINE:
2091 		case SO_ACCEPTCONN:
2092 		case SO_TIMESTAMP:
2093 		case SO_ZEROIZE:
2094 			*mtod(m, int *) = so->so_options & optname;
2095 			break;
2096 
2097 		case SO_DONTROUTE:
2098 			*mtod(m, int *) = 0;
2099 			break;
2100 
2101 		case SO_TYPE:
2102 			*mtod(m, int *) = so->so_type;
2103 			break;
2104 
2105 		case SO_ERROR:
2106 			solock(so);
2107 			*mtod(m, int *) = so->so_error;
2108 			so->so_error = 0;
2109 			sounlock(so);
2110 
2111 			break;
2112 
2113 		case SO_DOMAIN:
2114 			*mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2115 			break;
2116 
2117 		case SO_PROTOCOL:
2118 			*mtod(m, int *) = so->so_proto->pr_protocol;
2119 			break;
2120 
2121 		case SO_SNDBUF:
2122 			*mtod(m, int *) = so->so_snd.sb_hiwat;
2123 			break;
2124 
2125 		case SO_RCVBUF:
2126 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
2127 			break;
2128 
2129 		case SO_SNDLOWAT:
2130 			*mtod(m, int *) = so->so_snd.sb_lowat;
2131 			break;
2132 
2133 		case SO_RCVLOWAT:
2134 			*mtod(m, int *) = so->so_rcv.sb_lowat;
2135 			break;
2136 
2137 		case SO_SNDTIMEO:
2138 		case SO_RCVTIMEO:
2139 		    {
2140 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2141 			    &so->so_snd : &so->so_rcv);
2142 			struct timeval tv;
2143 			uint64_t nsecs;
2144 
2145 			mtx_enter(&sb->sb_mtx);
2146 			nsecs = sb->sb_timeo_nsecs;
2147 			mtx_leave(&sb->sb_mtx);
2148 
2149 			m->m_len = sizeof(struct timeval);
2150 			memset(&tv, 0, sizeof(tv));
2151 			if (nsecs != INFSLP)
2152 				NSEC_TO_TIMEVAL(nsecs, &tv);
2153 			memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2154 			break;
2155 		    }
2156 
2157 		case SO_RTABLE:
2158 			if (so->so_proto->pr_domain &&
2159 			    so->so_proto->pr_domain->dom_protosw &&
2160 			    so->so_proto->pr_ctloutput) {
2161 				const struct domain *dom =
2162 				    so->so_proto->pr_domain;
2163 
2164 				level = dom->dom_protosw->pr_protocol;
2165 				solock(so);
2166 				error = (*so->so_proto->pr_ctloutput)
2167 				    (PRCO_GETOPT, so, level, optname, m);
2168 				sounlock(so);
2169 				if (error)
2170 					return (error);
2171 				break;
2172 			}
2173 			return (ENOPROTOOPT);
2174 
2175 #ifdef SOCKET_SPLICE
2176 		case SO_SPLICE:
2177 		    {
2178 			off_t len;
2179 
2180 			m->m_len = sizeof(off_t);
2181 			solock_shared(so);
2182 			len = so->so_sp ? so->so_sp->ssp_len : 0;
2183 			sounlock_shared(so);
2184 			memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2185 			break;
2186 		    }
2187 #endif /* SOCKET_SPLICE */
2188 
2189 		case SO_PEERCRED:
2190 			if (so->so_proto->pr_protocol == AF_UNIX) {
2191 				struct unpcb *unp = sotounpcb(so);
2192 
2193 				solock(so);
2194 				if (unp->unp_flags & UNP_FEIDS) {
2195 					m->m_len = sizeof(unp->unp_connid);
2196 					memcpy(mtod(m, caddr_t),
2197 					    &(unp->unp_connid), m->m_len);
2198 					sounlock(so);
2199 					break;
2200 				}
2201 				sounlock(so);
2202 
2203 				return (ENOTCONN);
2204 			}
2205 			return (EOPNOTSUPP);
2206 
2207 		default:
2208 			return (ENOPROTOOPT);
2209 		}
2210 		return (0);
2211 	}
2212 }
2213 
2214 void
2215 sohasoutofband(struct socket *so)
2216 {
2217 	pgsigio(&so->so_sigio, SIGURG, 0);
2218 	knote(&so->so_rcv.sb_klist, 0);
2219 }
2220 
2221 void
2222 sofilt_lock(struct socket *so, struct sockbuf *sb)
2223 {
2224 	switch (so->so_proto->pr_domain->dom_family) {
2225 	case PF_INET:
2226 	case PF_INET6:
2227 		NET_LOCK_SHARED();
2228 		break;
2229 	default:
2230 		rw_enter_write(&so->so_lock);
2231 		break;
2232 	}
2233 
2234 	mtx_enter(&sb->sb_mtx);
2235 }
2236 
2237 void
2238 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2239 {
2240 	mtx_leave(&sb->sb_mtx);
2241 
2242 	switch (so->so_proto->pr_domain->dom_family) {
2243 	case PF_INET:
2244 	case PF_INET6:
2245 		NET_UNLOCK_SHARED();
2246 		break;
2247 	default:
2248 		rw_exit_write(&so->so_lock);
2249 		break;
2250 	}
2251 }
2252 
2253 int
2254 soo_kqfilter(struct file *fp, struct knote *kn)
2255 {
2256 	struct socket *so = kn->kn_fp->f_data;
2257 	struct sockbuf *sb;
2258 
2259 	switch (kn->kn_filter) {
2260 	case EVFILT_READ:
