xref: /openbsd/sys/netinet/ip_mroute.c (revision 404b540a)
1 /*	$OpenBSD: ip_mroute.c,v 1.56 2009/08/01 09:08:21 blambert Exp $	*/
2 /*	$NetBSD: ip_mroute.c,v 1.85 2004/04/26 01:31:57 matt Exp $	*/
3 
4 /*
5  * Copyright (c) 1989 Stephen Deering
6  * Copyright (c) 1992, 1993
7  *      The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Stephen Deering of Stanford University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
37  */
38 
39 /*
40  * IP multicast forwarding procedures
41  *
42  * Written by David Waitzman, BBN Labs, August 1988.
43  * Modified by Steve Deering, Stanford, February 1989.
44  * Modified by Mark J. Steiglitz, Stanford, May, 1991
45  * Modified by Van Jacobson, LBL, January 1993
46  * Modified by Ajit Thyagarajan, PARC, August 1993
47  * Modified by Bill Fenner, PARC, April 1994
48  * Modified by Charles M. Hannum, NetBSD, May 1995.
49  * Modified by Ahmed Helmy, SGI, June 1996
50  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
51  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
52  * Modified by Hitoshi Asaeda, WIDE, August 2000
53  * Modified by Pavlin Radoslavov, ICSI, October 2002
54  *
55  * MROUTING Revision: 1.2
56  * and PIM-SMv2 and PIM-DM support, advanced API support,
57  * bandwidth metering and signaling
58  */
59 
60 #ifdef PIM
61 #define _PIM_VT 1
62 #endif
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/protosw.h>
70 #include <sys/errno.h>
71 #include <sys/time.h>
72 #include <sys/kernel.h>
73 #include <sys/ioctl.h>
74 #include <sys/syslog.h>
75 #include <sys/sysctl.h>
76 #include <sys/timeout.h>
77 
78 #include <net/if.h>
79 #include <net/route.h>
80 #include <net/raw_cb.h>
81 
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/in_systm.h>
85 #include <netinet/ip.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/udp.h>
89 #include <netinet/igmp.h>
90 #include <netinet/igmp_var.h>
91 #include <netinet/ip_mroute.h>
92 #ifdef PIM
93 #include <netinet/pim.h>
94 #include <netinet/pim_var.h>
95 #endif
96 
97 #include <sys/stdarg.h>
98 
99 #define IP_MULTICASTOPTS 0
100 #define	M_PULLUP(m, len)						 \
101 	do {								 \
102 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
103 			(m) = m_pullup((m), (len));			 \
104 	} while (/*CONSTCOND*/ 0)
105 
106 /*
107  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
108  * except for netstat or debugging purposes.
109  */
110 struct socket  *ip_mrouter  = NULL;
111 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
112 
113 #define NO_RTE_FOUND	0x1
114 #define RTE_FOUND	0x2
115 
116 #define	MFCHASH(a, g)							\
117 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
118 	    ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
119 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
120 u_long	mfchash;
121 
122 u_char		nexpire[MFCTBLSIZ];
123 struct vif	viftable[MAXVIFS];
124 struct mrtstat	mrtstat;
125 u_int		mrtdebug = 0;	  /* debug level 	*/
126 #define		DEBUG_MFC	0x02
127 #define		DEBUG_FORWARD	0x04
128 #define		DEBUG_EXPIRE	0x08
129 #define		DEBUG_XMIT	0x10
130 #define		DEBUG_PIM	0x20
131 
132 #define		VIFI_INVALID	((vifi_t) -1)
133 
134 #ifdef RSVP_ISI
135 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
136 extern struct socket *ip_rsvpd;
137 extern int rsvp_on;
138 #endif /* RSVP_ISI */
139 
140 #define		EXPIRE_TIMEOUT	250		/* 4x / second */
141 #define		UPCALL_EXPIRE	6		/* number of timeouts */
142 struct timeout	expire_upcalls_ch;
143 
144 static int get_sg_cnt(struct sioc_sg_req *);
145 static int get_vif_cnt(struct sioc_vif_req *);
146 static int ip_mrouter_init(struct socket *, struct mbuf *);
147 static int get_version(struct mbuf *);
148 static int set_assert(struct mbuf *);
149 static int get_assert(struct mbuf *);
150 static int add_vif(struct mbuf *);
151 static int del_vif(struct mbuf *);
152 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
153 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
154 static void expire_mfc(struct mfc *);
155 static int add_mfc(struct mbuf *);
156 #ifdef UPCALL_TIMING
157 static void collate(struct timeval *);
158 #endif
159 static int del_mfc(struct mbuf *);
160 static int set_api_config(struct mbuf *); /* chose API capabilities */
161 static int get_api_support(struct mbuf *);
162 static int get_api_config(struct mbuf *);
163 static int socket_send(struct socket *, struct mbuf *,
164 			    struct sockaddr_in *);
165 static void expire_upcalls(void *);
166 #ifdef RSVP_ISI
167 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
168 #else
169 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
170 #endif
171 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
172 static void encap_send(struct ip *, struct vif *, struct mbuf *);
173 static void send_packet(struct vif *, struct mbuf *);
174 
175 /*
176  * Bandwidth monitoring
177  */
178 static void free_bw_list(struct bw_meter *);
179 static int add_bw_upcall(struct mbuf *);
180 static int del_bw_upcall(struct mbuf *);
181 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
182 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
183 static void bw_upcalls_send(void);
184 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
185 static void unschedule_bw_meter(struct bw_meter *);
186 static void bw_meter_process(void);
187 static void expire_bw_upcalls_send(void *);
188 static void expire_bw_meter_process(void *);
189 
190 #ifdef PIM
191 static int pim_register_send(struct ip *, struct vif *,
192 		struct mbuf *, struct mfc *);
193 static int pim_register_send_rp(struct ip *, struct vif *,
194 		struct mbuf *, struct mfc *);
195 static int pim_register_send_upcall(struct ip *, struct vif *,
196 		struct mbuf *, struct mfc *);
197 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
198 #endif
199 
200 /*
201  * 'Interfaces' associated with decapsulator (so we can tell
202  * packets that went through it from ones that get reflected
203  * by a broken gateway).  These interfaces are never linked into
204  * the system ifnet list & no routes point to them.  I.e., packets
205  * can't be sent this way.  They only exist as a placeholder for
206  * multicast source verification.
