1 /* $OpenBSD: vfs_bio.c,v 1.133 2011/07/06 20:50:05 beck Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /* 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/resourcevar.h> 57 #include <sys/conf.h> 58 #include <sys/kernel.h> 59 #include <sys/specdev.h> 60 61 #include <uvm/uvm_extern.h> 62 63 /* 64 * Definitions for the buffer free lists. 65 */ 66 #define BQUEUES 2 /* number of free buffer queues */ 67 68 #define BQ_DIRTY 0 /* LRU queue with dirty buffers */ 69 #define BQ_CLEAN 1 /* LRU queue with clean buffers */ 70 71 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 72 int needbuffer; 73 struct bio_ops bioops; 74 75 /* 76 * Buffer pool for I/O buffers. 77 */ 78 struct pool bufpool; 79 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 80 void buf_put(struct buf *); 81 82 /* 83 * Insq/Remq for the buffer free lists. 84 */ 85 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 86 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 87 88 struct buf *bio_doread(struct vnode *, daddr64_t, int, int); 89 struct buf *buf_get(struct vnode *, daddr64_t, size_t); 90 void bread_cluster_callback(struct buf *); 91 92 /* 93 * We keep a few counters to monitor the utilization of the buffer cache 94 * 95 * numbufpages - number of pages totally allocated. 96 * numdirtypages - number of pages on BQ_DIRTY queue. 97 * lodirtypages - low water mark for buffer cleaning daemon. 98 * hidirtypages - high water mark for buffer cleaning daemon. 99 * numcleanpages - number of pages on BQ_CLEAN queue. 100 * Used to track the need to speedup the cleaner and 101 * as a reserve for special processes like syncer. 102 * maxcleanpages - the highest page count on BQ_CLEAN. 103 */ 104 105 struct bcachestats bcstats; 106 long lodirtypages; 107 long hidirtypages; 108 long locleanpages; 109 long hicleanpages; 110 long maxcleanpages; 111 long backoffpages; /* backoff counter for page allocations */ 112 long buflowpages; /* bufpages low water mark */ 113 long bufhighpages; /* bufpages high water mark */ 114 long bufbackpages; /* number of pages we back off when asked to shrink */ 115 116 vsize_t bufkvm; 117 118 struct proc *cleanerproc; 119 int bd_req; /* Sleep point for cleaner daemon. */ 120 121 void 122 bremfree(struct buf *bp) 123 { 124 struct bqueues *dp = NULL; 125 126 splassert(IPL_BIO); 127 128 /* 129 * We only calculate the head of the freelist when removing 130 * the last element of the list as that is the only time that 131 * it is needed (e.g. to reset the tail pointer). 132 * 133 * NB: This makes an assumption about how tailq's are implemented. 134 */ 135 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 136 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 137 if (dp->tqh_last == &TAILQ_NEXT(bp, b_freelist)) 138 break; 139 if (dp == &bufqueues[BQUEUES]) 140 panic("bremfree: lost tail"); 141 } 142 if (!ISSET(bp->b_flags, B_DELWRI)) { 143 bcstats.numcleanpages -= atop(bp->b_bufsize); 144 } else { 145 bcstats.numdirtypages -= atop(bp->b_bufsize); 146 } 147 TAILQ_REMOVE(dp, bp, b_freelist); 148 bcstats.freebufs--; 149 } 150 151 void 152 buf_put(struct buf *bp) 153 { 154 splassert(IPL_BIO); 155 156 #ifdef DIAGNOSTIC 157 if (bp->b_pobj != NULL) 158 KASSERT(bp->b_bufsize > 0); 159 if (ISSET(bp->b_flags, B_DELWRI)) 160 panic("buf_put: releasing dirty buffer"); 161 if (bp->b_freelist.tqe_next != NOLIST && 162 bp->b_freelist.tqe_next != (void *)-1) 163 panic("buf_put: still on the free list"); 164 if (bp->b_vnbufs.le_next != NOLIST && 165 bp->b_vnbufs.le_next != (void *)-1) 166 panic("buf_put: still on the vnode list"); 167 if (!LIST_EMPTY(&bp->b_dep)) 168 panic("buf_put: b_dep is not empty"); 169 #endif 170 171 LIST_REMOVE(bp, b_list); 172 bcstats.numbufs--; 173 if (backoffpages) { 174 backoffpages -= atop(bp->b_bufsize); 175 if (backoffpages < 0) 176 backoffpages = 0; 177 } 178 179 if (buf_dealloc_mem(bp) != 0) 180 return; 181 pool_put(&bufpool, bp); 182 } 183 184 /* 185 * Initialize buffers and hash links for buffers. 