1 /* $OpenBSD: uipc_socket.c,v 1.100 2012/04/24 16:35:08 deraadt Exp $ */ 2 /* $NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/file.h> 39 #include <sys/filedesc.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/domain.h> 43 #include <sys/kernel.h> 44 #include <sys/event.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/unpcb.h> 48 #include <sys/socketvar.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <net/route.h> 52 #include <sys/pool.h> 53 54 void sbsync(struct sockbuf *, struct mbuf *); 55 56 int sosplice(struct socket *, int, off_t, struct timeval *); 57 void sounsplice(struct socket *, struct socket *, int); 58 int somove(struct socket *, int); 59 void soidle(void *); 60 61 void filt_sordetach(struct knote *kn); 62 int filt_soread(struct knote *kn, long hint); 63 void filt_sowdetach(struct knote *kn); 64 int filt_sowrite(struct knote *kn, long hint); 65 int filt_solisten(struct knote *kn, long hint); 66 67 struct filterops solisten_filtops = 68 { 1, NULL, filt_sordetach, filt_solisten }; 69 struct filterops soread_filtops = 70 { 1, NULL, filt_sordetach, filt_soread }; 71 struct filterops sowrite_filtops = 72 { 1, NULL, filt_sowdetach, filt_sowrite }; 73 74 75 #ifndef SOMINCONN 76 #define SOMINCONN 80 77 #endif /* SOMINCONN */ 78 79 int somaxconn = SOMAXCONN; 80 int sominconn = SOMINCONN; 81 82 struct pool socket_pool; 83 84 void 85 soinit(void) 86 { 87 88 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL); 89 } 90 91 /* 92 * Socket operation routines. 93 * These routines are called by the routines in 94 * sys_socket.c or from a system process, and 95 * implement the semantics of socket operations by 96 * switching out to the protocol specific routines. 97 */ 98 /*ARGSUSED*/ 99 int 100 socreate(int dom, struct socket **aso, int type, int proto) 101 { 102 struct proc *p = curproc; /* XXX */ 103 struct protosw *prp; 104 struct socket *so; 105 int error, s; 106 107 if (proto) 108 prp = pffindproto(dom, proto, type); 109 else 110 prp = pffindtype(dom, type); 111 if (prp == NULL || prp->pr_usrreq == 0) 112 return (EPROTONOSUPPORT); 113 if (prp->pr_type != type) 114 return (EPROTOTYPE); 115 s = splsoftnet(); 116 so = pool_get(&socket_pool, PR_WAITOK | PR_ZERO); 117 TAILQ_INIT(&so->so_q0); 118 TAILQ_INIT(&so->so_q); 119 so->so_type = type; 120 if (suser(p, 0) == 0) 121 so->so_state = SS_PRIV; 122 so->so_ruid = p->p_cred->p_ruid; 123 so->so_euid = p->p_ucred->cr_uid; 124 so->so_rgid = p->p_cred->p_rgid; 125 so->so_egid = p->p_ucred->cr_gid; 126 so->so_cpid = p->p_pid; 127 so->so_proto = prp; 128 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 129 (struct mbuf *)(long)proto, NULL, p); 130 if (error) { 131 so->so_state |= SS_NOFDREF; 132 sofree(so); 133 splx(s); 134 return (error); 135 } 136 splx(s); 137 *aso = so; 138 return (0); 139 } 140 141 int 142 sobind(struct socket *so, struct mbuf *nam, struct proc *p) 143 { 144 int s = splsoftnet(); 145 int error; 146 147 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, p); 148 splx(s); 149 return (error); 150 } 151 152 int 153 solisten(struct socket *so, int backlog) 154 { 155 int s, error; 156 157 #ifdef SOCKET_SPLICE 158 if (so->so_splice || so->so_spliceback) 159 return (EOPNOTSUPP); 160 #endif /* SOCKET_SPLICE */ 161 s = splsoftnet(); 162 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, NULL, NULL, 163 curproc); 164 if (error) { 165 splx(s); 166 return (error); 167 } 168 if (TAILQ_FIRST(&so->so_q) == NULL) 169 so->so_options |= SO_ACCEPTCONN; 170 if (backlog < 0 || backlog > somaxconn) 171 backlog = somaxconn; 172 if (backlog < sominconn) 173 backlog = sominconn; 174 so->so_qlimit = backlog; 175 splx(s); 176 return (0); 177 } 178 179 /* 180 * Must be called at splsoftnet() 181 */ 182 183 void 184 sofree(struct socket *so) 185 { 186 splsoftassert(IPL_SOFTNET); 187 188 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 189 return; 190 if (so->so_head) { 191 /* 192 * We must not decommission a socket that's on the accept(2) 193 * queue. If we do, then accept(2) may hang after select(2) 194 * indicated that the listening socket was ready. 195 */ 196 if (!soqremque(so, 0)) 197 return; 198 } 199 #ifdef SOCKET_SPLICE 200 if (so->so_spliceback) 201 sounsplice(so->so_spliceback, so, so->so_spliceback != so); 202 if (so->so_splice) 203 sounsplice(so, so->so_splice, 0); 204 #endif /* SOCKET_SPLICE */ 205 sbrelease(&so->so_snd); 206 sorflush(so); 207 pool_put(&socket_pool, so); 208 } 209 210 /* 211 * Close a socket on last file table reference removal. 212 * Initiate disconnect if connected. 213 * Free socket when disconnect complete. 214 */ 215 int 216 soclose(struct socket *so) 217 { 218 struct socket *so2; 219 int s = splsoftnet(); /* conservative */ 220 int error = 0; 221 222 if (so->so_options & SO_ACCEPTCONN) { 223 while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) { 224 (void) soqremque(so2, 0); 225 (void) soabort(so2); 226 } 227 while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) { 228 (void) soqremque(so2, 1); 229 (void) soabort(so2); 230 } 231 } 232 if (so->so_pcb == 0) 233 goto discard; 234 if (so->so_state & SS_ISCONNECTED) { 235 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 236 error = sodisconnect(so); 237 if (error) 238 goto drop; 239 } 240 if (so->so_options & SO_LINGER) { 241 if ((so->so_state & SS_ISDISCONNECTING) && 242 (so->so_state & SS_NBIO)) 243 goto drop; 244 while (so->so_state & SS_ISCONNECTED) { 245 error = tsleep(&so->so_timeo, 246 PSOCK | PCATCH, "netcls", 247 so->so_linger * hz); 248 if (error) 249 break; 250 } 251 } 252 } 253 drop: 254 if (so->so_pcb) { 255 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, NULL, 256 NULL, NULL, curproc); 257 if (error == 0) 258 error = error2; 259 } 260 discard: 261 if (so->so_state & SS_NOFDREF) 262 panic("soclose: NOFDREF"); 263 so->so_state |= SS_NOFDREF; 264 sofree(so); 265 splx(s); 266 return (error); 267 } 268 269 /* 270 * Must be called at splsoftnet. 