207  */
208 #if 0
209 struct ifnet multicast_decap_if[MAXVIFS];
210 #endif
211 
212 #define	ENCAP_TTL	64
213 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
214 
215 /* prototype IP hdr for encapsulated packets */
216 struct ip multicast_encap_iphdr = {
217 #if BYTE_ORDER == LITTLE_ENDIAN
218 	sizeof(struct ip) >> 2, IPVERSION,
219 #else
220 	IPVERSION, sizeof(struct ip) >> 2,
221 #endif
222 	0,				/* tos */
223 	sizeof(struct ip),		/* total length */
224 	0,				/* id */
225 	0,				/* frag offset */
226 	ENCAP_TTL, ENCAP_PROTO,
227 	0,				/* checksum */
228 };
229 
230 /*
231  * Bandwidth meter variables and constants
232  */
233 
234 /*
235  * Pending timeouts are stored in a hash table, the key being the
236  * expiration time. Periodically, the entries are analysed and processed.
237  */
238 #define BW_METER_BUCKETS	1024
239 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
240 struct timeout bw_meter_ch;
241 #define BW_METER_PERIOD 1000	/* periodical handling of bw meters (in ms) */
242 
243 /*
244  * Pending upcalls are stored in a vector which is flushed when
245  * full, or periodically
246  */
247 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
248 static u_int	bw_upcalls_n; /* # of pending upcalls */
249 struct timeout	bw_upcalls_ch;
250 #define BW_UPCALLS_PERIOD 1000	/* periodical flush of bw upcalls (in ms) */
251 
252 #ifdef PIM
253 struct pimstat pimstat;
254 
255 /*
256  * Note: the PIM Register encapsulation adds the following in front of a
257  * data packet:
258  *
259  * struct pim_encap_hdr {
260  *    struct ip ip;
261  *    struct pim_encap_pimhdr  pim;
262  * }
263  *
264  */
265 
266 struct pim_encap_pimhdr {
267 	struct pim pim;
268 	uint32_t   flags;
269 };
270 
271 static struct ip pim_encap_iphdr = {
272 #if BYTE_ORDER == LITTLE_ENDIAN
273 	sizeof(struct ip) >> 2,
274 	IPVERSION,
275 #else
276 	IPVERSION,
277 	sizeof(struct ip) >> 2,
278 #endif
279 	0,			/* tos */
280 	sizeof(struct ip),	/* total length */
281 	0,			/* id */
282 	0,			/* frag offset */
283 	ENCAP_TTL,
284 	IPPROTO_PIM,
285 	0,			/* checksum */
286 };
287 
288 static struct pim_encap_pimhdr pim_encap_pimhdr = {
289     {
290 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
291 	0,			/* reserved */
292 	0,			/* checksum */
293     },
294     0				/* flags */
295 };
296 
297 static struct ifnet multicast_register_if;
298 static vifi_t reg_vif_num = VIFI_INVALID;
299 #endif /* PIM */
300 
301 
302 /*
303  * Private variables.
304  */
305 static vifi_t	   numvifs = 0;
306 static int have_encap_tunnel = 0;
307 
308 /*
309  * whether or not special PIM assert processing is enabled.
310  */
311 static int pim_assert;
312 /*
313  * Rate limit for assert notification messages, in usec
314  */
315 #define ASSERT_MSG_TIME		3000000
316 
317 /*
318  * Kernel multicast routing API capabilities and setup.
319  * If more API capabilities are added to the kernel, they should be
320  * recorded in `mrt_api_support'.
321  */
322 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
323 					  MRT_MFC_FLAGS_BORDER_VIF |
324 					  MRT_MFC_RP |
325 					  MRT_MFC_BW_UPCALL);
326 static u_int32_t mrt_api_config = 0;
327 
328 /*
329  * Find a route for a given origin IP address and Multicast group address
330  * Type of service parameter to be added in the future!!!
331  * Statistics are updated by the caller if needed
332  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
333  */
334 static struct mfc *
335 mfc_find(struct in_addr *o, struct in_addr *g)
336 {
337 	struct mfc *rt;
338 
339 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
340 		if (in_hosteq(rt->mfc_origin, *o) &&
341 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
342 		    (rt->mfc_stall == NULL))
343 			break;
344 	}
345 
346 	return (rt);
347 }
348 
349 /*
350  * Macros to compute elapsed time efficiently
351  * Borrowed from Van Jacobson's scheduling code
352  */
353 #define TV_DELTA(a, b, delta) do {					\
354 	int xxs;							\
355 	delta = (a).tv_usec - (b).tv_usec;				\
356 	xxs = (a).tv_sec - (b).tv_sec;					\
357 	switch (xxs) {							\
358 	case 2:								\
359 		delta += 1000000;					\
360 		/* FALLTHROUGH */					\
361 	case 1:								\
362 		delta += 1000000;					\
363 		/* FALLTHROUGH */					\
364 	case 0:								\
365 		break;							\
366 	default:							\
367 		delta += (1000000 * xxs);				\
368 		break;							\
369 	}								\
370 } while (/*CONSTCOND*/ 0)
371 
372 #ifdef UPCALL_TIMING
373 u_int32_t upcall_data[51];
374 #endif /* UPCALL_TIMING */
375 
376 /*
377  * Handle MRT setsockopt commands to modify the multicast routing tables.