186 */ 187 void 188 bufinit(void) 189 { 190 u_int64_t dmapages; 191 struct bqueues *dp; 192 193 dmapages = uvm_pagecount(&dma_constraint); 194 195 /* 196 * If MD code doesn't say otherwise, use 10% of kvm for mappings and 197 * 10% of dmaable pages for cache pages. 198 */ 199 if (bufcachepercent == 0) 200 bufcachepercent = 10; 201 if (bufpages == 0) 202 bufpages = dmapages * bufcachepercent / 100; 203 204 bufhighpages = bufpages; 205 206 /* 207 * set the base backoff level for the buffer cache to bufpages. 208 * we will not allow uvm to steal back more than this number of 209 * pages 210 */ 211 buflowpages = dmapages * 10 / 100; 212 213 /* 214 * set bufbackpages to 100 pages, or 10 percent of the low water mark 215 * if we don't have that many pages. 216 */ 217 218 bufbackpages = buflowpages * 10 / 100; 219 if (bufbackpages > 100) 220 bufbackpages = 100; 221 222 if (bufkvm == 0) 223 bufkvm = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 10; 224 225 /* 226 * Don't use more than twice the amount of bufpages for mappings. 227 * It's twice since we map things sparsely. 228 */ 229 if (bufkvm > bufpages * PAGE_SIZE) 230 bufkvm = bufpages * PAGE_SIZE; 231 /* 232 * Round bufkvm to MAXPHYS because we allocate chunks of va space 233 * in MAXPHYS chunks. 234 */ 235 bufkvm &= ~(MAXPHYS - 1); 236 237 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 238 pool_setipl(&bufpool, IPL_BIO); 239 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 240 TAILQ_INIT(dp); 241 242 /* 243 * hmm - bufkvm is an argument because it's static, while 244 * bufpages is global because it can change while running. 245 */ 246 buf_mem_init(bufkvm); 247 248 hidirtypages = (bufpages / 4) * 3; 249 lodirtypages = bufpages / 2; 250 251 /* 252 * When we hit 95% of pages being clean, we bring them down to 253 * 90% to have some slack. 254 */ 255 hicleanpages = bufpages - (bufpages / 20); 256 locleanpages = bufpages - (bufpages / 10); 257 258 maxcleanpages = locleanpages; 259 } 260 261 /* 262 * Change cachepct 263 */ 264 void 265 bufadjust(int newbufpages) 266 { 267 /* 268 * XXX - note, bufkvm was allocated once, based on 10% of physmem 269 * see above. 270 */ 271 struct buf *bp; 272 int s; 273 274 s = splbio(); 275 bufpages = newbufpages; 276 277 hidirtypages = (bufpages / 4) * 3; 278 lodirtypages = bufpages / 2; 279 280 /* 281 * When we hit 95% of pages being clean, we bring them down to 282 * 90% to have some slack. 283 */ 284 hicleanpages = bufpages - (bufpages / 20); 285 locleanpages = bufpages - (bufpages / 10); 286 287 maxcleanpages = locleanpages; 288 289 /* 290 * If we we have more buffers allocated than bufpages, 291 * free them up to get back down. this may possibly consume 292 * all our clean pages... 293 */ 294 while ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) && 295 (bcstats.numbufpages > bufpages)) { 296 bremfree(bp); 297 if (bp->b_vp) { 298 RB_REMOVE(buf_rb_bufs, 299 &bp->b_vp->v_bufs_tree, bp); 300 brelvp(bp); 301 } 302 buf_put(bp); 303 } 304 305 /* 306 * Wake up cleaner if we're getting low on pages. We might 307 * now have too much dirty, or have fallen below our low 308 * water mark on clean pages so we need to free more stuff 309 * up. 310 */ 311 if (bcstats.numdirtypages >= hidirtypages || 312 bcstats.numcleanpages <= locleanpages) 313 wakeup(&bd_req); 314 315 /* 316 * if immediate action has not freed up enough goo for us 317 * to proceed - we tsleep and wait for the cleaner above 318 * to do it's work and get us reduced down to sanity. 319 */ 320 while (bcstats.numbufpages > bufpages) { 321 tsleep(&needbuffer, PRIBIO, "needbuffer", 0); 322 } 323 splx(s); 324 } 325 326 /* 327 * Make the buffer cache back off from cachepct. 