271 */ 272 int 273 soabort(struct socket *so) 274 { 275 splsoftassert(IPL_SOFTNET); 276 277 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, NULL, NULL, 278 curproc); 279 } 280 281 int 282 soaccept(struct socket *so, struct mbuf *nam) 283 { 284 int s = splsoftnet(); 285 int error = 0; 286 287 if ((so->so_state & SS_NOFDREF) == 0) 288 panic("soaccept: !NOFDREF"); 289 so->so_state &= ~SS_NOFDREF; 290 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 291 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 292 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, NULL, 293 nam, NULL, curproc); 294 else 295 error = ECONNABORTED; 296 splx(s); 297 return (error); 298 } 299 300 int 301 soconnect(struct socket *so, struct mbuf *nam) 302 { 303 int s; 304 int error; 305 306 if (so->so_options & SO_ACCEPTCONN) 307 return (EOPNOTSUPP); 308 s = splsoftnet(); 309 /* 310 * If protocol is connection-based, can only connect once. 311 * Otherwise, if connected, try to disconnect first. 312 * This allows user to disconnect by connecting to, e.g., 313 * a null address. 314 */ 315 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 316 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 317 (error = sodisconnect(so)))) 318 error = EISCONN; 319 else 320 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 321 NULL, nam, NULL, curproc); 322 splx(s); 323 return (error); 324 } 325 326 int 327 soconnect2(struct socket *so1, struct socket *so2) 328 { 329 int s = splsoftnet(); 330 int error; 331 332 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, NULL, 333 (struct mbuf *)so2, NULL, curproc); 334 splx(s); 335 return (error); 336 } 337 338 int 339 sodisconnect(struct socket *so) 340 { 341 int s = splsoftnet(); 342 int error; 343 344 if ((so->so_state & SS_ISCONNECTED) == 0) { 345 error = ENOTCONN; 346 goto bad; 347 } 348 if (so->so_state & SS_ISDISCONNECTING) { 349 error = EALREADY; 350 goto bad; 351 } 352 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, NULL, NULL, 353 NULL, curproc); 354 bad: 355 splx(s); 356 return (error); 357 } 358 359 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 360 /* 361 * Send on a socket. 362 * If send must go all at once and message is larger than 363 * send buffering, then hard error. 364 * Lock against other senders. 365 * If must go all at once and not enough room now, then 366 * inform user that this would block and do nothing. 367 * Otherwise, if nonblocking, send as much as possible. 368 * The data to be sent is described by "uio" if nonzero, 369 * otherwise by the mbuf chain "top" (which must be null 370 * if uio is not). Data provided in mbuf chain must be small 371 * enough to send all at once. 372 * 373 * Returns nonzero on error, timeout or signal; callers 374 * must check for short counts if EINTR/ERESTART are returned. 375 * Data and control buffers are freed on return. 376 */ 377 int 378 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 379 struct mbuf *control, int flags) 380 { 381 struct mbuf **mp; 382 struct mbuf *m; 383 long space, len, mlen, clen = 0; 384 quad_t resid; 385 int error, s, dontroute; 386 int atomic = sosendallatonce(so) || top; 387 388 if (uio) 389 resid = uio->uio_resid; 390 else 391 resid = top->m_pkthdr.len; 392 /* 393 * In theory resid should be unsigned (since uio->uio_resid is). 394 * However, space must be signed, as it might be less than 0 395 * if we over-committed, and we must use a signed comparison 396 * of space and resid. On the other hand, a negative resid 397 * causes us to loop sending 0-length segments to the protocol. 398 * MSG_EOR on a SOCK_STREAM socket is also invalid. 399 */ 400 if (resid < 0 || 401 (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 402 error = EINVAL; 403 goto out; 404 } 405 dontroute = 406 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 407 (so->so_proto->pr_flags & PR_ATOMIC); 408 if (uio && uio->uio_procp) 409 uio->uio_procp->p_ru.ru_msgsnd++; 410 if (control) { 411 clen = control->m_len; 412 /* reserve extra space for AF_LOCAL's internalize */ 413 if (so->so_proto->pr_domain->dom_family == AF_LOCAL && 414 clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) && 415 mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 416 clen = CMSG_SPACE( 417 (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) * 418 (sizeof(struct file *) / sizeof(int))); 419 } 420 421 #define snderr(errno) { error = errno; splx(s); goto release; } 422 423 restart: 424 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 425 goto out; 426 so->so_state |= SS_ISSENDING; 427 do { 428 s = splsoftnet(); 429 if (so->so_state & SS_CANTSENDMORE) 430 snderr(EPIPE); 431 if (so->so_error) { 432 error = so->so_error; 433 so->so_error = 0; 434 splx(s); 435 goto release; 436 } 437 if ((so->so_state & SS_ISCONNECTED) == 0) { 438 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 439 if ((so->so_state & SS_ISCONFIRMING) == 0 && 440 !(resid == 0 && clen != 0)) 441 snderr(ENOTCONN); 442 } else if (addr == 0) 443 snderr(EDESTADDRREQ); 444 } 445 space = sbspace(&so->so_snd); 446 if (flags & MSG_OOB) 447 space += 1024; 448 if ((atomic && resid > so->so_snd.sb_hiwat) || 449 (so->so_proto->pr_domain->dom_family != AF_LOCAL && 450 clen > so->so_snd.sb_hiwat)) 451 snderr(EMSGSIZE); 452 if (space < resid + clen && 453 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 454 if (so->so_state & SS_NBIO) 455 snderr(EWOULDBLOCK); 456 sbunlock(&so->so_snd); 457 error = sbwait(&so->so_snd); 458 so->so_state &= ~SS_ISSENDING; 459 splx(s); 460 if (error) 461 goto out; 462 goto restart; 463 } 464 splx(s); 465 mp = ⊤ 466 space -= clen; 467 do { 468 if (uio == NULL) { 469 /* 470 * Data is prepackaged in "top". 