378  */
379 int
380 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
381 {
382 	int error;
383 
384 	if (optname != MRT_INIT && so != ip_mrouter)
385 		error = ENOPROTOOPT;
386 	else
387 		switch (optname) {
388 		case MRT_INIT:
389 			error = ip_mrouter_init(so, *m);
390 			break;
391 		case MRT_DONE:
392 			error = ip_mrouter_done();
393 			break;
394 		case MRT_ADD_VIF:
395 			error = add_vif(*m);
396 			break;
397 		case MRT_DEL_VIF:
398 			error = del_vif(*m);
399 			break;
400 		case MRT_ADD_MFC:
401 			error = add_mfc(*m);
402 			break;
403 		case MRT_DEL_MFC:
404 			error = del_mfc(*m);
405 			break;
406 		case MRT_ASSERT:
407 			error = set_assert(*m);
408 			break;
409 		case MRT_API_CONFIG:
410 			error = set_api_config(*m);
411 			break;
412 		case MRT_ADD_BW_UPCALL:
413 			error = add_bw_upcall(*m);
414 			break;
415 		case MRT_DEL_BW_UPCALL:
416 			error = del_bw_upcall(*m);
417 			break;
418 		default:
419 			error = ENOPROTOOPT;
420 			break;
421 		}
422 
423 	if (*m)
424 		m_free(*m);
425 	return (error);
426 }
427 
428 /*
429  * Handle MRT getsockopt commands
430  */
431 int
432 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
433 {
434 	int error;
435 
436 	if (so != ip_mrouter)
437 		error = ENOPROTOOPT;
438 	else {
439 		*m = m_get(M_WAIT, MT_SOOPTS);
440 
441 		switch (optname) {
442 		case MRT_VERSION:
443 			error = get_version(*m);
444 			break;
445 		case MRT_ASSERT:
446 			error = get_assert(*m);
447 			break;
448 		case MRT_API_SUPPORT:
449 			error = get_api_support(*m);
450 			break;
451 		case MRT_API_CONFIG:
452 			error = get_api_config(*m);
453 			break;
454 		default:
455 			error = ENOPROTOOPT;
456 			break;
457 		}
458 
459 		if (error)
460 			m_free(*m);
461 	}
462 
463 	return (error);
464 }
465 
466 /*
467  * Handle ioctl commands to obtain information from the cache
468  */
469 int
470 mrt_ioctl(struct socket *so, u_long cmd, caddr_t data)
471 {
472 	int error;
473 
474 	if (so != ip_mrouter)
475 		error = EINVAL;
476 	else
477 		switch (cmd) {
478 		case SIOCGETVIFCNT:
479 			error = get_vif_cnt((struct sioc_vif_req *)data);
480 			break;
481 		case SIOCGETSGCNT:
482 			error = get_sg_cnt((struct sioc_sg_req *)data);
483 			break;
484 		default:
485 			error = ENOTTY;
486 			break;
487 		}
488 
489 	return (error);
490 }
491 
492 /*
493  * returns the packet, byte, rpf-failure count for the source group provided
494  */
495 static int
496 get_sg_cnt(struct sioc_sg_req *req)
497 {
498 	int s;
499 	struct mfc *rt;
500 
501 	s = splsoftnet();
502 	rt = mfc_find(&req->src, &req->grp);
503 	if (rt == NULL) {
504 		splx(s);
505 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
506 		return (EADDRNOTAVAIL);
507 	}
508 	req->pktcnt = rt->mfc_pkt_cnt;
509 	req->bytecnt = rt->mfc_byte_cnt;
510 	req->wrong_if = rt->mfc_wrong_if;
511 	splx(s);
512 
513 	return (0);
514 }
515 
516 /*
517  * returns the input and output packet and byte counts on the vif provided
518  */
519 static int
520 get_vif_cnt(struct sioc_vif_req *req)
521 {
522 	vifi_t vifi = req->vifi;
523 
524 	if (vifi >= numvifs)
525 		return (EINVAL);
526 
527 	req->icount = viftable[vifi].v_pkt_in;
528 	req->ocount = viftable[vifi].v_pkt_out;
529 	req->ibytes = viftable[vifi].v_bytes_in;
530 	req->obytes = viftable[vifi].v_bytes_out;
531 
532 	return (0);
533 }
534 
535 /*
536  * Enable multicast routing
537  */
538 static int
539 ip_mrouter_init(struct socket *so, struct mbuf *m)
540 {
541 	int *v;
542 
543 	if (mrtdebug)
544 		log(LOG_DEBUG,
545 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
546 		    so->so_type, so->so_proto->pr_protocol);
547 
548 	if (so->so_type != SOCK_RAW ||
549 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
550 		return (EOPNOTSUPP);
551 
552 	if (m == NULL || m->m_len < sizeof(int))
553 		return (EINVAL);
554 
555 	v = mtod(m, int *);
556 	if (*v != 1)
557 		return (EINVAL);
558 
559 	if (ip_mrouter != NULL)
560 		return (EADDRINUSE);
561 
562 	ip_mrouter = so;
563 
564 	mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, M_WAITOK, &mfchash);
565 	bzero((caddr_t)nexpire, sizeof(nexpire));
566 
567 	pim_assert = 0;
568 
569 	timeout_set(&expire_upcalls_ch, expire_upcalls, NULL);
570 	timeout_add_msec(&expire_upcalls_ch, EXPIRE_TIMEOUT);
571 
572 	timeout_set(&bw_upcalls_ch, expire_bw_upcalls_send, NULL);
573 	timeout_add_msec(&bw_upcalls_ch, BW_UPCALLS_PERIOD);
574 
575 	timeout_set(&bw_meter_ch, expire_bw_meter_process, NULL);
576 	timeout_add_msec(&bw_meter_ch, BW_METER_PERIOD);
577 
578 	if (mrtdebug)
579 		log(LOG_DEBUG, "ip_mrouter_init\n");
580 
581 	return (0);
582 }
583 
584 /*
585  * Disable multicast routing
586  */
587 int
588 ip_mrouter_done()
589 {
590 	vifi_t vifi;
591 	struct vif *vifp;
592 	int i;
593 	int s;
594 
595 	s = splsoftnet();
596 
597 	/* Clear out all the vifs currently in use. */
598 	for (vifi = 0; vifi < numvifs; vifi++) {
599 		vifp = &viftable[vifi];
600 		if (!in_nullhost(vifp->v_lcl_addr))
601 			reset_vif(vifp);
602 	}
603 
604 	numvifs = 0;
605 	pim_assert = 0;
606 	mrt_api_config = 0;
607 
608 	timeout_del(&expire_upcalls_ch);
609 	timeout_del(&bw_upcalls_ch);
610 	timeout_del(&bw_meter_ch);
611 
612 	/*
613 	 * Free all multicast forwarding cache entries.