328 */ 329 int 330 bufbackoff(struct uvm_constraint_range *range, long size) 331 { 332 /* 333 * Back off the amount of buffer cache pages. Called by the page 334 * daemon to consume buffer cache pages rather than swapping. 335 * 336 * On success, it frees N pages from the buffer cache, and sets 337 * a flag so that the next N allocations from buf_get will recycle 338 * a buffer rather than allocate a new one. It then returns 0 to the 339 * caller. 340 * 341 * on failure, it could free no pages from the buffer cache, does 342 * nothing and returns -1 to the caller. 343 */ 344 long d; 345 346 if (bufpages <= buflowpages) 347 return(-1); 348 349 if (bufpages - bufbackpages >= buflowpages) 350 d = bufbackpages; 351 else 352 d = bufpages - buflowpages; 353 backoffpages = bufbackpages; 354 bufadjust(bufpages - d); 355 backoffpages = bufbackpages; 356 return(0); 357 } 358 359 struct buf * 360 bio_doread(struct vnode *vp, daddr64_t blkno, int size, int async) 361 { 362 struct buf *bp; 363 struct mount *mp; 364 365 bp = getblk(vp, blkno, size, 0, 0); 366 367 /* 368 * If buffer does not have valid data, start a read. 369 * Note that if buffer is B_INVAL, getblk() won't return it. 370 * Therefore, it's valid if its I/O has completed or been delayed. 371 */ 372 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 373 SET(bp->b_flags, B_READ | async); 374 bcstats.pendingreads++; 375 bcstats.numreads++; 376 VOP_STRATEGY(bp); 377 /* Pay for the read. */ 378 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 379 } else if (async) { 380 brelse(bp); 381 } 382 383 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 384 385 /* 386 * Collect statistics on synchronous and asynchronous reads. 387 * Reads from block devices are charged to their associated 388 * filesystem (if any). 389 */ 390 if (mp != NULL) { 391 if (async == 0) 392 mp->mnt_stat.f_syncreads++; 393 else 394 mp->mnt_stat.f_asyncreads++; 395 } 396 397 return (bp); 398 } 399 400 /* 401 * Read a disk block. 402 * This algorithm described in Bach (p.54). 403 */ 404 int 405 bread(struct vnode *vp, daddr64_t blkno, int size, struct buf **bpp) 406 { 407 struct buf *bp; 408 409 /* Get buffer for block. */ 410 bp = *bpp = bio_doread(vp, blkno, size, 0); 411 412 /* Wait for the read to complete, and return result. */ 413 return (biowait(bp)); 414 } 415 416 /* 417 * Read-ahead multiple disk blocks. The first is sync, the rest async. 418 * Trivial modification to the breada algorithm presented in Bach (p.55). 419 */ 420 int 421 breadn(struct vnode *vp, daddr64_t blkno, int size, daddr64_t rablks[], 422 int rasizes[], int nrablks, struct buf **bpp) 423 { 424 struct buf *bp; 425 int i; 426 427 bp = *bpp = bio_doread(vp, blkno, size, 0); 428 429 /* 430 * For each of the read-ahead blocks, start a read, if necessary. 431 */ 432 for (i = 0; i < nrablks; i++) { 433 /* If it's in the cache, just go on to next one. */ 434 if (incore(vp, rablks[i])) 435 continue; 436 437 /* Get a buffer for the read-ahead block */ 438 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 439 } 440 441 /* Otherwise, we had to start a read for it; wait until it's valid. */ 442 return (biowait(bp)); 443 } 444 445 /* 446 * Called from interrupt context. 