1 /* $OpenBSD: sha2.c,v 1.3 2021/03/12 10:22:46 jsg Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <lib/libsa/stand.h> 38 39 #include "sha2.h" 40 41 #define SHA2_SMALL 42 43 /* 44 * UNROLLED TRANSFORM LOOP NOTE: 45 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 46 * loop version for the hash transform rounds (defined using macros 47 * later in this file). Either define on the command line, for example: 48 * 49 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 50 * 51 * or define below: 52 * 53 * #define SHA2_UNROLL_TRANSFORM 54 * 55 */ 56 #ifndef SHA2_SMALL 57 #if defined(__amd64__) || defined(__i386__) 58 #define SHA2_UNROLL_TRANSFORM 59 #endif 60 #endif 61 62 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ 63 /* 64 * BYTE_ORDER NOTE: 65 * 66 * Please make sure that your system defines BYTE_ORDER. If your 67 * architecture is little-endian, make sure it also defines 68 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 69 * equivalent. 70 * 71 * If your system does not define the above, then you can do so by 72 * hand like this: 73 * 74 * #define LITTLE_ENDIAN 1234 75 * #define BIG_ENDIAN 4321 76 * 77 * And for little-endian machines, add: 78 * 79 * #define BYTE_ORDER LITTLE_ENDIAN 80 * 81 * Or for big-endian machines: 82 * 83 * #define BYTE_ORDER BIG_ENDIAN 84 * 85 * The FreeBSD machine this was written on defines BYTE_ORDER 86 * appropriately by including <sys/types.h> (which in turn includes 87 * <machine/endian.h> where the appropriate definitions are actually 88 * made). 89 */ 90 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 91 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 92 #endif 93 94 95 /*** SHA-224/256/384/512 Various Length Definitions ***********************/ 96 /* NOTE: Most of these are in sha2.h */ 97 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) 98 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 99 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 100 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 101 102 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 103 #define BE_8_TO_32(dst, cp) do { \ 104 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ 105 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ 106 } while(0) 107 108 #define BE_8_TO_64(dst, cp) do { \ 109 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ 110 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ 111 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ 112 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ 113 } while (0) 114 115 #define BE_64_TO_8(cp, src) do { \ 116 (cp)[0] = (src) >> 56; \ 117 (cp)[1] = (src) >> 48; \ 118 (cp)[2] = (src) >> 40; \ 119 (cp)[3] = (src) >> 32; \ 120 (cp)[4] = (src) >> 24; \ 121 (cp)[5] = (src) >> 16; \ 122 (cp)[6] = (src) >> 8; \ 123 (cp)[7] = (src); \ 124 } while (0) 125 126 #define BE_32_TO_8(cp, src) do { \ 127 (cp)[0] = (src) >> 24; \ 128 (cp)[1] = (src) >> 16; \ 129 (cp)[2] = (src) >> 8; \ 130 (cp)[3] = (src); \ 131 } while (0) 132 133 /* 134 * Macro for incrementally adding the unsigned 64-bit integer n to the 135 * unsigned 128-bit integer (represented using a two-element array of 136 * 64-bit words): 137 */ 138 #define ADDINC128(w,n) do { \ 139 (w)[0] += (u_int64_t)(n); \ 140 if ((w)[0] < (n)) { \ 141 (w)[1]++; \ 142 } \ 143 } while (0) 144 145 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 146 /* 147 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 148 * 149 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 150 * S is a ROTATION) because the SHA-224/256/384/512 description document 151 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 152 * same "backwards" definition. 153 */ 154 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ 155 #define R(b,x) ((x) >> (b)) 156 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ 157 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 158 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 159 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 160 161 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ 162 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 163 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 164 165 /* Four of six logical functions used in SHA-224 and SHA-256: */ 166 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 167 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 168 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 169 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 170 171 /* Four of six logical functions used in SHA-384 and SHA-512: */ 172 