614 	 */
615 	for (i = 0; i < MFCTBLSIZ; i++) {
616 		struct mfc *rt, *nrt;
617 
618 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
619 			nrt = LIST_NEXT(rt, mfc_hash);
620 
621 			expire_mfc(rt);
622 		}
623 	}
624 
625 	bzero((caddr_t)nexpire, sizeof(nexpire));
626 	free(mfchashtbl, M_MRTABLE);
627 	mfchashtbl = NULL;
628 
629 	bw_upcalls_n = 0;
630 	bzero(bw_meter_timers, sizeof(bw_meter_timers));
631 
632 	/* Reset de-encapsulation cache. */
633 	have_encap_tunnel = 0;
634 
635 	ip_mrouter = NULL;
636 
637 	splx(s);
638 
639 	if (mrtdebug)
640 		log(LOG_DEBUG, "ip_mrouter_done\n");
641 
642 	return (0);
643 }
644 
645 void
646 ip_mrouter_detach(struct ifnet *ifp)
647 {
648 	int vifi, i;
649 	struct vif *vifp;
650 	struct mfc *rt;
651 	struct rtdetq *rte;
652 
653 	/* XXX not sure about side effect to userland routing daemon */
654 	for (vifi = 0; vifi < numvifs; vifi++) {
655 		vifp = &viftable[vifi];
656 		if (vifp->v_ifp == ifp)
657 			reset_vif(vifp);
658 	}
659 	for (i = 0; i < MFCTBLSIZ; i++) {
660 		if (nexpire[i] == 0)
661 			continue;
662 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
663 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
664 				if (rte->ifp == ifp)
665 					rte->ifp = NULL;
666 			}
667 		}
668 	}
669 }
670 
671 static int
672 get_version(struct mbuf *m)
673 {
674 	int *v = mtod(m, int *);
675 
676 	*v = 0x0305;	/* XXX !!!! */
677 	m->m_len = sizeof(int);
678 	return (0);
679 }
680 
681 /*
682  * Set PIM assert processing global
683  */
684 static int
685 set_assert(struct mbuf *m)
686 {
687 	int *i;
688 
689 	if (m == NULL || m->m_len < sizeof(int))
690 		return (EINVAL);
691 
692 	i = mtod(m, int *);
693 	pim_assert = !!*i;
694 	return (0);
695 }
696 
697 /*
698  * Get PIM assert processing global
699  */
700 static int
701 get_assert(struct mbuf *m)
702 {
703 	int *i = mtod(m, int *);
704 
705 	*i = pim_assert;
706 	m->m_len = sizeof(int);
707 	return (0);
708 }
709 
710 /*
711  * Configure API capabilities
712  */
713 static int
714 set_api_config(struct mbuf *m)
715 {
716 	int i;
717 	u_int32_t *apival;
718 
719 	if (m == NULL || m->m_len < sizeof(u_int32_t))
720 		return (EINVAL);
721 
722 	apival = mtod(m, u_int32_t *);
723 
724 	/*
725 	 * We can set the API capabilities only if it is the first operation
726 	 * after MRT_INIT. I.e.:
727 	 *  - there are no vifs installed
728 	 *  - pim_assert is not enabled
729 	 *  - the MFC table is empty
730 	 */
731 	if (numvifs > 0) {
732 		*apival = 0;
733 		return (EPERM);
734 	}
735 	if (pim_assert) {
736 		*apival = 0;
737 		return (EPERM);
738 	}
739 	for (i = 0; i < MFCTBLSIZ; i++) {
740 		if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
741 			*apival = 0;
742 			return (EPERM);
743 		}
744 	}
745 
746 	mrt_api_config = *apival & mrt_api_support;
747 	*apival = mrt_api_config;
748 
749 	return (0);
750 }
751 
752 /*
753  * Get API capabilities
754  */
755 static int
756 get_api_support(struct mbuf *m)
757 {
758 	u_int32_t *apival;
759 
760 	if (m == NULL || m->m_len < sizeof(u_int32_t))
761 		return (EINVAL);
762 
763 	apival = mtod(m, u_int32_t *);
764 
765 	*apival = mrt_api_support;
766 
767 	return (0);
768 }
769 
770 /*
771  * Get API configured capabilities
772  */
773 static int
774 get_api_config(struct mbuf *m)
775 {
776 	u_int32_t *apival;
777 
778 	if (m == NULL || m->m_len < sizeof(u_int32_t))
779 		return (EINVAL);
780 
781 	apival = mtod(m, u_int32_t *);
782 
783 	*apival = mrt_api_config;
784 
785 	return (0);
786 }
787 
788 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
789 
790 /*
791  * Add a vif to the vif table
792  */
793 static int
794 add_vif(struct mbuf *m)
795 {
796 	struct vifctl *vifcp;
797 	struct vif *vifp;
798 	struct ifaddr *ifa;
799 	struct ifnet *ifp;
800 	struct ifreq ifr;
801 	int error, s;
802 
803 	if (m == NULL || m->m_len < sizeof(struct vifctl))
804 		return (EINVAL);
805 
806 	vifcp = mtod(m, struct vifctl *);
807 	if (vifcp->vifc_vifi >= MAXVIFS)
808 		return (EINVAL);
809 	if (in_nullhost(vifcp->vifc_lcl_addr))
810 		return (EADDRNOTAVAIL);
811 
812 	vifp = &viftable[vifcp->vifc_vifi];
813 	if (!in_nullhost(vifp->v_lcl_addr))
814 		return (EADDRINUSE);
815 
816 	/* Find the interface with an address in AF_INET family. */
817 #ifdef PIM
818 	if (vifcp->vifc_flags & VIFF_REGISTER) {
819 		/*
820 		 * XXX: Because VIFF_REGISTER does not really need a valid
821 		 * local interface (e.g. it could be 127.0.0.2), we don't
822 		 * check its address.