447 */ 448 void 449 bread_cluster_callback(struct buf *bp) 450 { 451 struct buf **xbpp = bp->b_saveaddr; 452 int i; 453 454 if (xbpp[1] != NULL) { 455 size_t newsize = xbpp[1]->b_bufsize; 456 457 /* 458 * Shrink this buffer's mapping to only cover its part of 459 * the total I/O. 460 */ 461 buf_fix_mapping(bp, newsize); 462 bp->b_bcount = newsize; 463 } 464 465 for (i = 1; xbpp[i] != 0; i++) { 466 if (ISSET(bp->b_flags, B_ERROR)) 467 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 468 biodone(xbpp[i]); 469 } 470 471 free(xbpp, M_TEMP); 472 473 if (ISSET(bp->b_flags, B_ASYNC)) { 474 brelse(bp); 475 } else { 476 CLR(bp->b_flags, B_WANTED); 477 wakeup(bp); 478 } 479 } 480 481 int 482 bread_cluster(struct vnode *vp, daddr64_t blkno, int size, struct buf **rbpp) 483 { 484 struct buf *bp, **xbpp; 485 int howmany, maxra, i, inc; 486 daddr64_t sblkno; 487 488 *rbpp = bio_doread(vp, blkno, size, 0); 489 490 if (size != round_page(size)) 491 goto out; 492 493 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 494 goto out; 495 496 maxra++; 497 if (sblkno == -1 || maxra < 2) 498 goto out; 499 500 howmany = MAXPHYS / size; 501 if (howmany > maxra) 502 howmany = maxra; 503 504 xbpp = malloc((howmany + 1) * sizeof(struct buf *), M_TEMP, M_NOWAIT); 505 if (xbpp == NULL) 506 goto out; 507 508 for (i = howmany - 1; i >= 0; i--) { 509 size_t sz; 510 511 /* 512 * First buffer allocates big enough size to cover what 513 * all the other buffers need. 514 */ 515 sz = i == 0 ? howmany * size : 0; 516 517 xbpp[i] = buf_get(vp, blkno + i + 1, sz); 518 if (xbpp[i] == NULL) { 519 for (++i; i < howmany; i++) { 520 SET(xbpp[i]->b_flags, B_INVAL); 521 brelse(xbpp[i]); 522 } 523 free(xbpp, M_TEMP); 524 goto out; 525 } 526 } 527 528 bp = xbpp[0]; 529 530 xbpp[howmany] = 0; 531 532 inc = btodb(size); 533 534 for (i = 1; i < howmany; i++) { 535 bcstats.pendingreads++; 536 bcstats.numreads++; 537 SET(xbpp[i]->b_flags, B_READ | B_ASYNC); 538 xbpp[i]->b_blkno = sblkno + (i * inc); 539 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 540 xbpp[i]->b_data = NULL; 541 xbpp[i]->b_pobj = bp->b_pobj; 542 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 543 } 544 545 KASSERT(bp->b_lblkno == blkno + 1); 546 KASSERT(bp->b_vp == vp); 547 548 bp->b_blkno = sblkno; 549 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 550 551 bp->b_saveaddr = (void *)xbpp; 552 bp->b_iodone = bread_cluster_callback; 553 554 bcstats.pendingreads++; 555 bcstats.numreads++; 556 VOP_STRATEGY(bp); 557 curproc->p_stats->p_ru.ru_inblock++; 558 559 out: 560 return (biowait(*rbpp)); 561 } 562 563 /* 564 * Block write. Described in Bach (p.56) 565 */ 566 int 567 bwrite(struct buf *bp) 568 { 569 int rv, async, wasdelayed, s; 570 struct vnode *vp; 571 struct mount *mp; 572 573 vp = bp->b_vp; 574 if (vp != NULL) 575 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 576 else 577 mp = NULL; 578 579 /* 580 * Remember buffer type, to switch on it later. If the write was 581 * synchronous, but the file system was mounted with MNT_ASYNC, 582 * convert it to a delayed write. 583 * XXX note that this relies on delayed tape writes being converted 584 * to async, not sync writes (which is safe, but ugly). 585 */ 586 async = ISSET(bp->b_flags, B_ASYNC); 587 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 588 bdwrite(bp); 589 return (0); 590 } 591 592 /* 593 * Collect statistics on synchronous and asynchronous writes. 594 * Writes to block devices are charged to their associated 595 * filesystem (if any). 596 */ 597 if (mp != NULL) { 598 if (async) 599 mp->mnt_stat.f_asyncwrites++; 600 else 601 mp->mnt_stat.f_syncwrites++; 602 } 603 bcstats.pendingwrites++; 604 bcstats.numwrites++; 605 606 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 607 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 608 609 s = splbio(); 610 611 /* 612 * If not synchronous, pay for the I/O operation and make 613 * sure the buf is on the correct vnode queue. We have 614 * to do this now, because if we don't, the vnode may not 615 * be properly notified that its I/O has completed. 616 */ 617 if (wasdelayed) { 618 reassignbuf(bp); 619 } else 620 curproc->p_stats->p_ru.ru_oublock++; 621 622 623 /* Initiate disk write. Make sure the appropriate party is charged. */ 624 bp->b_vp->v_numoutput++; 625 splx(s); 626 SET(bp->b_flags, B_WRITEINPROG); 627 VOP_STRATEGY(bp); 628 629 if (async) 630 return (0); 631 632 /* 633 * If I/O was synchronous, wait for it to complete. 