471 */ 472 resid = 0; 473 if (flags & MSG_EOR) 474 top->m_flags |= M_EOR; 475 } else do { 476 if (top == 0) { 477 MGETHDR(m, M_WAIT, MT_DATA); 478 mlen = MHLEN; 479 m->m_pkthdr.len = 0; 480 m->m_pkthdr.rcvif = (struct ifnet *)0; 481 } else { 482 MGET(m, M_WAIT, MT_DATA); 483 mlen = MLEN; 484 } 485 if (resid >= MINCLSIZE && space >= MCLBYTES) { 486 MCLGET(m, M_NOWAIT); 487 if ((m->m_flags & M_EXT) == 0) 488 goto nopages; 489 mlen = MCLBYTES; 490 if (atomic && top == 0) { 491 len = lmin(MCLBYTES - max_hdr, resid); 492 m->m_data += max_hdr; 493 } else 494 len = lmin(MCLBYTES, resid); 495 space -= len; 496 } else { 497 nopages: 498 len = lmin(lmin(mlen, resid), space); 499 space -= len; 500 /* 501 * For datagram protocols, leave room 502 * for protocol headers in first mbuf. 503 */ 504 if (atomic && top == 0 && len < mlen) 505 MH_ALIGN(m, len); 506 } 507 error = uiomove(mtod(m, caddr_t), (int)len, 508 uio); 509 resid = uio->uio_resid; 510 m->m_len = len; 511 *mp = m; 512 top->m_pkthdr.len += len; 513 if (error) 514 goto release; 515 mp = &m->m_next; 516 if (resid <= 0) { 517 if (flags & MSG_EOR) 518 top->m_flags |= M_EOR; 519 break; 520 } 521 } while (space > 0 && atomic); 522 if (dontroute) 523 so->so_options |= SO_DONTROUTE; 524 s = splsoftnet(); /* XXX */ 525 if (resid <= 0) 526 so->so_state &= ~SS_ISSENDING; 527 error = (*so->so_proto->pr_usrreq)(so, 528 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 529 top, addr, control, curproc); 530 splx(s); 531 if (dontroute) 532 so->so_options &= ~SO_DONTROUTE; 533 clen = 0; 534 control = 0; 535 top = 0; 536 mp = ⊤ 537 if (error) 538 goto release; 539 } while (resid && space > 0); 540 } while (resid); 541 542 release: 543 so->so_state &= ~SS_ISSENDING; 544 sbunlock(&so->so_snd); 545 out: 546 if (top) 547 m_freem(top); 548 if (control) 549 m_freem(control); 550 return (error); 551 } 552 553 /* 554 * Following replacement or removal of the first mbuf on the first 555 * mbuf chain of a socket buffer, push necessary state changes back 556 * into the socket buffer so that other consumers see the values 557 * consistently. 'nextrecord' is the callers locally stored value of 558 * the original value of sb->sb_mb->m_nextpkt which must be restored 559 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 560 */ 561 void 562 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 563 { 564 565 /* 566 * First, update for the new value of nextrecord. If necessary, 567 * make it the first record. 568 */ 569 if (sb->sb_mb != NULL) 570 sb->sb_mb->m_nextpkt = nextrecord; 571 else 572 sb->sb_mb = nextrecord; 573 574 /* 575 * Now update any dependent socket buffer fields to reflect 576 * the new state. This is an inline of SB_EMPTY_FIXUP, with 577 * the addition of a second clause that takes care of the 578 * case where sb_mb has been updated, but remains the last 579 * record. 580 */ 581 if (sb->sb_mb == NULL) { 582 sb->sb_mbtail = NULL; 583 sb->sb_lastrecord = NULL; 584 } else if (sb->sb_mb->m_nextpkt == NULL) 585 sb->sb_lastrecord = sb->sb_mb; 586 } 587 588 /* 589 * Implement receive operations on a socket. 590 * We depend on the way that records are added to the sockbuf 591 * by sbappend*. In particular, each record (mbufs linked through m_next) 592 * must begin with an address if the protocol so specifies, 593 * followed by an optional mbuf or mbufs containing ancillary data, 594 * and then zero or more mbufs of data. 595 * In order to avoid blocking network interrupts for the entire time here, 596 * we splx() while doing the actual copy to user space. 597 * Although the sockbuf is locked, new data may still be appended, 598 * and thus we must maintain consistency of the sockbuf during that time. 599 * 600 * The caller may receive the data as a single mbuf chain by supplying 601 * an mbuf **mp0 for use in returning the chain. The uio is then used 602 * only for the count in uio_resid. 603 */ 604 int 605 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 606 struct mbuf **mp0, struct mbuf **controlp, int *flagsp, 607 socklen_t controllen) 608 { 609 struct mbuf *m, **mp; 610 struct mbuf *cm; 611 int flags, len, error, s, offset; 612 struct protosw *pr = so->so_proto; 613 struct mbuf *nextrecord; 614 int moff, type = 0; 615 size_t orig_resid = uio->uio_resid; 616 int uio_error = 0; 617 int resid; 618 619 mp = mp0; 620 if (paddr) 621 *paddr = 0; 622 if (controlp) 623 *controlp = 0; 624 if (flagsp) 625 flags = *flagsp &~ MSG_EOR; 626 else 627 flags = 0; 628 if (so->so_state & SS_NBIO) 629 flags |= MSG_DONTWAIT; 630 if (flags & MSG_OOB) { 631 m = m_get(M_WAIT, MT_DATA); 632 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 633 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, curproc); 634 if (error) 635 goto bad; 636 do { 637 error = uiomove(mtod(m, caddr_t), 638 (int) min(uio->uio_resid, m->m_len), uio); 639 m = m_free(m); 640 } while (uio->uio_resid && error == 0 && m); 641 bad: 642 if (m) 643 m_freem(m); 644 return (error); 645 } 646 if (mp) 647 *mp = NULL; 648 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 649 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, curproc); 650 651 restart: 652 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) 653 return (error); 654 s = splsoftnet(); 655 656 m = so->so_rcv.sb_mb; 657 #ifdef SOCKET_SPLICE 658 if (so->so_splice) 659 m = NULL; 660 #endif /* SOCKET_SPLICE */ 661 /* 662 * If we have less data than requested, block awaiting more 663 * (subject to any timeout) if: 664 * 1. the current count is less than the low water mark, 665 * 2. MSG_WAITALL is set, and it is possible to do the entire 666 * receive operation at once if we block (resid <= hiwat), or 667 * 3. MSG_DONTWAIT is not set. 668 * If MSG_WAITALL is set but resid is larger than the receive buffer, 669 * we have to do the receive in sections, and thus risk returning 670 * a short count if a timeout or signal occurs after we start. 