xref: /openbsd/sys/lib/libz/adler32.c (revision 5af055cd)
1 /*	$OpenBSD: adler32.c,v 1.10 2011/07/07 02:57:24 deraadt Exp $	*/
2 /* adler32.c -- compute the Adler-32 checksum of a data stream
3  * Copyright (C) 1995-2004 Mark Adler
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 #define ZLIB_INTERNAL
8 #include "zlib.h"
9 
10 #define BASE 65521UL    /* largest prime smaller than 65536 */
11 #define NMAX 5552
12 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13 
14 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
15 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
16 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
17 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
18 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
19 
20 /* use NO_DIVIDE if your processor does not do division in hardware */
21 #ifdef NO_DIVIDE
22 #  define MOD(a) \
23     do { \
24         if (a >= (BASE << 16)) a -= (BASE << 16); \
25         if (a >= (BASE << 15)) a -= (BASE << 15); \
26         if (a >= (BASE << 14)) a -= (BASE << 14); \
27         if (a >= (BASE << 13)) a -= (BASE << 13); \
28         if (a >= (BASE << 12)) a -= (BASE << 12); \
29         if (a >= (BASE << 11)) a -= (BASE << 11); \
30         if (a >= (BASE << 10)) a -= (BASE << 10); \
31         if (a >= (BASE << 9)) a -= (BASE << 9); \
32         if (a >= (BASE << 8)) a -= (BASE << 8); \
33         if (a >= (BASE << 7)) a -= (BASE << 7); \
34         if (a >= (BASE << 6)) a -= (BASE << 6); \
35         if (a >= (BASE << 5)) a -= (BASE << 5); \
36         if (a >= (BASE << 4)) a -= (BASE << 4); \
37         if (a >= (BASE << 3)) a -= (BASE << 3); \
38         if (a >= (BASE << 2)) a -= (BASE << 2); \
39         if (a >= (BASE << 1)) a -= (BASE << 1); \
40         if (a >= BASE) a -= BASE; \
41     } while (0)
42 #  define MOD4(a) \
43     do { \
44         if (a >= (BASE << 4)) a -= (BASE << 4); \
45         if (a >= (BASE << 3)) a -= (BASE << 3); \
46         if (a >= (BASE << 2)) a -= (BASE << 2); \
47         if (a >= (BASE << 1)) a -= (BASE << 1); \
48         if (a >= BASE) a -= BASE; \
49     } while (0)
50 #else
51 #  define MOD(a) a %= BASE
52 #  define MOD4(a) a %= BASE
53 #endif
54 
55 /* ========================================================================= */
56 uLong ZEXPORT adler32(adler, buf, len)
57     uLong adler;
58     const Bytef *buf;
59     uInt len;
60 {
61     unsigned long sum2;
62     unsigned n;
63 
64     /* split Adler-32 into component sums */
65     sum2 = (adler >> 16) & 0xffff;
66     adler &= 0xffff;
67 
68     /* in case user likes doing a byte at a time, keep it fast */
69     if (len == 1) {
70         adler += buf[0];
71         if (adler >= BASE)
72             adler -= BASE;
73         sum2 += adler;
74         if (sum2 >= BASE)
75             sum2 -= BASE;
76         return adler | (sum2 << 16);
77     }
78 
79     /* initial Adler-32 value (deferred check for len == 1 speed) */
80     if (buf == Z_NULL)
81         return 1L;
82 
83     /* in case short lengths are provided, keep it somewhat fast */
84     if (len < 16) {
85         while (len--) {
86             adler += *buf++;
87             sum2 += adler;
88         }
89         if (adler >= BASE)
90             adler -= BASE;
91         MOD4(sum2);             /* only added so many BASE's */
92         return adler | (sum2 << 16);
93     }
94 
95     /* do length NMAX blocks -- requires just one modulo operation */
96     while (len >= NMAX) {
97         len -= NMAX;
98         n = NMAX / 16;          /* NMAX is divisible by 16 */
99         do {
100             DO16(buf);          /* 16 sums unrolled */
101             buf += 16;
102         } while (--n);
103         MOD(adler);
104         MOD(sum2);
105     }
106 
107     /* do remaining bytes (less than NMAX, still just one modulo) */
108     if (len) {                  /* avoid modulos if none remaining */
109         while (len >= 16) {
110             len -= 16;
111             DO16(buf);
112             buf += 16;
113         }
114         while (len--) {
115             adler += *buf++;
116             sum2 += adler;
117         }
118         MOD(adler);
119         MOD(sum2);
120     }
121 
122     /* return recombined sums */
123     return adler | (sum2 << 16);
124 }
125 
126 /* ========================================================================= */
127 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
128     uLong adler1;
129     uLong adler2;
130     z_off_t len2;
131 {
132     unsigned long sum1;
133     unsigned long sum2;
134     unsigned rem;
135 
136     /* the derivation of this formula is left as an exercise for the reader */
137     rem = (unsigned)(len2 % BASE);
138     sum1 = adler1 & 0xffff;
139     sum2 = rem * sum1;
140     MOD(sum2);
141     sum1 += (adler2 & 0xffff) + BASE - 1;
142     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
143     if (sum1 > BASE) sum1 -= BASE;
144     if (sum1 > BASE) sum1 -= BASE;
145     if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
146     if (sum2 > BASE) sum2 -= BASE;
147     return sum1 | (sum2 << 16);
148 }
149