634 */ 635 rv = biowait(bp); 636 637 /* Release the buffer. */ 638 brelse(bp); 639 640 return (rv); 641 } 642 643 644 /* 645 * Delayed write. 646 * 647 * The buffer is marked dirty, but is not queued for I/O. 648 * This routine should be used when the buffer is expected 649 * to be modified again soon, typically a small write that 650 * partially fills a buffer. 651 * 652 * NB: magnetic tapes cannot be delayed; they must be 653 * written in the order that the writes are requested. 654 * 655 * Described in Leffler, et al. (pp. 208-213). 656 */ 657 void 658 bdwrite(struct buf *bp) 659 { 660 int s; 661 662 /* 663 * If the block hasn't been seen before: 664 * (1) Mark it as having been seen, 665 * (2) Charge for the write. 666 * (3) Make sure it's on its vnode's correct block list, 667 * (4) If a buffer is rewritten, move it to end of dirty list 668 */ 669 if (!ISSET(bp->b_flags, B_DELWRI)) { 670 SET(bp->b_flags, B_DELWRI); 671 s = splbio(); 672 reassignbuf(bp); 673 splx(s); 674 curproc->p_stats->p_ru.ru_oublock++; /* XXX */ 675 } 676 677 /* If this is a tape block, write the block now. */ 678 if (major(bp->b_dev) < nblkdev && 679 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 680 bawrite(bp); 681 return; 682 } 683 684 /* Otherwise, the "write" is done, so mark and release the buffer. */ 685 CLR(bp->b_flags, B_NEEDCOMMIT); 686 SET(bp->b_flags, B_DONE); 687 brelse(bp); 688 } 689 690 /* 691 * Asynchronous block write; just an asynchronous bwrite(). 692 */ 693 void 694 bawrite(struct buf *bp) 695 { 696 697 SET(bp->b_flags, B_ASYNC); 698 VOP_BWRITE(bp); 699 } 700 701 /* 702 * Must be called at splbio() 703 */ 704 void 705 buf_dirty(struct buf *bp) 706 { 707 splassert(IPL_BIO); 708 709 #ifdef DIAGNOSTIC 710 if (!ISSET(bp->b_flags, B_BUSY)) 711 panic("Trying to dirty buffer on freelist!"); 712 #endif 713 714 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 715 SET(bp->b_flags, B_DELWRI); 716 reassignbuf(bp); 717 } 718 } 719 720 /* 721 * Must be called at splbio() 722 */ 723 void 724 buf_undirty(struct buf *bp) 725 { 726 splassert(IPL_BIO); 727 728 #ifdef DIAGNOSTIC 729 if (!ISSET(bp->b_flags, B_BUSY)) 730 panic("Trying to undirty buffer on freelist!"); 731 #endif 732 if (ISSET(bp->b_flags, B_DELWRI)) { 733 CLR(bp->b_flags, B_DELWRI); 734 reassignbuf(bp); 735 } 736 } 737 738 /* 739 * Release a buffer on to the free lists. 740 * Described in Bach (p. 46). 741 */ 742 void 743 brelse(struct buf *bp) 744 { 745 struct bqueues *bufq; 746 int s; 747 748 s = splbio(); 749 750 if (bp->b_data != NULL) 751 KASSERT(bp->b_bufsize > 0); 752 753 /* 754 * Determine which queue the buffer should be on, then put it there. 755 */ 756 757 /* If it's not cacheable, or an error, mark it invalid. */ 758 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 759 SET(bp->b_flags, B_INVAL); 760 761 if (ISSET(bp->b_flags, B_INVAL)) { 762 /* 763 * If the buffer is invalid, place it in the clean queue, so it 764 * can be reused. 765 */ 766 if (LIST_FIRST(&bp->b_dep) != NULL) 767 buf_deallocate(bp); 768 769 if (ISSET(bp->b_flags, B_DELWRI)) { 770 CLR(bp->b_flags, B_DELWRI); 771 } 772 773 if (bp->b_vp) { 774 RB_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, 775 bp); 776 brelvp(bp); 777 } 778 bp->b_vp = NULL; 779 780 /* 781 * If the buffer has no associated data, place it back in the 782 * pool. 783 */ 784 if (bp->b_data == NULL && bp->b_pobj == NULL) { 785 /* 786 * Wake up any processes waiting for _this_ buffer to 787 * become free. They are not allowed to grab it 788 * since it will be freed. But the only sleeper is 789 * getblk and it's restarting the operation after 790 * sleep. 