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 173 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 174 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 175 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 176 177 178 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 179 /* Hash constant words K for SHA-224 and SHA-256: */ 180 static const u_int32_t K256[64] = { 181 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 182 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 183 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 184 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 185 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 186 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 187 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 188 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 189 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 190 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 191 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 192 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 193 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 194 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 195 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 196 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 197 }; 198 199 /* Initial hash value H for SHA-256: */ 200 static const u_int32_t sha256_initial_hash_value[8] = { 201 0x6a09e667UL, 202 0xbb67ae85UL, 203 0x3c6ef372UL, 204 0xa54ff53aUL, 205 0x510e527fUL, 206 0x9b05688cUL, 207 0x1f83d9abUL, 208 0x5be0cd19UL 209 }; 210 211 /* Hash constant words K for SHA-384 and SHA-512: */ 212 static const u_int64_t K512[80] = { 213 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 214 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 215 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 216 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 217 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 218 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 219 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 220 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 221 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 222 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 223 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 224 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 225 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 226 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 227 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 228 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 229 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 230 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 231 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 232 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 233 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 234 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 235 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 236 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 237 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 238 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 239 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 240 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 241 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 242 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 243 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 244 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 245 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 246 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 247 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 248 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 249 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 250 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 251 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 252 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 253 }; 254 255 /* Initial hash value H for SHA-512 */ 256 static const u_int64_t sha512_initial_hash_value[8] = { 257 0x6a09e667f3bcc908ULL, 258 0xbb67ae8584caa73bULL, 259 0x3c6ef372fe94f82bULL, 260 0xa54ff53a5f1d36f1ULL, 261 0x510e527fade682d1ULL, 262 0x9b05688c2b3e6c1fULL, 263 0x1f83d9abfb41bd6bULL, 264 0x5be0cd19137e2179ULL 265 }; 266 267 #if !defined(SHA2_SMALL) 268 /* Initial hash value H for SHA-224: */ 269 static const u_int32_t sha224_initial_hash_value[8] = { 270 0xc1059ed8UL, 271 0x367cd507UL, 272 0x3070dd17UL, 273 0xf70e5939UL, 274 0xffc00b31UL, 275 0x68581511UL, 276 0x64f98fa7UL, 