823 		 */
824 	} else
825 #endif
826 	{
827 		sin.sin_addr = vifcp->vifc_lcl_addr;
828 		ifa = ifa_ifwithaddr(sintosa(&sin), /* XXX */ 0);
829 		if (ifa == NULL)
830 			return (EADDRNOTAVAIL);
831 	}
832 
833 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
834 		/* tunnels are no longer supported use gif(4) instead */
835 		return (EOPNOTSUPP);
836 #ifdef PIM
837 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
838 		ifp = &multicast_register_if;
839 		if (mrtdebug)
840 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
841 			    (void *)ifp);
842 		if (reg_vif_num == VIFI_INVALID) {
843 			bzero(ifp, sizeof(*ifp));
844 			snprintf(ifp->if_xname, sizeof ifp->if_xname,
845 				 "register_vif");
846 			ifp->if_flags = IFF_LOOPBACK;
847 			bzero(&vifp->v_route, sizeof(vifp->v_route));
848 			reg_vif_num = vifcp->vifc_vifi;
849 		}
850 #endif
851 	} else {
852 		/* Use the physical interface associated with the address. */
853 		ifp = ifa->ifa_ifp;
854 
855 		/* Make sure the interface supports multicast. */
856 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
857 			return (EOPNOTSUPP);
858 
859 		/* Enable promiscuous reception of all IP multicasts. */
860 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
861 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
862 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
863 		error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
864 		if (error)
865 			return (error);
866 	}
867 
868 	s = splsoftnet();
869 
870 	vifp->v_flags = vifcp->vifc_flags;
871 	vifp->v_threshold = vifcp->vifc_threshold;
872 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
873 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
874 	vifp->v_ifp = ifp;
875 	/* Initialize per vif pkt counters. */
876 	vifp->v_pkt_in = 0;
877 	vifp->v_pkt_out = 0;
878 	vifp->v_bytes_in = 0;
879 	vifp->v_bytes_out = 0;
880 
881 	timeout_del(&vifp->v_repq_ch);
882 
883 #ifdef RSVP_ISI
884 	vifp->v_rsvp_on = 0;
885 	vifp->v_rsvpd = NULL;
886 #endif /* RSVP_ISI */
887 
888 	splx(s);
889 
890 	/* Adjust numvifs up if the vifi is higher than numvifs. */
891 	if (numvifs <= vifcp->vifc_vifi)
892 		numvifs = vifcp->vifc_vifi + 1;
893 
894 	if (mrtdebug)
895 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, "
896 		    "thresh %x\n",
897 		    vifcp->vifc_vifi,
898 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
899 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
900 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
901 		    vifcp->vifc_threshold);
902 
903 	return (0);
904 }
905 
906 void
907 reset_vif(struct vif *vifp)
908 {
909 	struct ifnet *ifp;
910 	struct ifreq ifr;
911 
912 	if (vifp->v_flags & VIFF_TUNNEL) {
913 		/* empty */
914 	} else if (vifp->v_flags & VIFF_REGISTER) {
915 #ifdef PIM
916 		reg_vif_num = VIFI_INVALID;
917 #endif
918 	} else {
919 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
920 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
921 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
922 		ifp = vifp->v_ifp;
923 		(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
924 	}
925 	bzero((caddr_t)vifp, sizeof(*vifp));
926 }
927 
928 /*
929  * Delete a vif from the vif table
930  */
931 static int
932 del_vif(struct mbuf *m)
933 {
934 	vifi_t *vifip;
935 	struct vif *vifp;
936 	vifi_t vifi;
937 	int s;
938 
939 	if (m == NULL || m->m_len < sizeof(vifi_t))
940 		return (EINVAL);
941 
942 	vifip = mtod(m, vifi_t *);
943 	if (*vifip >= numvifs)
944 		return (EINVAL);
945 
946 	vifp = &viftable[*vifip];
947 	if (in_nullhost(vifp->v_lcl_addr))
948 		return (EADDRNOTAVAIL);
949 
950 	s = splsoftnet();
951 
952 	reset_vif(vifp);
953 
954 	/* Adjust numvifs down */
955 	for (vifi = numvifs; vifi > 0; vifi--)
956 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
957 			break;
958 	numvifs = vifi;
959 
960 	splx(s);
961 
962 	if (mrtdebug)
963 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
964 
965 	return (0);
966 }
967 
968 void
969 vif_delete(struct ifnet *ifp)
970 {
971 	int i;
972 	struct vif *vifp;
973 	struct mfc *rt;
974 	struct rtdetq *rte;
975 
976 	for (i = 0; i < numvifs; i++) {
977 		vifp = &viftable[i];
978 		if (vifp->v_ifp == ifp)
979 			bzero((caddr_t)vifp, sizeof *vifp);
980 	}
981 
982 	for (i = numvifs; i > 0; i--)
983 		if (!in_nullhost(viftable[i - 1].v_lcl_addr))
984 			break;
985 	numvifs = i;
986 
987 	for (i = 0; i < MFCTBLSIZ; i++) {
988 		if (nexpire[i] == 0)
989 			continue;
990 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
991 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
992 				if (rte->ifp == ifp)
993 					rte->ifp = NULL;
994 			}
995 		}
996 	}
997 }
998 
999 /*
1000  * update an mfc entry without resetting counters and S,G addresses.