791 */ 792 if (ISSET(bp->b_flags, B_WANTED)) { 793 CLR(bp->b_flags, B_WANTED); 794 wakeup(bp); 795 } 796 if (bp->b_vp != NULL) 797 RB_REMOVE(buf_rb_bufs, 798 &bp->b_vp->v_bufs_tree, bp); 799 buf_put(bp); 800 splx(s); 801 return; 802 } 803 804 bcstats.numcleanpages += atop(bp->b_bufsize); 805 if (maxcleanpages < bcstats.numcleanpages) 806 maxcleanpages = bcstats.numcleanpages; 807 binsheadfree(bp, &bufqueues[BQ_CLEAN]); 808 } else { 809 /* 810 * It has valid data. Put it on the end of the appropriate 811 * queue, so that it'll stick around for as long as possible. 812 */ 813 814 if (!ISSET(bp->b_flags, B_DELWRI)) { 815 bcstats.numcleanpages += atop(bp->b_bufsize); 816 if (maxcleanpages < bcstats.numcleanpages) 817 maxcleanpages = bcstats.numcleanpages; 818 bufq = &bufqueues[BQ_CLEAN]; 819 } else { 820 bcstats.numdirtypages += atop(bp->b_bufsize); 821 bufq = &bufqueues[BQ_DIRTY]; 822 } 823 if (ISSET(bp->b_flags, B_AGE)) { 824 binsheadfree(bp, bufq); 825 bp->b_synctime = time_uptime + 30; 826 } else { 827 binstailfree(bp, bufq); 828 bp->b_synctime = time_uptime + 300; 829 } 830 } 831 832 /* Unlock the buffer. */ 833 bcstats.freebufs++; 834 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 835 buf_release(bp); 836 837 /* Wake up any processes waiting for any buffer to become free. */ 838 if (needbuffer) { 839 needbuffer--; 840 wakeup(&needbuffer); 841 } 842 843 /* Wake up any processes waiting for _this_ buffer to become free. */ 844 if (ISSET(bp->b_flags, B_WANTED)) { 845 CLR(bp->b_flags, B_WANTED); 846 wakeup(bp); 847 } 848 849 splx(s); 850 } 851 852 /* 853 * Determine if a block is in the cache. Just look on what would be its hash 854 * chain. If it's there, return a pointer to it, unless it's marked invalid. 855 */ 856 struct buf * 857 incore(struct vnode *vp, daddr64_t blkno) 858 { 859 struct buf *bp; 860 struct buf b; 861 int s; 862 863 s = splbio(); 864 865 /* Search buf lookup tree */ 866 b.b_lblkno = blkno; 867 bp = RB_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 868 if (bp != NULL && ISSET(bp->b_flags, B_INVAL)) 869 bp = NULL; 870 871 splx(s); 872 return (bp); 873 } 874 875 /* 876 * Get a block of requested size that is associated with 877 * a given vnode and block offset. If it is found in the 878 * block cache, mark it as having been found, make it busy 879 * and return it. Otherwise, return an empty block of the 880 * correct size. It is up to the caller to ensure that the 881 * cached blocks be of the correct size. 882 */ 883 struct buf * 884 getblk(struct vnode *vp, daddr64_t blkno, int size, int slpflag, int slptimeo) 885 { 886 struct buf *bp; 887 struct buf b; 888 int s, error; 889 890 /* 891 * XXX 892 * The following is an inlined version of 'incore()', but with 893 * the 'invalid' test moved to after the 'busy' test. It's 894 * necessary because there are some cases in which the NFS 895 * code sets B_INVAL prior to writing data to the server, but 896 * in which the buffers actually contain valid data. In this 897 * case, we can't allow the system to allocate a new buffer for 898 * the block until the write is finished. 899 */ 900 start: 901 s = splbio(); 902 b.b_lblkno = blkno; 903 bp = RB_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 904 if (bp != NULL) { 905 if (ISSET(bp->b_flags, B_BUSY)) { 906 SET(bp->b_flags, B_WANTED); 907 error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 908 slptimeo); 909 splx(s); 910 if (error) 911 return (NULL); 912 goto start; 913 } 914 915 if (!ISSET(bp->b_flags, B_INVAL)) { 916 bcstats.cachehits++; 917 SET(bp->b_flags, B_CACHE); 918 bremfree(bp); 919 buf_acquire(bp); 920 splx(s); 921 return (bp); 922 } 923 } 924 splx(s); 925 926 if ((bp = buf_get(vp, blkno, size)) == NULL) 927 goto start; 928 929 return (bp); 930 } 931 932 /* 933 * Get an empty, disassociated buffer of given size. 934 */ 935 struct buf * 936 geteblk(int size) 937 { 938 struct buf *bp; 939 940 while ((bp = buf_get(NULL, 0, size)) == NULL) 941 ; 942 943 return (bp); 944 } 945 946 /* 947 * Allocate a buffer. 