277 0xbefa4fa4UL 278 }; 279 280 /* Initial hash value H for SHA-384 */ 281 static const u_int64_t sha384_initial_hash_value[8] = { 282 0xcbbb9d5dc1059ed8ULL, 283 0x629a292a367cd507ULL, 284 0x9159015a3070dd17ULL, 285 0x152fecd8f70e5939ULL, 286 0x67332667ffc00b31ULL, 287 0x8eb44a8768581511ULL, 288 0xdb0c2e0d64f98fa7ULL, 289 0x47b5481dbefa4fa4ULL 290 }; 291 292 /* Initial hash value H for SHA-512-256 */ 293 static const u_int64_t sha512_256_initial_hash_value[8] = { 294 0x22312194fc2bf72cULL, 295 0x9f555fa3c84c64c2ULL, 296 0x2393b86b6f53b151ULL, 297 0x963877195940eabdULL, 298 0x96283ee2a88effe3ULL, 299 0xbe5e1e2553863992ULL, 300 0x2b0199fc2c85b8aaULL, 301 0x0eb72ddc81c52ca2ULL 302 }; 303 304 /*** SHA-224: *********************************************************/ 305 void 306 SHA224Init(SHA2_CTX *context) 307 { 308 memcpy(context->state.st32, sha224_initial_hash_value, 309 sizeof(sha224_initial_hash_value)); 310 memset(context->buffer, 0, sizeof(context->buffer)); 311 context->bitcount[0] = 0; 312 } 313 314 __weak_alias(SHA224Transform, SHA256Transform); 315 __weak_alias(SHA224Update, SHA256Update); 316 __weak_alias(SHA224Pad, SHA256Pad); 317 318 void 319 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context) 320 { 321 SHA224Pad(context); 322 323 #if BYTE_ORDER == LITTLE_ENDIAN 324 int i; 325 326 /* Convert TO host byte order */ 327 for (i = 0; i < 7; i++) 328 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 329 #else 330 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); 331 #endif 332 explicit_bzero(context, sizeof(*context)); 333 } 334 #endif /* !defined(SHA2_SMALL) */ 335 336 /*** SHA-256: *********************************************************/ 337 void 338 SHA256Init(SHA2_CTX *context) 339 { 340 memcpy(context->state.st32, sha256_initial_hash_value, 341 sizeof(sha256_initial_hash_value)); 342 memset(context->buffer, 0, sizeof(context->buffer)); 343 context->bitcount[0] = 0; 344 } 345 346 #ifdef SHA2_UNROLL_TRANSFORM 347 348 /* Unrolled SHA-256 round macros: */ 349 350 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 351 BE_8_TO_32(W256[j], data); \ 352 data += 4; \ 353 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 354 (d) += T1; \ 355 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 356 j++; \ 357 } while(0) 358 359 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 360 s0 = W256[(j+1)&0x0f]; \ 361 s0 = sigma0_256(s0); \ 362 s1 = W256[(j+14)&0x0f]; \ 363 s1 = sigma1_256(s1); \ 364 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 365 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 366 (d) += T1; \ 367 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 368 j++; \ 369 } while(0) 370 371 void 372 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 373 { 374 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 375 u_int32_t T1, W256[16]; 376 int j; 377 378 /* Initialize registers with the prev. intermediate value */ 379 a = state[0]; 380 b = state[1]; 381 c = state[2]; 382 d = state[3]; 383 e = state[4]; 384 f = state[5]; 385 g = state[6]; 386 h = state[7]; 387 388 j = 0; 389 do { 390 /* Rounds 0 to 15 (unrolled): */ 391 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 392 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 393 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 394 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 395 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 396 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 397 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 398 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 399 } while (j < 16); 400 401 /* Now for the remaining rounds up to 63: */ 402 do { 403 ROUND256(a,b,c,d,e,f,g,h); 404 ROUND256(h,a,b,c,d,e,f,g); 405 ROUND256(g,h,a,b,c,d,e,f); 406 ROUND256(f,g,h,a,b,c,d,e); 407 ROUND256(e,f,g,h,a,b,c,d); 408 ROUND256(d,e,f,g,h,a,b,c); 409 ROUND256(c,d,e,f,g,h,a,b); 410 ROUND256(b,c,d,e,f,g,h,a); 411 } while (j < 64); 412 413 /* Compute the current intermediate hash value */ 414 state[0] += a; 415 state[1] += b; 416 state[2] += c; 417 state[3] += d; 418 state[4] += e; 419 state[5] += f; 420 state[6] += g; 421 state[7] += h; 422 423 /* Clean up */ 424 a = b = c = d = e = f = g = h = T1 = 0; 425 } 426 427 #else /* SHA2_UNROLL_TRANSFORM */ 428 429 void 430 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 431 { 432 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 433 u_int32_t T1, T2, W256[16]; 434 int j; 435 436 /* Initialize registers with the prev. intermediate value */ 437 a = state[0]; 438 b = state[1]; 439 c = state[2]; 440 d = state[3]; 441 e = state[4]; 442 f = state[5]; 443 g = state[6]; 444 h = state[7]; 445 446 j = 0; 447 do { 448 BE_8_TO_32(W256[j], data); 449 data += 4; 450 /* Apply the SHA-256 compression function to update a..h */ 451 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 452 T2 = Sigma0_256(a) + Maj(a, b, c); 453 h = g; 454 g = f; 455 f = e; 456 e = d + T1; 457 d = c; 458 c = b; 459 b = a; 460 a = T1 + T2; 461 462 j++; 463 } while (j < 16); 464 465 do { 466 /* Part of the message block expansion: */ 467 s0 = W256[(j+1)&0x0f]; 468 s0 = sigma0_256(s0); 469 s1 = W256[(j+14)&0x0f]; 470 s1 = sigma1_256(s1); 471 472 /* Apply the SHA-256 compression function to update a..h */ 473 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 474 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 475 T2 = Sigma0_256(a) + Maj(a, b, c); 476 h = g; 477 g = f; 478 f = e; 479 e = d + T1; 480 d = c; 481 c = b; 482 b = a; 483 a = T1 + T2; 484 485 j++; 486 } while (j < 64); 487 488 /* Compute the current intermediate hash value */ 489 state[0] += a; 490 state[1] += b; 491 state[2] += c; 492 state[3] += d; 493 state[4] += e; 494 state[5] += f; 495 state[6] += g; 496 state[7] += h; 497 498 /* Clean up */ 499 a = b = c = d = e = f = g = h = T1 = T2 = 0; 500 } 501 502 #endif /* SHA2_UNROLL_TRANSFORM */ 503 504 void 505 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 506 { 507 size_t freespace, usedspace; 508 509 /* Calling with no data is valid (we do nothing) */ 510 if (len == 0) 511 return; 512 513 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 514 if (usedspace > 0) { 515 /* Calculate how much free space is available in the buffer */ 516 freespace = SHA256_BLOCK_LENGTH - usedspace; 517 518 if (len >= freespace) { 519 /* Fill the buffer completely and process it */ 520 memcpy(&context->buffer[usedspace], data, freespace); 521 context->bitcount[0] += freespace << 3; 522 len -= freespace; 523 data += freespace; 524 SHA256Transform(context->state.st32, context->buffer); 525 } else { 526 /* The buffer is not yet full */ 527 memcpy(&context->buffer[usedspace], data, len); 528 context->bitcount[0] += len << 3; 529 /* Clean up: */ 530 usedspace = freespace = 0; 531 return; 532 } 533 } 534 while (len >= SHA256_BLOCK_LENGTH) { 535 /* Process as many complete blocks as we can */ 536 SHA256Transform(context->state.st32, data); 537 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 538 len -= SHA256_BLOCK_LENGTH; 539 data += SHA256_BLOCK_LENGTH; 540 } 541 if (len > 0) { 542 /* There's left-overs, so save 'em */ 543 memcpy(context->buffer, data, len); 544 context->bitcount[0] += len << 3; 545 } 546 /* Clean up: */ 547 usedspace = freespace = 0; 548 } 549 550 void 551 SHA256Pad(SHA2_CTX *context) 552 { 553 unsigned int usedspace; 554 555 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 556 if (usedspace > 0) { 557 /* Begin padding with a 1 bit: */ 558 context->buffer[usedspace++] = 0x80; 559 560 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 561 /* Set-up for the last transform: */ 562 memset(&context->buffer[usedspace], 0, 563 SHA256_SHORT_BLOCK_LENGTH - usedspace); 564 } else { 565 if (usedspace < SHA256_BLOCK_LENGTH) { 566 memset(&context->buffer[usedspace], 0, 567 SHA256_BLOCK_LENGTH - usedspace); 568 } 569 /* Do second-to-last transform: */ 570 SHA256Transform(context->state.st32, context->buffer); 571 572 /* Prepare for last transform: */ 573 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 574 } 575 } else { 576 /* Set-up for the last transform: */ 577 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 578 579 /* Begin padding with a 1 bit: */ 580 *context->buffer = 0x80; 581 } 582 /* Store the length of input data (in bits) in big endian format: */ 583 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 584 context->bitcount[0]); 585 586 /* Final transform: */ 587 SHA256Transform(context->state.st32, context->buffer); 588 589 /* Clean up: */ 590 usedspace = 0; 591 } 592 593 void 594 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 595 { 596 SHA256Pad(context); 597 598 #if BYTE_ORDER == LITTLE_ENDIAN 599 int i; 600 601 /* Convert TO host byte order */ 602 for (i = 0; i < 8; i++) 603 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 604 #else 605 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 606 #endif 607 explicit_bzero(context, sizeof(*context)); 608 } 609 610 611 /*** SHA-512: *********************************************************/ 612 void 613 SHA512Init(SHA2_CTX *context) 614 { 615 memcpy(context->state.st64, sha512_initial_hash_value, 616 sizeof(sha512_initial_hash_value)); 