1001  */
1002 static void
1003 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1004 {
1005 	int i;
1006 
1007 	rt->mfc_parent = mfccp->mfcc_parent;
1008 	for (i = 0; i < numvifs; i++) {
1009 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1010 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1011 		    MRT_MFC_FLAGS_ALL;
1012 	}
1013 	/* set the RP address */
1014 	if (mrt_api_config & MRT_MFC_RP)
1015 		rt->mfc_rp = mfccp->mfcc_rp;
1016 	else
1017 		rt->mfc_rp = zeroin_addr;
1018 }
1019 
1020 /*
1021  * fully initialize an mfc entry from the parameter.
1022  */
1023 static void
1024 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1025 {
1026 	rt->mfc_origin     = mfccp->mfcc_origin;
1027 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1028 
1029 	update_mfc_params(rt, mfccp);
1030 
1031 	/* initialize pkt counters per src-grp */
1032 	rt->mfc_pkt_cnt    = 0;
1033 	rt->mfc_byte_cnt   = 0;
1034 	rt->mfc_wrong_if   = 0;
1035 	timerclear(&rt->mfc_last_assert);
1036 }
1037 
1038 static void
1039 expire_mfc(struct mfc *rt)
1040 {
1041 	struct rtdetq *rte, *nrte;
1042 
1043 	free_bw_list(rt->mfc_bw_meter);
1044 
1045 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1046 		nrte = rte->next;
1047 		m_freem(rte->m);
1048 		free(rte, M_MRTABLE);
1049 	}
1050 
1051 	LIST_REMOVE(rt, mfc_hash);
1052 	free(rt, M_MRTABLE);
1053 }
1054 
1055 /*
1056  * Add an mfc entry
1057  */
1058 static int
1059 add_mfc(struct mbuf *m)
1060 {
1061 	struct mfcctl2 mfcctl2;
1062 	struct mfcctl2 *mfccp;
1063 	struct mfc *rt;
1064 	u_int32_t hash = 0;
1065 	struct rtdetq *rte, *nrte;
1066 	u_short nstl;
1067 	int s;
1068 	int mfcctl_size = sizeof(struct mfcctl);
1069 
1070 	if (mrt_api_config & MRT_API_FLAGS_ALL)
1071 		mfcctl_size = sizeof(struct mfcctl2);
1072 
1073 	if (m == NULL || m->m_len < mfcctl_size)
1074 		return (EINVAL);
1075 
1076 	/*
1077 	 * select data size depending on API version.
1078 	 */
1079 	if (mrt_api_config & MRT_API_FLAGS_ALL) {
1080 		struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
1081 		bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2));
1082 	} else {
1083 		struct mfcctl *mp = mtod(m, struct mfcctl *);
1084 		bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1085 		bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1086 		    sizeof(mfcctl2) - sizeof(struct mfcctl));
1087 	}
1088 	mfccp = &mfcctl2;
1089 
1090 	s = splsoftnet();
1091 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1092 
1093 	/* If an entry already exists, just update the fields */
1094 	if (rt) {
1095 		if (mrtdebug & DEBUG_MFC)
1096 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1097 			    ntohl(mfccp->mfcc_origin.s_addr),
1098 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1099 			    mfccp->mfcc_parent);
1100 
1101 		update_mfc_params(rt, mfccp);
1102 
1103 		splx(s);
1104 		return (0);
1105 	}
1106 
1107 	/*
1108 	 * Find the entry for which the upcall was made and update
1109 	 */
1110 	nstl = 0;
1111 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1112 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1113 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1114 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1115 		    rt->mfc_stall != NULL) {
1116 			if (nstl++)
1117 				log(LOG_ERR, "add_mfc %s o %x g %x "
1118 				    "p %x dbx %p\n",
1119 				    "multiple kernel entries",
1120 				    ntohl(mfccp->mfcc_origin.s_addr),
1121 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1122 				    mfccp->mfcc_parent, rt->mfc_stall);
1123 
1124 			if (mrtdebug & DEBUG_MFC)
1125 				log(LOG_DEBUG, "add_mfc o %x g %x "
1126 				    "p %x dbg %p\n",
1127 				    ntohl(mfccp->mfcc_origin.s_addr),
1128 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1129 				    mfccp->mfcc_parent, rt->mfc_stall);
1130 
1131 			rte = rt->mfc_stall;
1132 			init_mfc_params(rt, mfccp);
1133 			rt->mfc_stall = NULL;
1134 
1135 			rt->mfc_expire = 0; /* Don't clean this guy up */
1136 			nexpire[hash]--;
1137 
1138 			/* free packets Qed at the end of this entry */
1139 			for (; rte != NULL; rte = nrte) {
1140 				nrte = rte->next;
1141 				if (rte->ifp) {
1142 #ifdef RSVP_ISI
1143 					ip_mdq(rte->m, rte->ifp, rt, -1);
1144 #else
1145 					ip_mdq(rte->m, rte->ifp, rt);
1146 #endif /* RSVP_ISI */
1147 				}
1148 				m_freem(rte->m);
1149 #ifdef UPCALL_TIMING
1150 				collate(&rte->t);
1151 #endif /* UPCALL_TIMING */
1152 				free(rte, M_MRTABLE);
1153 			}
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * It is possible that an entry is being inserted without an upcall
1159 	 */
1160 	if (nstl == 0) {