948 */ 949 struct buf * 950 buf_get(struct vnode *vp, daddr64_t blkno, size_t size) 951 { 952 static int gcount = 0; 953 struct buf *bp; 954 int poolwait = size == 0 ? PR_NOWAIT : PR_WAITOK; 955 int npages; 956 int s; 957 958 /* 959 * if we were previously backed off, slowly climb back up 960 * to the high water mark again. 961 */ 962 if ((backoffpages == 0) && (bufpages < bufhighpages)) { 963 if ( gcount == 0 ) { 964 bufadjust(bufpages + bufbackpages); 965 gcount += bufbackpages; 966 } else 967 gcount--; 968 } 969 970 s = splbio(); 971 if (size) { 972 /* 973 * Wake up cleaner if we're getting low on pages. 974 */ 975 if (bcstats.numdirtypages >= hidirtypages || 976 bcstats.numcleanpages <= locleanpages) 977 wakeup(&bd_req); 978 979 /* 980 * If we're above the high water mark for clean pages, 981 * free down to the low water mark. 982 */ 983 if (bcstats.numcleanpages > hicleanpages) { 984 while (bcstats.numcleanpages > locleanpages) { 985 bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN]); 986 bremfree(bp); 987 if (bp->b_vp) { 988 RB_REMOVE(buf_rb_bufs, 989 &bp->b_vp->v_bufs_tree, bp); 990 brelvp(bp); 991 } 992 buf_put(bp); 993 } 994 } 995 996 npages = atop(round_page(size)); 997 998 /* 999 * Free some buffers until we have enough space. 1000 */ 1001 while ((bcstats.numbufpages + npages > bufpages) 1002 || backoffpages) { 1003 int freemax = 5; 1004 int i = freemax; 1005 while ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) && i--) { 1006 bremfree(bp); 1007 if (bp->b_vp) { 1008 RB_REMOVE(buf_rb_bufs, 1009 &bp->b_vp->v_bufs_tree, bp); 1010 brelvp(bp); 1011 } 1012 buf_put(bp); 1013 } 1014 if (freemax == i && 1015 (bcstats.numbufpages + npages > bufpages)) { 1016 needbuffer++; 1017 tsleep(&needbuffer, PRIBIO, "needbuffer", 0); 1018 splx(s); 1019 return (NULL); 1020 } 1021 } 1022 } 1023 1024 bp = pool_get(&bufpool, poolwait|PR_ZERO); 1025 1026 if (bp == NULL) { 1027 splx(s); 1028 return (NULL); 1029 } 1030 1031 bp->b_freelist.tqe_next = NOLIST; 1032 bp->b_synctime = time_uptime + 300; 1033 bp->b_dev = NODEV; 1034 LIST_INIT(&bp->b_dep); 1035 bp->b_bcount = size; 1036 1037 buf_acquire_unmapped(bp); 1038 1039 if (vp != NULL) { 1040 /* 1041 * We insert the buffer into the hash with B_BUSY set 1042 * while we allocate pages for it. This way any getblk 1043 * that happens while we allocate pages will wait for 1044 * this buffer instead of starting its own guf_get. 1045 * 1046 * But first, we check if someone beat us to it. 1047 */ 1048 if (incore(vp, blkno)) { 1049 pool_put(&bufpool, bp); 1050 splx(s); 1051 return (NULL); 1052 } 1053 1054 bp->b_blkno = bp->b_lblkno = blkno; 1055 bgetvp(vp, bp); 1056 if (RB_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp)) 1057 panic("buf_get: dup lblk vp %p bp %p", vp, bp); 1058 } else { 1059 bp->b_vnbufs.le_next = NOLIST; 1060 SET(bp->b_flags, B_INVAL); 1061 bp->b_vp = NULL; 1062 } 1063 1064 LIST_INSERT_HEAD(&bufhead, bp, b_list); 1065 bcstats.numbufs++; 1066 1067 if (size) { 1068 buf_alloc_pages(bp, round_page(size)); 1069 buf_map(bp); 1070 } 1071 1072 splx(s); 1073 1074 return (bp); 1075 } 1076 1077 /* 1078 * Buffer cleaning daemon. 