2261 		kn->kn_fop = &soread_filtops;
2262 		sb = &so->so_rcv;
2263 		break;
2264 	case EVFILT_WRITE:
2265 		kn->kn_fop = &sowrite_filtops;
2266 		sb = &so->so_snd;
2267 		break;
2268 	case EVFILT_EXCEPT:
2269 		kn->kn_fop = &soexcept_filtops;
2270 		sb = &so->so_rcv;
2271 		break;
2272 	default:
2273 		return (EINVAL);
2274 	}
2275 
2276 	klist_insert(&sb->sb_klist, kn);
2277 
2278 	return (0);
2279 }
2280 
2281 void
2282 filt_sordetach(struct knote *kn)
2283 {
2284 	struct socket *so = kn->kn_fp->f_data;
2285 
2286 	klist_remove(&so->so_rcv.sb_klist, kn);
2287 }
2288 
2289 int
2290 filt_soread(struct knote *kn, long hint)
2291 {
2292 	struct socket *so = kn->kn_fp->f_data;
2293 	int rv = 0;
2294 
2295 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2296 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2297 		soassertlocked_readonly(so);
2298 
2299 	if (so->so_options & SO_ACCEPTCONN) {
2300 		if (so->so_rcv.sb_flags & SB_MTXLOCK)
2301 			soassertlocked_readonly(so);
2302 
2303 		kn->kn_data = so->so_qlen;
2304 		rv = (kn->kn_data != 0);
2305 
2306 		if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2307 			if (so->so_state & SS_ISDISCONNECTED) {
2308 				kn->kn_flags |= __EV_HUP;
2309 				rv = 1;
2310 			} else {
2311 				rv = soreadable(so);
2312 			}
2313 		}
2314 
2315 		return rv;
2316 	}
2317 
2318 	kn->kn_data = so->so_rcv.sb_cc;
2319 #ifdef SOCKET_SPLICE
2320 	if (isspliced(so)) {
2321 		rv = 0;
2322 	} else
2323 #endif /* SOCKET_SPLICE */
2324 	if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2325 		kn->kn_flags |= EV_EOF;
2326 		if (kn->kn_flags & __EV_POLL) {
2327 			if (so->so_state & SS_ISDISCONNECTED)
2328 				kn->kn_flags |= __EV_HUP;
2329 		}
2330 		kn->kn_fflags = so->so_error;
2331 		rv = 1;
2332 	} else if (so->so_error) {
2333 		rv = 1;
2334 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2335 		rv = (kn->kn_data >= kn->kn_sdata);
2336 	} else {
2337 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2338 	}
2339 
2340 	return rv;
2341 }
2342 
2343 void
2344 filt_sowdetach(struct knote *kn)
2345 {
2346 	struct socket *so = kn->kn_fp->f_data;
2347 
2348 	klist_remove(&so->so_snd.sb_klist, kn);
2349 }
2350 
2351 int
2352 filt_sowrite(struct knote *kn, long hint)
2353 {
2354 	struct socket *so = kn->kn_fp->f_data;
2355 	int rv;
2356 
2357 	MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2358 	soassertlocked_readonly(so);
2359 
2360 	kn->kn_data = sbspace(so, &so->so_snd);
2361 	if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2362 		kn->kn_flags |= EV_EOF;
2363 		if (kn->kn_flags & __EV_POLL) {
2364 			if (so->so_state & SS_ISDISCONNECTED)
2365 				kn->kn_flags |= __EV_HUP;
2366 		}
2367 		kn->kn_fflags = so->so_error;
2368 		rv = 1;
2369 	} else if (so->so_error) {
2370 		rv = 1;
2371 	} else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2372 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2373 		rv = 0;
2374 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2375 		rv = (kn->kn_data >= kn->kn_sdata);
2376 	} else {
2377 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2378 	}
2379 
2380 	return (rv);
2381 }
2382 
2383 int
2384 filt_soexcept(struct knote *kn, long hint)
2385 {
2386 	struct socket *so = kn->kn_fp->f_data;
2387 	int rv = 0;
2388 
2389 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2390 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2391 		soassertlocked_readonly(so);
2392 
2393 #ifdef SOCKET_SPLICE
2394 	if (isspliced(so)) {
2395 		rv = 0;
2396 	} else
2397 #endif /* SOCKET_SPLICE */
2398 	if (kn->kn_sfflags & NOTE_OOB) {
2399 		if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2400 			kn->kn_fflags |= NOTE_OOB;
2401 			kn->kn_data -= so->so_oobmark;
2402 			rv = 1;
2403 		}
2404 	}
2405 
2406 	if (kn->kn_flags & __EV_POLL) {
2407 		if (so->so_state & SS_ISDISCONNECTED) {
2408 			kn->kn_flags |= __EV_HUP;
2409 			rv = 1;
2410 		}
2411 	}
2412 
2413 	return rv;
2414 }
2415 
2416 int
2417 filt_sowmodify(struct kevent *kev, struct knote *kn)
2418 {
2419 	struct socket *so = kn->kn_fp->f_data;
2420 	int rv;
2421 
2422 	sofilt_lock(so, &so->so_snd);