1161 		/*
1162 		 * No mfc; make a new one
1163 		 */
1164 		if (mrtdebug & DEBUG_MFC)
1165 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1166 			    ntohl(mfccp->mfcc_origin.s_addr),
1167 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1168 			    mfccp->mfcc_parent);
1169 
1170 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1171 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1172 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1173 				init_mfc_params(rt, mfccp);
1174 				if (rt->mfc_expire)
1175 					nexpire[hash]--;
1176 				rt->mfc_expire = 0;
1177 				break; /* XXX */
1178 			}
1179 		}
1180 		if (rt == NULL) {	/* no upcall, so make a new entry */
1181 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1182 			    M_NOWAIT);
1183 			if (rt == NULL) {
1184 				splx(s);
1185 				return (ENOBUFS);
1186 			}
1187 
1188 			init_mfc_params(rt, mfccp);
1189 			rt->mfc_expire	= 0;
1190 			rt->mfc_stall	= NULL;
1191 			rt->mfc_bw_meter = NULL;
1192 
1193 			/* insert new entry at head of hash chain */
1194 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1195 		}
1196 	}
1197 
1198 	splx(s);
1199 	return (0);
1200 }
1201 
1202 #ifdef UPCALL_TIMING
1203 /*
1204  * collect delay statistics on the upcalls
1205  */
1206 static void
1207 collate(struct timeval *t)
1208 {
1209 	u_int32_t d;
1210 	struct timeval tp;
1211 	u_int32_t delta;
1212 
1213 	microtime(&tp);
1214 
1215 	if (timercmp(t, &tp, <)) {
1216 		TV_DELTA(tp, *t, delta);
1217 
1218 		d = delta >> 10;
1219 		if (d > 50)
1220 			d = 50;
1221 
1222 		++upcall_data[d];
1223 	}
1224 }
1225 #endif /* UPCALL_TIMING */
1226 
1227 /*
1228  * Delete an mfc entry
1229  */
1230 static int
1231 del_mfc(struct mbuf *m)
1232 {
1233 	struct mfcctl2 mfcctl2;
1234 	struct mfcctl2 *mfccp;
1235 	struct mfc *rt;
1236 	int s;
1237 	int mfcctl_size = sizeof(struct mfcctl);
1238 	struct mfcctl *mp = mtod(m, struct mfcctl *);
1239 
1240 	/*
1241 	 * XXX: for deleting MFC entries the information in entries
1242 	 * of size "struct mfcctl" is sufficient.
1243 	 */
1244 
1245 	if (m == NULL || m->m_len < mfcctl_size)
1246 		return (EINVAL);
1247 
1248 	bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1249 	bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1250 	    sizeof(mfcctl2) - sizeof(struct mfcctl));
1251 
1252 	mfccp = &mfcctl2;
1253 
1254 	if (mrtdebug & DEBUG_MFC)
1255 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1256 		    ntohl(mfccp->mfcc_origin.s_addr),
1257 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
1258 
1259 	s = splsoftnet();
1260 
1261 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1262 	if (rt == NULL) {
1263 		splx(s);
1264 		return (EADDRNOTAVAIL);
1265 	}
1266 
1267 	/*
1268 	 * free the bw_meter entries
1269 	 */
1270 	free_bw_list(rt->mfc_bw_meter);
1271 	rt->mfc_bw_meter = NULL;
1272 
1273 	LIST_REMOVE(rt, mfc_hash);
1274 	free(rt, M_MRTABLE);
1275 
1276 	splx(s);
1277 	return (0);
1278 }
1279 
1280 static int
1281 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1282 {
1283 	if (s != NULL) {
1284 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1285 		    (struct mbuf *)NULL) != 0) {
1286 			sorwakeup(s);
1287 			return (0);
1288 		}
1289 	}
1290 	m_freem(mm);
1291 	return (-1);
1292 }
1293 
1294 /*
1295  * IP multicast forwarding function. This function assumes that the packet
1296  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1297  * pointed to by "ifp", and the packet is to be relayed to other networks
1298  * that have members of the packet's destination IP multicast group.
1299  *
1300  * The packet is returned unscathed to the caller, unless it is
1301  * erroneous, in which case a non-zero return value tells the caller to
1302  * discard it.
1303  */
1304 
1305 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1306 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1307 
1308 int
1309 #ifdef RSVP_ISI
1310 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1311 #else
1312 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1313 #endif /* RSVP_ISI */
1314 {
1315 	struct ip *ip = mtod(m, struct ip *);
1316 	struct mfc *rt;
1317 	static int srctun = 0;
1318 	struct mbuf *mm;
1319 	int s;
1320 	vifi_t vifi;
1321 
1322 	if (mrtdebug & DEBUG_FORWARD)
1323 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1324 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1325 
1326 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1327 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1328 		/*
1329 		 * Packet arrived via a physical interface or
1330 		 * an encapsulated tunnel or a register_vif.