617 memset(context->buffer, 0, sizeof(context->buffer)); 618 context->bitcount[0] = context->bitcount[1] = 0; 619 } 620 621 #ifdef SHA2_UNROLL_TRANSFORM 622 623 /* Unrolled SHA-512 round macros: */ 624 625 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 626 BE_8_TO_64(W512[j], data); \ 627 data += 8; \ 628 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 629 (d) += T1; \ 630 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 631 j++; \ 632 } while(0) 633 634 635 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 636 s0 = W512[(j+1)&0x0f]; \ 637 s0 = sigma0_512(s0); \ 638 s1 = W512[(j+14)&0x0f]; \ 639 s1 = sigma1_512(s1); \ 640 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 641 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 642 (d) += T1; \ 643 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 644 j++; \ 645 } while(0) 646 647 void 648 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 649 { 650 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 651 u_int64_t T1, W512[16]; 652 int j; 653 654 /* Initialize registers with the prev. intermediate value */ 655 a = state[0]; 656 b = state[1]; 657 c = state[2]; 658 d = state[3]; 659 e = state[4]; 660 f = state[5]; 661 g = state[6]; 662 h = state[7]; 663 664 j = 0; 665 do { 666 /* Rounds 0 to 15 (unrolled): */ 667 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 668 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 669 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 670 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 671 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 672 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 673 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 674 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 675 } while (j < 16); 676 677 /* Now for the remaining rounds up to 79: */ 678 do { 679 ROUND512(a,b,c,d,e,f,g,h); 680 ROUND512(h,a,b,c,d,e,f,g); 681 ROUND512(g,h,a,b,c,d,e,f); 682 ROUND512(f,g,h,a,b,c,d,e); 683 ROUND512(e,f,g,h,a,b,c,d); 684 ROUND512(d,e,f,g,h,a,b,c); 685 ROUND512(c,d,e,f,g,h,a,b); 686 ROUND512(b,c,d,e,f,g,h,a); 687 } while (j < 80); 688 689 /* Compute the current intermediate hash value */ 690 state[0] += a; 691 state[1] += b; 692 state[2] += c; 693 state[3] += d; 694 state[4] += e; 695 state[5] += f; 696 state[6] += g; 697 state[7] += h; 698 699 /* Clean up */ 700 a = b = c = d = e = f = g = h = T1 = 0; 701 } 702 703 #else /* SHA2_UNROLL_TRANSFORM */ 704 705 void 706 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 707 { 708 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 709 u_int64_t T1, T2, W512[16]; 710 int j; 711 712 /* Initialize registers with the prev. intermediate value */ 713 a = state[0]; 714 b = state[1]; 715 c = state[2]; 716 d = state[3]; 717 e = state[4]; 718 f = state[5]; 719 g = state[6]; 720 h = state[7]; 721 722 j = 0; 723 do { 724 BE_8_TO_64(W512[j], data); 725 data += 8; 726 /* Apply the SHA-512 compression function to update a..h */ 727 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 728 T2 = Sigma0_512(a) + Maj(a, b, c); 729 h = g; 730 g = f; 731 f = e; 732 e = d + T1; 733 d = c; 734 c = b; 735 b = a; 736 a = T1 + T2; 737 738 j++; 739 } while (j < 16); 740 741 do { 742 /* Part of the message block expansion: */ 743 s0 = W512[(j+1)&0x0f]; 744 s0 = sigma0_512(s0); 745 s1 = W512[(j+14)&0x0f]; 746 s1 = sigma1_512(s1); 747 748 /* Apply the SHA-512 compression function to update a..h */ 749 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 750 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 751 T2 = Sigma0_512(a) + Maj(a, b, c); 752 h = g; 753 g = f; 754 f = e; 755 e = d + T1; 756 d = c; 757 c = b; 758 b = a; 759 a = T1 + T2; 760 761 j++; 762 } while (j < 80); 763 764 /* Compute the current intermediate hash value */ 765 state[0] += a; 766 state[1] += b; 767 state[2] += c; 768 state[3] += d; 769 state[4] += e; 770 state[5] += f; 771 state[6] += g; 772 state[7] += h; 773 774 /* Clean up */ 775 a = b = c = d = e = f = g = h = T1 = T2 = 0; 776 } 777 778 #endif /* SHA2_UNROLL_TRANSFORM */ 779 780 void 781 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 782 { 783 size_t freespace, usedspace; 784 785 /* Calling with no data is valid (we do nothing) */ 786 if (len == 0) 787 return; 788 789 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 790 if (usedspace > 0) { 791 /* Calculate how much free space is available in the buffer */ 792 freespace = SHA512_BLOCK_LENGTH - usedspace; 793 794 if (len >= freespace) { 795 /* Fill the buffer completely and process it */ 796 