2423 	rv = knote_modify(kev, kn);
2424 	sofilt_unlock(so, &so->so_snd);
2425 
2426 	return (rv);
2427 }
2428 
2429 int
2430 filt_sowprocess(struct knote *kn, struct kevent *kev)
2431 {
2432 	struct socket *so = kn->kn_fp->f_data;
2433 	int rv;
2434 
2435 	sofilt_lock(so, &so->so_snd);
2436 	rv = knote_process(kn, kev);
2437 	sofilt_unlock(so, &so->so_snd);
2438 
2439 	return (rv);
2440 }
2441 
2442 int
2443 filt_sormodify(struct kevent *kev, struct knote *kn)
2444 {
2445 	struct socket *so = kn->kn_fp->f_data;
2446 	int rv;
2447 
2448 	sofilt_lock(so, &so->so_rcv);
2449 	rv = knote_modify(kev, kn);
2450 	sofilt_unlock(so, &so->so_rcv);
2451 
2452 	return (rv);
2453 }
2454 
2455 int
2456 filt_sorprocess(struct knote *kn, struct kevent *kev)
2457 {
2458 	struct socket *so = kn->kn_fp->f_data;
2459 	int rv;
2460 
2461 	sofilt_lock(so, &so->so_rcv);
2462 	rv = knote_process(kn, kev);
2463 	sofilt_unlock(so, &so->so_rcv);
2464 
2465 	return (rv);
2466 }
2467 
2468 #ifdef DDB
2469 void
2470 sobuf_print(struct sockbuf *,
2471     int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2472 
2473 void
2474 sobuf_print(struct sockbuf *sb,
2475     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2476 {
2477 	(*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2478 	(*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2479 	(*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2480 	(*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2481 	(*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2482 	(*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2483 	(*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2484 	(*pr)("\tsb_mb: %p\n", sb->sb_mb);
2485 	(*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2486 	(*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2487 	(*pr)("\tsb_sel: ...\n");
2488 	(*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2489 	(*pr)("\tsb_state: %04x\n", sb->sb_state);
2490 	(*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2491 }
2492 
2493 void
2494 so_print(void *v,
2495     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2496 {
2497 	struct socket *so = v;
2498 
2499 	(*pr)("socket %p\n", so);
2500 	(*pr)("so_type: %i\n", so->so_type);
2501 	(*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2502 	(*pr)("so_linger: %i\n", so->so_linger);
2503 	(*pr)("so_state: 0x%04x\n", so->so_state);
2504 	(*pr)("so_pcb: %p\n", so->so_pcb);
2505 	(*pr)("so_proto: %p\n", so->so_proto);
2506 	(*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2507 
2508 	(*pr)("so_head: %p\n", so->so_head);
2509 	(*pr)("so_onq: %p\n", so->so_onq);
2510 	(*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2511 	(*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2512 	(*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2513 	(*pr)("so_q0len: %i\n", so->so_q0len);
2514 	(*pr)("so_qlen: %i\n", so->so_qlen);
2515 	(*pr)("so_qlimit: %i\n", so->so_qlimit);
2516 	(*pr)("so_timeo: %i\n", so->so_timeo);
2517 	(*pr)("so_obmark: %lu\n", so->so_oobmark);
2518 
2519 	(*pr)("so_sp: %p\n", so->so_sp);
2520 	if (so->so_sp != NULL) {
2521 		(*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2522 		(*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2523 		(*pr)("\tssp_len: %lld\n",
2524 		    (unsigned long long)so->so_sp->ssp_len);
2525 		(*pr)("\tssp_max: %lld\n",
2526 		    (unsigned long long)so->so_sp->ssp_max);
2527 		(*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2528 		    so->so_sp->ssp_idletv.tv_usec);
2529 		(*pr)("\tssp_idleto: %spending (@%i)\n",
2530 		    timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2531 		    so->so_sp->ssp_idleto.to_time);
2532 	}
2533 
2534 	(*pr)("so_rcv:\n");
2535 	sobuf_print(&so->so_rcv, pr);
2536 	(*pr)("so_snd:\n");
2537 	sobuf_print(&so->so_snd, pr);
2538 
2539 	(*pr)("so_upcall: %p so_upcallarg: %p\n",
2540 	    so->so_upcall, so->so_upcallarg);
2541 
2542 	(*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2543 	(*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2544 	(*pr)("so_cpid: %d\n", so->so_cpid);
2545 }
2546 #endif
2547