671 */ 672 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 673 so->so_rcv.sb_cc < uio->uio_resid) && 674 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 675 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 676 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 677 #ifdef DIAGNOSTIC 678 if (m == NULL && so->so_rcv.sb_cc) 679 #ifdef SOCKET_SPLICE 680 if (so->so_splice == NULL) 681 #endif /* SOCKET_SPLICE */ 682 panic("receive 1"); 683 #endif 684 if (so->so_error) { 685 if (m) 686 goto dontblock; 687 error = so->so_error; 688 if ((flags & MSG_PEEK) == 0) 689 so->so_error = 0; 690 goto release; 691 } 692 if (so->so_state & SS_CANTRCVMORE) { 693 if (m) 694 goto dontblock; 695 else if (so->so_rcv.sb_cc == 0) 696 goto release; 697 } 698 for (; m; m = m->m_next) 699 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 700 m = so->so_rcv.sb_mb; 701 goto dontblock; 702 } 703 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 704 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 705 error = ENOTCONN; 706 goto release; 707 } 708 if (uio->uio_resid == 0 && controlp == NULL) 709 goto release; 710 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 711 error = EWOULDBLOCK; 712 goto release; 713 } 714 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 715 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 716 sbunlock(&so->so_rcv); 717 error = sbwait(&so->so_rcv); 718 splx(s); 719 if (error) 720 return (error); 721 goto restart; 722 } 723 dontblock: 724 /* 725 * On entry here, m points to the first record of the socket buffer. 726 * From this point onward, we maintain 'nextrecord' as a cache of the 727 * pointer to the next record in the socket buffer. We must keep the 728 * various socket buffer pointers and local stack versions of the 729 * pointers in sync, pushing out modifications before operations that 730 * may sleep, and re-reading them afterwards. 731 * 732 * Otherwise, we will race with the network stack appending new data 733 * or records onto the socket buffer by using inconsistent/stale 734 * versions of the field, possibly resulting in socket buffer 735 * corruption. 736 */ 737 if (uio->uio_procp) 738 uio->uio_procp->p_ru.ru_msgrcv++; 739 KASSERT(m == so->so_rcv.sb_mb); 740 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 741 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 742 nextrecord = m->m_nextpkt; 743 if (pr->pr_flags & PR_ADDR) { 744 #ifdef DIAGNOSTIC 745 if (m->m_type != MT_SONAME) 746 panic("receive 1a"); 747 #endif 748 orig_resid = 0; 749 if (flags & MSG_PEEK) { 750 if (paddr) 751 *paddr = m_copy(m, 0, m->m_len); 752 m = m->m_next; 753 } else { 754 sbfree(&so->so_rcv, m); 755 if (paddr) { 756 *paddr = m; 757 so->so_rcv.sb_mb = m->m_next; 758 m->m_next = 0; 759 m = so->so_rcv.sb_mb; 760 } else { 761 MFREE(m, so->so_rcv.sb_mb); 762 m = so->so_rcv.sb_mb; 763 } 764 sbsync(&so->so_rcv, nextrecord); 765 } 766 } 767 while (m && m->m_type == MT_CONTROL && error == 0) { 768 if (flags & MSG_PEEK) { 769 if (controlp) 770 *controlp = m_copy(m, 0, m->m_len); 771 m = m->m_next; 772 } else { 773 sbfree(&so->so_rcv, m); 774 so->so_rcv.sb_mb = m->m_next; 775 m->m_next = 0; 776 cm = m; 777 m = so->so_rcv.sb_mb; 778 sbsync(&so->so_rcv, nextrecord); 779 if (controlp) { 780 if (pr->pr_domain->dom_externalize && 781 mtod(cm, struct cmsghdr *)->cmsg_type == 782 SCM_RIGHTS) 783 error = (*pr->pr_domain->dom_externalize)(cm, 784 controllen); 785 *controlp = cm; 786 } else { 787 /* 788 * Dispose of any SCM_RIGHTS message that went 789 * through the read path rather than recv. 790 */ 791 if (pr->pr_domain->dom_dispose && 792 mtod(cm, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 793 pr->pr_domain->dom_dispose(cm); 794 m_free(cm); 795 } 796 } 797 if (m != NULL) 798 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 799 else 800 nextrecord = so->so_rcv.sb_mb; 801 if (controlp) { 802 orig_resid = 0; 803 controlp = &(*controlp)->m_next; 804 } 805 } 806 807 /* If m is non-NULL, we have some data to read. */ 808 if (m) { 809 type = m->m_type; 810 if (type == MT_OOBDATA) 811 flags |= MSG_OOB; 812 if (m->m_flags & M_BCAST) 813 flags |= MSG_BCAST; 814 if (m->m_flags & M_MCAST) 815 flags |= MSG_MCAST; 816 } 817 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 818 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 819 820 moff = 0; 821 offset = 0; 822 while (m && uio->uio_resid > 0 && error == 0) { 823 if (m->m_type == MT_OOBDATA) { 824 if (type != MT_OOBDATA) 825 break; 826 } else if (type == MT_OOBDATA) 827 break; 828 #ifdef DIAGNOSTIC 829 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 830 panic("receive 3"); 831 #endif 832 so->so_state &= ~SS_RCVATMARK; 833 len = uio->uio_resid; 834 if (so->so_oobmark && len > so->so_oobmark - offset) 835 len = so->so_oobmark - offset; 836 if (len > m->m_len - moff) 837 len = m->m_len - moff; 838 /* 839 * If mp is set, just pass back the mbufs. 840 * Otherwise copy them out via the uio, then free. 841 * Sockbuf must be consistent here (points to current mbuf, 842 * it points to next record) when we drop priority; 843 * we must note any additions to the sockbuf when we 844 * block interrupts again. 