1079 */ 1080 void 1081 buf_daemon(struct proc *p) 1082 { 1083 struct timeval starttime, timediff; 1084 struct buf *bp; 1085 int s; 1086 1087 cleanerproc = curproc; 1088 1089 s = splbio(); 1090 for (;;) { 1091 if (bcstats.numdirtypages < hidirtypages) 1092 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 1093 1094 getmicrouptime(&starttime); 1095 1096 while ((bp = TAILQ_FIRST(&bufqueues[BQ_DIRTY]))) { 1097 struct timeval tv; 1098 1099 if (bcstats.numdirtypages < lodirtypages) 1100 break; 1101 1102 bremfree(bp); 1103 buf_acquire(bp); 1104 splx(s); 1105 1106 if (ISSET(bp->b_flags, B_INVAL)) { 1107 brelse(bp); 1108 s = splbio(); 1109 continue; 1110 } 1111 #ifdef DIAGNOSTIC 1112 if (!ISSET(bp->b_flags, B_DELWRI)) 1113 panic("Clean buffer on BQ_DIRTY"); 1114 #endif 1115 if (LIST_FIRST(&bp->b_dep) != NULL && 1116 !ISSET(bp->b_flags, B_DEFERRED) && 1117 buf_countdeps(bp, 0, 0)) { 1118 SET(bp->b_flags, B_DEFERRED); 1119 s = splbio(); 1120 bcstats.numdirtypages += atop(bp->b_bufsize); 1121 binstailfree(bp, &bufqueues[BQ_DIRTY]); 1122 bcstats.freebufs++; 1123 buf_release(bp); 1124 continue; 1125 } 1126 1127 bawrite(bp); 1128 1129 /* Never allow processing to run for more than 1 sec */ 1130 getmicrouptime(&tv); 1131 timersub(&tv, &starttime, &timediff); 1132 s = splbio(); 1133 if (timediff.tv_sec) 1134 break; 1135 1136 } 1137 } 1138 } 1139 1140 /* 1141 * Wait for operations on the buffer to complete. 1142 * When they do, extract and return the I/O's error value. 1143 */ 1144 int 1145 biowait(struct buf *bp) 1146 { 1147 int s; 1148 1149 KASSERT(!(bp->b_flags & B_ASYNC)); 1150 1151 s = splbio(); 1152 while (!ISSET(bp->b_flags, B_DONE)) 1153 tsleep(bp, PRIBIO + 1, "biowait", 0); 1154 splx(s); 1155 1156 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1157 if (ISSET(bp->b_flags, B_EINTR)) { 1158 CLR(bp->b_flags, B_EINTR); 1159 return (EINTR); 1160 } 1161 1162 if (ISSET(bp->b_flags, B_ERROR)) 1163 return (bp->b_error ? bp->b_error : EIO); 1164 else 1165 return (0); 1166 } 1167 1168 /* 1169 * Mark I/O complete on a buffer. 1170 * 1171 * If a callback has been requested, e.g. the pageout 1172 * daemon, do so. Otherwise, awaken waiting processes. 1173 * 1174 * [ Leffler, et al., says on p.247: 1175 * "This routine wakes up the blocked process, frees the buffer 1176 * for an asynchronous write, or, for a request by the pagedaemon 1177 * process, invokes a procedure specified in the buffer structure" ] 1178 * 1179 * In real life, the pagedaemon (or other system processes) wants 1180 * to do async stuff to, and doesn't want the buffer brelse()'d. 1181 * (for swap pager, that puts swap buffers on the free lists (!!!), 1182 * for the vn device, that puts malloc'd buffers on the free lists!) 1183 * 1184 * Must be called at splbio(). 1185 */ 1186 void 1187 biodone(struct buf *bp) 1188 { 1189 splassert(IPL_BIO); 1190 1191 if (ISSET(bp->b_flags, B_DONE)) 1192 panic("biodone already"); 1193 SET(bp->b_flags, B_DONE); /* note that it's done */ 1194 1195 if (bp->b_bq) 1196 bufq_done(bp->b_bq, bp); 1197 1198 if (LIST_FIRST(&bp->b_dep) != NULL) 1199 buf_complete(bp); 1200 1201 if (!ISSET(bp->b_flags, B_READ)) { 1202 CLR(bp->b_flags, B_WRITEINPROG); 1203 vwakeup(bp->b_vp); 1204 } 1205 if (bcstats.numbufs && 1206 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) { 1207 if (!ISSET(bp->b_flags, B_READ)) 1208 bcstats.pendingwrites--; 1209 else 1210 bcstats.pendingreads--; 1211 } 1212 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1213 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1214 (*bp->b_iodone)(bp); 1215 } else { 1216 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1217 brelse(bp); 1218 } else { /* or just wakeup the buffer */ 1219 CLR(bp->b_flags, B_WANTED); 1220 wakeup(bp); 1221 } 1222 } 1223 } 1224 1225 #ifdef DDB 1226 void bcstats_print(int (*)(const char *, ...)); 1227 /* 1228 * bcstats_print: ddb hook to print interesting buffer cache counters 1229 */ 1230 void 1231 bcstats_print(int (*pr)(const char *, ...)) 1232 { 1233 (*pr)("Current Buffer Cache status:\n"); 1234 (*pr)("numbufs %lld, freebufs %lld\n", 1235 bcstats.numbufs, bcstats.freebufs); 1236 (*pr)("bufpages %lld, freepages %lld, dirtypages %lld\n", 1237 bcstats.numbufpages, bcstats.numfreepages, bcstats.numdirtypages); 1238 (*pr)("pendingreads %lld, pendingwrites %lld\n", 1239 bcstats.pendingreads, bcstats.pendingwrites); 1240 } 1241 #endif 1242