memcpy(&context->buffer[usedspace], data, freespace); 797 ADDINC128(context->bitcount, freespace << 3); 798 len -= freespace; 799 data += freespace; 800 SHA512Transform(context->state.st64, context->buffer); 801 } else { 802 /* The buffer is not yet full */ 803 memcpy(&context->buffer[usedspace], data, len); 804 ADDINC128(context->bitcount, len << 3); 805 /* Clean up: */ 806 usedspace = freespace = 0; 807 return; 808 } 809 } 810 while (len >= SHA512_BLOCK_LENGTH) { 811 /* Process as many complete blocks as we can */ 812 SHA512Transform(context->state.st64, data); 813 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 814 len -= SHA512_BLOCK_LENGTH; 815 data += SHA512_BLOCK_LENGTH; 816 } 817 if (len > 0) { 818 /* There's left-overs, so save 'em */ 819 memcpy(context->buffer, data, len); 820 ADDINC128(context->bitcount, len << 3); 821 } 822 /* Clean up: */ 823 usedspace = freespace = 0; 824 } 825 826 void 827 SHA512Pad(SHA2_CTX *context) 828 { 829 unsigned int usedspace; 830 831 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 832 if (usedspace > 0) { 833 /* Begin padding with a 1 bit: */ 834 context->buffer[usedspace++] = 0x80; 835 836 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 837 /* Set-up for the last transform: */ 838 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 839 } else { 840 if (usedspace < SHA512_BLOCK_LENGTH) { 841 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 842 } 843 /* Do second-to-last transform: */ 844 SHA512Transform(context->state.st64, context->buffer); 845 846 /* And set-up for the last transform: */ 847 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 848 } 849 } else { 850 /* Prepare for final transform: */ 851 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 852 853 /* Begin padding with a 1 bit: */ 854 *context->buffer = 0x80; 855 } 856 /* Store the length of input data (in bits) in big endian format: */ 857 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 858 context->bitcount[1]); 859 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 860 context->bitcount[0]); 861 862 /* Final transform: */ 863 SHA512Transform(context->state.st64, context->buffer); 864 865 /* Clean up: */ 866 usedspace = 0; 867 } 868 869 void 870 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 871 { 872 SHA512Pad(context); 873 874 #if BYTE_ORDER == LITTLE_ENDIAN 875 int i; 876 877 /* Convert TO host byte order */ 878 for (i = 0; i < 8; i++) 879 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 880 #else 881 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 882 #endif 883 explicit_bzero(context, sizeof(*context)); 884 } 885 886 #if !defined(SHA2_SMALL) 887 888 /*** SHA-384: *********************************************************/ 889 void 890 SHA384Init(SHA2_CTX *context) 891 { 892 memcpy(context->state.st64, sha384_initial_hash_value, 893 sizeof(sha384_initial_hash_value)); 894 memset(context->buffer, 0, sizeof(context->buffer)); 895 context->bitcount[0] = context->bitcount[1] = 0; 896 } 897 898 __weak_alias(SHA384Transform, SHA512Transform); 899 __weak_alias(SHA384Update, SHA512Update); 900 __weak_alias(SHA384Pad, SHA512Pad); 901 902 void 903 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) 904 { 905 SHA384Pad(context); 906 907 #if BYTE_ORDER == LITTLE_ENDIAN 908 int i; 909 910 /* Convert TO host byte order */ 911 for (i = 0; i < 6; i++) 912 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 913 #else 914 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); 915 #endif 916 /* Zero out state data */ 917 explicit_bzero(context, sizeof(*context)); 918 } 919 920 /*** SHA-512/256: *********************************************************/ 921 void 922 SHA512_256Init(SHA2_CTX *context) 923 { 924 memcpy(context->state.st64, sha512_256_initial_hash_value, 925 sizeof(sha512_256_initial_hash_value)); 926 memset(context->buffer, 0, sizeof(context->buffer)); 927 context->bitcount[0] = context->bitcount[1] = 0; 928 } 929 930 MAKE_CLONE(SHA512_256Transform, SHA512Transform); 931 MAKE_CLONE(SHA512_256Update, SHA512Update); 932 MAKE_CLONE(SHA512_256Pad, SHA512Pad); 933 934 void 935 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context) 936 { 937 SHA512_256Pad(context); 938 939 #if BYTE_ORDER == LITTLE_ENDIAN 940 int i; 941 942 /* Convert TO host byte order */ 943 for (i = 0; i < 4; i++) 944 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 945 #else 946 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH); 947 #endif 948 /* Zero out state data */ 949 explicit_bzero(context, sizeof(*context)); 950 } 951 #endif /* !defined(SHA2_SMALL) */ 952