845 */ 846 if (mp == NULL && uio_error == 0) { 847 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 848 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 849 resid = uio->uio_resid; 850 splx(s); 851 uio_error = 852 uiomove(mtod(m, caddr_t) + moff, (int)len, 853 uio); 854 s = splsoftnet(); 855 if (uio_error) 856 uio->uio_resid = resid - len; 857 } else 858 uio->uio_resid -= len; 859 if (len == m->m_len - moff) { 860 if (m->m_flags & M_EOR) 861 flags |= MSG_EOR; 862 if (flags & MSG_PEEK) { 863 m = m->m_next; 864 moff = 0; 865 } else { 866 nextrecord = m->m_nextpkt; 867 sbfree(&so->so_rcv, m); 868 if (mp) { 869 *mp = m; 870 mp = &m->m_next; 871 so->so_rcv.sb_mb = m = m->m_next; 872 *mp = NULL; 873 } else { 874 MFREE(m, so->so_rcv.sb_mb); 875 m = so->so_rcv.sb_mb; 876 } 877 /* 878 * If m != NULL, we also know that 879 * so->so_rcv.sb_mb != NULL. 880 */ 881 KASSERT(so->so_rcv.sb_mb == m); 882 if (m) { 883 m->m_nextpkt = nextrecord; 884 if (nextrecord == NULL) 885 so->so_rcv.sb_lastrecord = m; 886 } else { 887 so->so_rcv.sb_mb = nextrecord; 888 SB_EMPTY_FIXUP(&so->so_rcv); 889 } 890 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 891 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 892 } 893 } else { 894 if (flags & MSG_PEEK) 895 moff += len; 896 else { 897 if (mp) 898 *mp = m_copym(m, 0, len, M_WAIT); 899 m->m_data += len; 900 m->m_len -= len; 901 so->so_rcv.sb_cc -= len; 902 so->so_rcv.sb_datacc -= len; 903 } 904 } 905 if (so->so_oobmark) { 906 if ((flags & MSG_PEEK) == 0) { 907 so->so_oobmark -= len; 908 if (so->so_oobmark == 0) { 909 so->so_state |= SS_RCVATMARK; 910 break; 911 } 912 } else { 913 offset += len; 914 if (offset == so->so_oobmark) 915 break; 916 } 917 } 918 if (flags & MSG_EOR) 919 break; 920 /* 921 * If the MSG_WAITALL flag is set (for non-atomic socket), 922 * we must not quit until "uio->uio_resid == 0" or an error 923 * termination. If a signal/timeout occurs, return 924 * with a short count but without error. 925 * Keep sockbuf locked against other readers. 926 */ 927 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 928 !sosendallatonce(so) && !nextrecord) { 929 if (so->so_error || so->so_state & SS_CANTRCVMORE) 930 break; 931 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 932 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 933 error = sbwait(&so->so_rcv); 934 if (error) { 935 sbunlock(&so->so_rcv); 936 splx(s); 937 return (0); 938 } 939 if ((m = so->so_rcv.sb_mb) != NULL) 940 nextrecord = m->m_nextpkt; 941 } 942 } 943 944 if (m && pr->pr_flags & PR_ATOMIC) { 945 flags |= MSG_TRUNC; 946 if ((flags & MSG_PEEK) == 0) 947 (void) sbdroprecord(&so->so_rcv); 948 } 949 if ((flags & MSG_PEEK) == 0) { 950 if (m == NULL) { 951 /* 952 * First part is an inline SB_EMPTY_FIXUP(). Second 953 * part makes sure sb_lastrecord is up-to-date if 954 * there is still data in the socket buffer. 955 */ 956 so->so_rcv.sb_mb = nextrecord; 957 if (so->so_rcv.sb_mb == NULL) { 958 so->so_rcv.sb_mbtail = NULL; 959 so->so_rcv.sb_lastrecord = NULL; 960 } else if (nextrecord->m_nextpkt == NULL) 961 so->so_rcv.sb_lastrecord = nextrecord; 962 } 963 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 964 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 965 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 966 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 967 (struct mbuf *)(long)flags, NULL, curproc); 968 } 969 if (orig_resid == uio->uio_resid && orig_resid && 970 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 971 sbunlock(&so->so_rcv); 972 splx(s); 973 goto restart; 974 } 975 976 if (uio_error) 977 error = uio_error; 978 979 if (flagsp) 980 *flagsp |= flags; 981 release: 982 sbunlock(&so->so_rcv); 983 splx(s); 984 return (error); 985 } 986 987 int 988 soshutdown(struct socket *so, int how) 989 { 990 struct protosw *pr = so->so_proto; 991 992 switch (how) { 993 case SHUT_RD: 994 case SHUT_RDWR: 995 sorflush(so); 996 if (how == SHUT_RD) 997 return (0); 998 /* FALLTHROUGH */ 999 case SHUT_WR: 1000 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, NULL, NULL, 1001 curproc); 1002 default: 1003 return (EINVAL); 1004 } 1005 } 1006 1007 void 1008 sorflush(struct socket *so) 1009 { 1010 struct sockbuf *sb = &so->so_rcv; 1011 struct protosw *pr = so->so_proto; 1012 int s; 1013 struct sockbuf asb; 1014 1015 sb->sb_flags |= SB_NOINTR; 1016 (void) sblock(sb, M_WAITOK); 1017 s = splnet(); 1018 socantrcvmore(so); 1019 sbunlock(sb); 1020 asb = *sb; 1021 bzero(sb, sizeof (*sb)); 1022 /* XXX - the bzero stumps all over so_rcv */ 1023 if (asb.sb_flags & SB_KNOTE) { 1024 sb->sb_sel.si_note = asb.sb_sel.si_note; 1025 sb->sb_flags = SB_KNOTE; 1026 } 1027 splx(s); 1028 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1029 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1030 sbrelease(&asb); 1031 } 1032 1033 #ifdef SOCKET_SPLICE 1034 int 1035 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv) 1036 { 1037 struct file *fp; 1038 struct socket *sosp; 1039 int s, error = 0; 1040 1041 if ((so->so_proto->pr_flags & PR_SPLICE) == 0) 1042 return (EPROTONOSUPPORT); 1043 if (so->so_options & SO_ACCEPTCONN) 1044 return (EOPNOTSUPP); 1045 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) 1046 return (ENOTCONN); 1047 1048 /* If no fd is given, unsplice by removing existing link. */ 1049 if (fd < 0) { 1050 s = splsoftnet(); 1051 if (so->so_splice) 1052 sounsplice(so, so->so_splice, 1); 1053 splx(s); 1054 return (0); 1055 } 1056 1057 if (max && max < 0) 1058 return (EINVAL); 1059 1060 if (tv && (tv->tv_sec < 0 || tv->tv_usec < 0)) 1061 return (EINVAL); 1062 1063 /* Find sosp, the drain socket where data will be spliced into. */ 1064 if ((error = getsock(curproc->p_fd, fd, &fp)) != 0) 1065 return (error); 1066 sosp = fp->f_data; 1067 1068 /* Lock both receive and send buffer. */ 1069 if ((error = sblock(&so->so_rcv, 1070 (so->so_state & SS_NBIO) ? M_NOWAIT : M_WAITOK)) != 0) { 1071 FRELE(fp, curproc); 1072 return (error); 1073 } 1074 if ((error = sblock(&sosp->so_snd, M_WAITOK)) != 0) { 1075 sbunlock(&so->so_rcv); 1076 FRELE(fp, curproc); 1077 return (error); 1078 } 1079 s = splsoftnet(); 1080 1081 if (so->so_splice || sosp->so_spliceback) { 1082 error = EBUSY; 1083 goto release; 1084 } 1085 if (sosp->so_proto->pr_usrreq != so->so_proto->pr_usrreq) { 1086 error = EPROTONOSUPPORT; 1087 goto release; 1088 } 1089 if (sosp->so_options & SO_ACCEPTCONN) { 1090 error = EOPNOTSUPP; 1091 goto release; 1092 } 1093 if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) { 1094 error = ENOTCONN; 1095 goto release; 1096 } 1097 1098 /* Splice so and sosp together. */ 1099 so->so_splice = sosp; 1100 sosp->so_spliceback = so; 1101 so->so_splicelen = 0; 1102 so->so_splicemax = max; 1103 if (tv) 1104 so->so_idletv = *tv; 1105 else 1106 timerclear(&so->so_idletv); 1107 timeout_set(&so->so_idleto, soidle, so); 1108 1109 /* 1110 * To prevent softnet interrupt from calling somove() while 1111 * we sleep, the socket buffers are not marked as spliced yet. 1112 */ 1113 if (somove(so, M_WAIT)) { 1114 so->so_rcv.sb_flags |= SB_SPLICE; 1115 sosp->so_snd.sb_flags |= SB_SPLICE; 1116 } 1117 1118 release: 1119 splx(s); 1120 sbunlock(&sosp->so_snd); 1121 sbunlock(&so->so_rcv); 1122 FRELE(fp, curproc); 1123 return (error); 1124 } 1125 1126 void 1127 sounsplice(struct socket *so, struct socket *sosp, int wakeup) 1128 { 1129 splsoftassert(IPL_SOFTNET); 1130 1131 timeout_del(&so->so_idleto); 1132 sosp->so_snd.sb_flags &= ~SB_SPLICE; 1133 so->so_rcv.sb_flags &= ~SB_SPLICE; 1134 so->so_splice = sosp->so_spliceback = NULL; 1135 if (wakeup && soreadable(so)) 1136 sorwakeup(so); 1137 } 1138 1139 /* 1140 * Move data from receive buffer of spliced source socket to send 1141 * buffer of drain socket. Try to move as much as possible in one 1142 * big chunk. It is a TCP only implementation. 1143 * Return value 0 means splicing has been finished, 1 continue. 1144 */ 1145 int 1146 somove(struct socket *so, int wait) 1147 { 1148 struct socket *sosp = so->so_splice; 1149 struct mbuf *m = NULL, **mp; 1150 u_long len, off, oobmark; 1151 long space; 1152 int error = 0, maxreached = 0; 1153 short state; 1154 1155 splsoftassert(IPL_SOFTNET); 1156 1157 if (so->so_error) { 1158 error = so->so_error; 1159 goto release; 1160 } 1161 if (sosp->so_state & SS_CANTSENDMORE) { 1162 error = EPIPE; 1163 goto release; 1164 } 1165 if (sosp->so_error && sosp->so_error != ETIMEDOUT) { 1166 error = sosp->so_error; 1167 goto release; 1168 } 1169 if ((sosp->so_state & SS_ISCONNECTED) == 0) 1170 goto release; 1171 1172 /* Calculate how many bytes can be copied now. */ 1173 len = so->so_rcv.sb_cc; 1174 if (len == 0) 1175 goto release; 1176 if (so->so_splicemax) { 1177 KASSERT(so->so_splicelen < so->so_splicemax); 1178 if (so->so_splicemax <= so->so_splicelen + len) { 1179 len = so->so_splicemax - so->so_splicelen; 1180 maxreached = 1; 1181 } 1182 } 1183 space = sbspace(&sosp->so_snd); 1184 if (so->so_oobmark && so->so_oobmark < len && 1185 so->so_oobmark < space + 1024) 1186 space += 1024; 1187 if (space <= 0) { 1188 maxreached = 0; 1189 goto release; 1190 } 1191 if (space < len) { 1192 maxreached = 0; 1193 if (space < sosp->so_snd.sb_lowat) 1194 goto release; 1195 len = space; 1196 } 1197 sosp->so_state |= SS_ISSENDING; 1198 1199 /* Take at most len mbufs out of receive buffer. */ 1200 m = so->so_rcv.sb_mb; 1201 for (off = 0, mp = &m; off < len; 1202 off += (*mp)->m_len, mp = &(*mp)->m_next) { 1203 u_long size = len - off; 1204 1205 if ((*mp)->m_len > size) { 1206 if (!maxreached || (*mp = m_copym( 1207 so->so_rcv.sb_mb, 0, size, wait)) == NULL) { 1208 len -= size; 1209 break; 1210 } 1211 so->so_rcv.sb_mb->m_data += size; 1212 so->so_rcv.sb_mb->m_len -= size; 1213 so->so_rcv.sb_cc -= size; 1214 so->so_rcv.sb_datacc -= size; 1215 } else { 1216 *mp = so->so_rcv.sb_mb; 1217 sbfree(&so->so_rcv, *mp); 1218 so->so_rcv.sb_mb = (*mp)->m_next; 1219 } 1220 } 1221 *mp = NULL; 1222 SB_EMPTY_FIXUP(&so->so_rcv); 1223 so->so_rcv.sb_lastrecord = so->so_rcv.sb_mb; 1224 1225 SBLASTRECORDCHK(&so->so_rcv, "somove"); 1226 SBLASTMBUFCHK(&so->so_rcv, "somove"); 1227 KDASSERT(m->m_nextpkt == NULL); 1228 KASSERT(so->so_rcv.sb_mb == so->so_rcv.sb_lastrecord); 1229 #ifdef SOCKBUF_DEBUG 1230 sbcheck(&so->so_rcv); 1231 #endif 1232 1233 /* Send window update to source peer if receive buffer has changed. */ 1234 if (m) 1235 (so->so_proto->pr_usrreq)(so, PRU_RCVD, NULL, 1236 (struct mbuf *)0L, NULL, NULL); 1237 1238 /* Receive buffer did shrink by len bytes, adjust oob. */ 1239 state = so->so_state; 1240 so->so_state &= ~SS_RCVATMARK; 1241 oobmark = so->so_oobmark; 1242 so->so_oobmark = oobmark > len ? oobmark - len : 0; 1243 if (oobmark) { 1244 if (oobmark == len) 1245 so->so_state |= SS_RCVATMARK; 1246 if (oobmark >= len) 1247 oobmark = 0; 1248 } 1249 1250 /* 1251 * Handle oob data. If any malloc fails, ignore error. 1252 * TCP urgent data is not very reliable anyway. 1253 */ 1254 while (m && ((state & SS_RCVATMARK) || oobmark) && 1255 (so->so_options & SO_OOBINLINE)) { 1256 struct mbuf *o = NULL; 1257 1258 if (state & SS_RCVATMARK) { 1259 o = m_get(wait, MT_DATA); 1260 state &= ~SS_RCVATMARK; 1261 } else if (oobmark) { 1262 o = m_split(m, oobmark, wait); 1263 if (o) { 1264 error = (*sosp->so_proto->pr_usrreq)(sosp, 1265 PRU_SEND, m, NULL, NULL, NULL); 1266 m = NULL; 1267 if (error) { 1268 m_freem(o); 1269 if (sosp->so_state & SS_CANTSENDMORE) 1270 error = EPIPE; 1271 goto release; 1272 } 1273 len -= oobmark; 1274 so->so_splicelen += oobmark; 1275 m = o; 1276 o = m_get(wait, MT_DATA); 1277 } 1278 oobmark = 0; 1279 } 1280 if (o) { 1281 o->m_len = 1; 1282 *mtod(o, caddr_t) = *mtod(m, caddr_t); 1283 error = (*sosp->so_proto->pr_usrreq)(sosp, PRU_SENDOOB, 1284 o, NULL, NULL, NULL); 1285 if (error) { 1286 if (sosp->so_state & SS_CANTSENDMORE) 1287 error = EPIPE; 1288 goto release; 1289 } 1290 len -= 1; 1291 so->so_splicelen += 1; 1292 if (oobmark) { 1293 oobmark -= 1; 1294 if (oobmark == 0) 1295 state |= SS_RCVATMARK; 1296 } 1297 m_adj(m, 1); 1298 } 1299 } 1300 1301 /* Append all remaining data to drain socket. */ 1302 if (m) { 1303 if (so->so_rcv.sb_cc == 0 || maxreached) 1304 sosp->so_state &= ~SS_ISSENDING; 1305 error = (*sosp->so_proto->pr_usrreq)(sosp, PRU_SEND, m, NULL, 1306 NULL, NULL); 1307 m = NULL; 1308 if (error) { 1309 if (sosp->so_state & SS_CANTSENDMORE) 1310 error = EPIPE; 1311 goto release; 1312 } 1313 so->so_splicelen += len; 1314 } 1315 1316 release: 1317 if (m) 1318 m_freem(m); 1319 sosp->so_state &= ~SS_ISSENDING; 1320 if (error) 1321 so->so_error = error; 1322 if (((so->so_state & SS_CANTRCVMORE) && so->so_rcv.sb_cc == 0) || 1323 (sosp->so_state & SS_CANTSENDMORE) || maxreached || error) { 1324 sounsplice(so, sosp, 1); 1325 return (0); 1326 } 1327 if (timerisset(&so->so_idletv)) 1328 timeout_add_tv(&so->so_idleto, &so->so_idletv); 1329 return (1); 1330 } 1331 1332 void 1333 sorwakeup(struct socket *so) 1334 { 1335 if (so->so_rcv.sb_flags & SB_SPLICE) { 1336 (void) somove(so, M_DONTWAIT); 1337 return; 1338 } 1339 _sorwakeup(so); 1340 } 1341 1342 void 1343 sowwakeup(struct socket *so) 1344 { 1345 if (so->so_snd.sb_flags & SB_SPLICE) 1346 (void) somove(so->so_spliceback, M_DONTWAIT); 1347 _sowwakeup(so); 1348 } 1349 1350 void 1351 soidle(void *arg) 1352 { 1353 struct socket *so = arg; 1354 int s; 1355 1356 s = splsoftnet(); 1357 so->so_error = ETIMEDOUT; 1358 sounsplice(so, so->so_splice, 1); 1359 splx(s); 1360 } 1361 #endif /* SOCKET_SPLICE */ 1362 1363 int 1364 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0) 1365 { 1366 int error = 0; 1367 struct mbuf *m = m0; 1368 1369 if (level != SOL_SOCKET) { 1370 if (so->so_proto && so->so_proto->pr_ctloutput) 1371 return ((*so->so_proto->pr_ctloutput) 1372 (PRCO_SETOPT, so, level, optname, &m0)); 1373 error = ENOPROTOOPT; 1374 } else { 1375 switch (optname) { 1376 case SO_BINDANY: 1377 if ((error = suser(curproc, 0)) != 0) /* XXX */ 1378 goto bad; 1379 break; 1380 } 1381 1382 switch (optname) { 1383 1384 case SO_LINGER: 1385 if (m == NULL || m->m_len != sizeof (struct linger) || 1386 mtod(m, struct linger *)->l_linger < 0 || 1387 mtod(m, struct linger *)->l_linger > SHRT_MAX) { 1388 error = EINVAL; 1389 goto bad; 1390 } 1391 so->so_linger = mtod(m, struct linger *)->l_linger; 1392 /* FALLTHROUGH */ 1393 1394 case SO_BINDANY: 1395 case SO_DEBUG: 1396 case SO_KEEPALIVE: 1397 case SO_DONTROUTE: 1398 case SO_USELOOPBACK: 1399 case SO_BROADCAST: 1400 case SO_REUSEADDR: 1401 case SO_REUSEPORT: 1402 case SO_OOBINLINE: 1403 case SO_TIMESTAMP: 1404 if (m == NULL || m->m_len < sizeof (int)) { 1405 error = EINVAL; 1406 goto bad; 1407 } 1408 if (*mtod(m, int *)) 1409 so->so_options |= optname; 1410 else 1411 so->so_options &= ~optname; 1412 break; 1413 1414 case SO_SNDBUF: 1415 case SO_RCVBUF: 1416 case SO_SNDLOWAT: 1417 case SO_RCVLOWAT: 1418 { 1419 u_long cnt; 1420 1421 if (m == NULL || m->m_len < sizeof (int)) { 1422 error = EINVAL; 1423 goto bad; 1424 } 1425 cnt = *mtod(m, int *); 1426 if ((long)cnt <= 0) 1427 cnt = 1; 1428 switch (optname) { 1429 1430 case SO_SNDBUF: 1431 if (so->so_state & SS_CANTSENDMORE) { 1432 error = EINVAL; 1433 goto bad; 1434 } 1435 if (sbcheckreserve(cnt, so->so_snd.sb_wat) || 1436 sbreserve(&so->so_snd, cnt)) { 1437 error = ENOBUFS; 1438 goto bad; 1439 } 1440 so->so_snd.sb_wat = cnt; 1441 break; 1442 1443 case SO_RCVBUF: 1444 if (so->so_state & SS_CANTRCVMORE) { 1445 error = EINVAL; 1446 goto bad; 1447 } 1448 if (sbcheckreserve(cnt, so->so_rcv.sb_wat) || 1449 sbreserve(&so->so_rcv, cnt)) { 1450 error = ENOBUFS; 1451 goto bad; 1452 } 1453 so->so_rcv.sb_wat = cnt; 1454 break; 1455 1456 case SO_SNDLOWAT: 1457 so->so_snd.sb_lowat = 1458 (cnt > so->so_snd.sb_hiwat) ? 1459 so->so_snd.sb_hiwat : cnt; 1460 break; 1461 case SO_RCVLOWAT: 1462 so->so_rcv.sb_lowat = 1463 (cnt > so->so_rcv.sb_hiwat) ? 1464 so->so_rcv.sb_hiwat : cnt; 1465 break; 1466 } 1467 break; 1468 } 1469 1470 case SO_SNDTIMEO: 1471 case SO_RCVTIMEO: 1472 { 1473 struct timeval *tv; 1474 u_short val; 1475 1476 if (m == NULL || m->m_len < sizeof (*tv)) { 1477 error = EINVAL; 1478 goto bad; 1479 } 1480 tv = mtod(m, struct timeval *); 1481 if (tv->tv_sec > (USHRT_MAX - tv->tv_usec / tick) / hz) { 1482 error = EDOM; 1483 goto bad; 1484 } 1485 val = tv->tv_sec * hz + tv->tv_usec / tick; 1486 if (val == 0 && tv->tv_usec != 0) 1487 val = 1; 1488 1489 switch (optname) { 1490 1491 case SO_SNDTIMEO: 1492 so->so_snd.sb_timeo = val; 1493 break; 1494 case SO_RCVTIMEO: 1495 so->so_rcv.sb_timeo = val; 1496 break; 1497 } 1498 break; 1499 } 1500 1501 case SO_RTABLE: 1502 if (so->so_proto && so->so_proto->pr_domain && 1503 so->so_proto->pr_domain->dom_protosw && 1504 so->so_proto->pr_ctloutput) { 1505 struct domain *dom = so->so_proto->pr_domain; 1506 1507 level = dom->dom_protosw->pr_protocol; 1508 return ((*so->so_proto->pr_ctloutput) 1509 (PRCO_SETOPT, so, level, optname, &m0)); 1510 } 1511 error = ENOPROTOOPT; 1512 break; 1513 1514 #ifdef SOCKET_SPLICE 1515 case SO_SPLICE: 1516 if (m == NULL) { 1517 error = sosplice(so, -1, 0, NULL); 1518 } else if (m->m_len < sizeof(int)) { 1519 error = EINVAL; 1520 goto bad; 1521 } else if (m->m_len < sizeof(struct splice)) { 1522 error = sosplice(so, *mtod(m, int *), 0, NULL); 1523 } else { 1524 error = sosplice(so, 1525 mtod(m, struct splice *)->sp_fd, 1526 mtod(m, struct splice *)->sp_max, 1527 &mtod(m, struct splice *)->sp_idle); 1528 } 1529 break; 1530 #endif /* SOCKET_SPLICE */ 1531 1532 default: 1533 error = ENOPROTOOPT; 1534 break; 1535 } 1536 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1537 (void) ((*so->so_proto->pr_ctloutput) 1538 (PRCO_SETOPT, so, level, optname, &m0)); 1539 m = NULL; /* freed by protocol */ 1540 } 1541 } 1542 bad: 1543 if (m) 1544 (void) m_free(m); 1545 return (error); 1546 } 1547 1548 int 1549 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp) 1550 { 1551 struct mbuf *m; 1552 1553 if (level != SOL_SOCKET) { 1554 if (so->so_proto && so->so_proto->pr_ctloutput) { 1555 return ((*so->so_proto->pr_ctloutput) 1556 (PRCO_GETOPT, so, level, optname, mp)); 1557 } else 1558 return (ENOPROTOOPT); 1559 } else { 1560 m = m_get(M_WAIT, MT_SOOPTS); 1561 m->m_len = sizeof (int); 1562 1563 switch (optname) { 1564 1565 case SO_LINGER: 1566 m->m_len = sizeof (struct linger); 1567 mtod(m, struct linger *)->l_onoff = 1568 so->so_options & SO_LINGER; 1569 mtod(m, struct linger *)->l_linger = so->so_linger; 1570 break; 1571 1572 case SO_BINDANY: 1573 case SO_USELOOPBACK: 1574 case SO_DONTROUTE: 1575 case SO_DEBUG: 1576 case SO_KEEPALIVE: 1577 case SO_REUSEADDR: 1578 case SO_REUSEPORT: 1579 case SO_BROADCAST: 1580 case SO_OOBINLINE: 1581 case SO_TIMESTAMP: 1582 *mtod(m, int *) = so->so_options & optname; 1583 break; 1584 1585 case SO_TYPE: 1586 *mtod(m, int *) = so->so_type; 1587 break; 1588 1589 case SO_ERROR: 1590 *mtod(m, int *) = so->so_error; 1591 so->so_error = 0; 1592 break; 1593 1594 case SO_SNDBUF: 1595 *mtod(m, int *) = so->so_snd.sb_hiwat; 1596 break; 1597 1598 case SO_RCVBUF: 1599 *mtod(m, int *) = so->so_rcv.sb_hiwat; 1600 break; 1601 1602 case SO_SNDLOWAT: 1603 *mtod(m, int *) = so->so_snd.sb_lowat; 1604 break; 1605 1606 case SO_RCVLOWAT: 1607 *mtod(m, int *) = so->so_rcv.sb_lowat; 1608 break; 1609 1610 case SO_SNDTIMEO: 1611 case SO_RCVTIMEO: 1612 { 1613 int val = (optname == SO_SNDTIMEO ? 1614 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1615 1616 m->m_len = sizeof(struct timeval); 1617 mtod(m, struct timeval *)->tv_sec = val / hz; 1618 mtod(m, struct timeval *)->tv_usec = 1619 (val % hz) * tick; 1620 break; 1621 } 1622 1623 case SO_RTABLE: 1624 (void)m_free(m); 1625 if (so->so_proto && so->so_proto->pr_domain && 1626 so->so_proto->pr_domain->dom_protosw && 1627 so->so_proto->pr_ctloutput) { 1628 struct domain *dom = so->so_proto->pr_domain; 1629 1630 level = dom->dom_protosw->pr_protocol; 1631 return ((*so->so_proto->pr_ctloutput) 1632 (PRCO_GETOPT, so, level, optname, mp)); 1633 } 1634 return (ENOPROTOOPT); 1635 break; 1636 1637 #ifdef SOCKET_SPLICE 1638 case SO_SPLICE: 1639 { 1640 int s = splsoftnet(); 1641 1642 m->m_len = sizeof(off_t); 1643 *mtod(m, off_t *) = so->so_splicelen; 1644 splx(s); 1645 break; 1646 } 1647 #endif /* SOCKET_SPLICE */ 1648 1649 case SO_PEERCRED: 1650 if (so->so_proto->pr_protocol == AF_UNIX) { 1651 struct unpcb *unp = sotounpcb(so); 1652 1653 if (unp->unp_flags & UNP_FEIDS) { 1654 m->m_len = sizeof(unp->unp_connid); 1655 bcopy((caddr_t)(&(unp->unp_connid)), 1656 mtod(m, caddr_t), 1657 m->m_len); 1658 break; 1659 } 1660 (void)m_free(m); 1661 return (ENOTCONN); 1662 } 1663 (void)m_free(m); 1664 return (EOPNOTSUPP); 1665 break; 1666 1667 default: 1668 (void)m_free(m); 1669 return (ENOPROTOOPT); 1670 } 1671 *mp = m; 1672 return (0); 1673 } 1674 } 1675 1676 void 1677 sohasoutofband(struct socket *so) 1678 { 1679 csignal(so->so_pgid, SIGURG, so->so_siguid, so->so_sigeuid); 1680 selwakeup(&so->so_rcv.sb_sel); 1681 } 1682 1683 int 1684 soo_kqfilter(struct file *fp, struct knote *kn) 1685 { 1686 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1687 struct sockbuf *sb; 1688 int s; 1689 1690 switch (kn->kn_filter) { 1691 case EVFILT_READ: 1692 if (so->so_options & SO_ACCEPTCONN) 1693 kn->kn_fop = &solisten_filtops; 1694 else 1695 kn->kn_fop = &soread_filtops; 1696 sb = &so->so_rcv; 1697 break; 1698 case EVFILT_WRITE: 1699 kn->kn_fop = &sowrite_filtops; 1700 sb = &so->so_snd; 1701 break; 1702 default: 1703 return (EINVAL); 1704 } 1705 1706 s = splnet(); 1707 SLIST_INSERT_HEAD(&sb->sb_sel.si_note, kn, kn_selnext); 1708 sb->sb_flags |= SB_KNOTE; 1709 splx(s); 1710 return (0); 1711 } 1712 1713 void 1714 filt_sordetach(struct knote *kn) 1715 { 1716 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1717 int s = splnet(); 1718 1719 SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext); 1720 if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note)) 1721 so->so_rcv.sb_flags &= ~SB_KNOTE; 1722 splx(s); 1723 } 1724 1725 /*ARGSUSED*/ 1726 int 1727 filt_soread(struct knote *kn, long hint) 1728 { 1729 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1730 1731 kn->kn_data = so->so_rcv.sb_cc; 1732 #ifdef SOCKET_SPLICE 1733 if (so->so_splice) 1734 return (0); 1735 #endif /* SOCKET_SPLICE */ 1736 if (so->so_state & SS_CANTRCVMORE) { 1737 kn->kn_flags |= EV_EOF; 1738 kn->kn_fflags = so->so_error; 1739 return (1); 1740 } 1741 if (so->so_error) /* temporary udp error */ 1742 return (1); 1743 if (kn->kn_sfflags & NOTE_LOWAT) 1744 return (kn->kn_data >= kn->kn_sdata); 1745 return (kn->kn_data >= so->so_rcv.sb_lowat); 1746 } 1747 1748 void 1749 filt_sowdetach(struct knote *kn) 1750 { 1751 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1752 int s = splnet(); 1753 1754 SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext); 1755 if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note)) 1756 so->so_snd.sb_flags &= ~SB_KNOTE; 1757 splx(s); 1758 } 1759 1760 /*ARGSUSED*/ 1761 int 1762 filt_sowrite(struct knote *kn, long hint) 1763 { 1764 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1765 1766 kn->kn_data = sbspace(&so->so_snd); 1767 if (so->so_state & SS_CANTSENDMORE) { 1768 kn->kn_flags |= EV_EOF; 1769 kn->kn_fflags = so->so_error; 1770 return (1); 1771 } 1772 if (so->so_error) /* temporary udp error */ 1773 return (1); 1774 if (((so->so_state & SS_ISCONNECTED) == 0) && 1775 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1776 return (0); 1777 if (kn->kn_sfflags & NOTE_LOWAT) 1778 return (kn->kn_data >= kn->kn_sdata); 1779 return (kn->kn_data >= so->so_snd.sb_lowat); 1780 } 1781 1782 /*ARGSUSED*/ 1783 int 1784 filt_solisten(struct knote *kn, long hint) 1785 { 1786 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1787 1788 kn->kn_data = so->so_qlen; 1789 return (so->so_qlen != 0); 1790 } 1791