1331 		 */
1332 	} else {
1333 		/*
1334 		 * Packet arrived through a source-route tunnel.
1335 		 * Source-route tunnels are no longer supported.
1336 		 */
1337 		if ((srctun++ % 1000) == 0)
1338 			log(LOG_ERR, "ip_mforward: received source-routed "
1339 			    "packet from %x\n", ntohl(ip->ip_src.s_addr));
1340 
1341 		return (1);
1342 	}
1343 
1344 #ifdef RSVP_ISI
1345 	if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1346 		if (ip->ip_ttl < MAXTTL) {
1347 			/* compensate for -1 in *_send routines */
1348 			ip->ip_ttl++;
1349 		}
1350 		if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1351 			struct vif *vifp = viftable + vifi;
1352 			printf("Sending IPPROTO_RSVP from %x to %x on "
1353 			    "vif %d (%s%s)\n",
1354 			    ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1355 			    (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1356 			    vifp->v_ifp->if_xname);
1357 		}
1358 		return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1359 	}
1360 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1361 		printf("Warning: IPPROTO_RSVP from %x to %x without "
1362 		    "vif option\n", ntohl(ip->ip_src), ntohl(ip->ip_dst));
1363 	}
1364 #endif /* RSVP_ISI */
1365 
1366 	/*
1367 	 * Don't forward a packet with time-to-live of zero or one,
1368 	 * or a packet destined to a local-only group.
1369 	 */
1370 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1371 		return (0);
1372 
1373 	/*
1374 	 * Determine forwarding vifs from the forwarding cache table
1375 	 */
1376 	s = splsoftnet();
1377 	++mrtstat.mrts_mfc_lookups;
1378 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1379 
1380 	/* Entry exists, so forward if necessary */
1381 	if (rt != NULL) {
1382 		splx(s);
1383 #ifdef RSVP_ISI
1384 		return (ip_mdq(m, ifp, rt, -1));
1385 #else
1386 		return (ip_mdq(m, ifp, rt));
1387 #endif /* RSVP_ISI */
1388 	} else {
1389 		/*
1390 		 * If we don't have a route for packet's origin,
1391 		 * Make a copy of the packet & send message to routing daemon
1392 		 */
1393 
1394 		struct mbuf *mb0;
1395 		struct rtdetq *rte;
1396 		u_int32_t hash;
1397 		int hlen = ip->ip_hl << 2;
1398 #ifdef UPCALL_TIMING
1399 		struct timeval tp;
1400 
1401 		microtime(&tp);
1402 #endif /* UPCALL_TIMING */
1403 
1404 		++mrtstat.mrts_mfc_misses;
1405 
1406 		mrtstat.mrts_no_route++;
1407 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1408 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1409 			    ntohl(ip->ip_src.s_addr),
1410 			    ntohl(ip->ip_dst.s_addr));
1411 
1412 		/*
1413 		 * Allocate mbufs early so that we don't do extra work if we are
1414 		 * just going to fail anyway.  Make sure to pullup the header so
1415 		 * that other people can't step on it.
1416 		 */
1417 		rte = (struct rtdetq *)malloc(sizeof(*rte),
1418 		    M_MRTABLE, M_NOWAIT);
1419 		if (rte == NULL) {
1420 			splx(s);
1421 			return (ENOBUFS);
1422 		}
1423 		mb0 = m_copy(m, 0, M_COPYALL);
1424 		M_PULLUP(mb0, hlen);
1425 		if (mb0 == NULL) {
1426 			free(rte, M_MRTABLE);
1427 			splx(s);
1428 			return (ENOBUFS);
1429 		}
1430 
1431 		/* is there an upcall waiting for this flow? */
1432 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
1433 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1434 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1435 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1436 			    rt->mfc_stall != NULL)
1437 				break;
1438 		}
1439 
1440 		if (rt == NULL) {
1441 			int i;
1442 			struct igmpmsg *im;
1443 
1444 			/*
1445 			 * Locate the vifi for the incoming interface for
1446 			 * this packet.
1447 			 * If none found, drop packet.
1448 			 */
1449 			for (vifi = 0; vifi < numvifs &&
1450 				 viftable[vifi].v_ifp != ifp; vifi++)
1451 				;
1452 			if (vifi >= numvifs) /* vif not found, drop packet */
1453 				goto non_fatal;
1454 
1455 			/* no upcall, so make a new entry */
1456 			rt = (struct mfc *)malloc(sizeof(*rt),
1457 			    M_MRTABLE, M_NOWAIT);
1458 			if (rt == NULL)
1459 				goto fail;
1460 			/*
1461 			 * Make a copy of the header to send to the user level
1462 			 * process
1463 			 */
1464 			mm = m_copy(m, 0, hlen);
1465 			M_PULLUP(mm, hlen);
1466 			if (mm == NULL)
1467 				goto fail1;
1468 
1469 			/*
1470 			 * Send message to routing daemon to install
1471 			 * a route into the kernel table
1472 			 */
1473 
1474 			im = mtod(mm, struct igmpmsg *);
1475 			im->im_msgtype = IGMPMSG_NOCACHE;
1476 			im->im_mbz = 0;
1477 			im->im_vif = vifi;
1478 
1479 			mrtstat.mrts_upcalls++;
1480 
1481 			sin.sin_addr = ip->ip_src;
1482 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
1483 				log(LOG_WARNING, "ip_mforward: ip_mrouter "
1484 				    "socket queue full\n");
1485 				++mrtstat.mrts_upq_sockfull;
1486 			fail1:
1487 				free(rt, M_MRTABLE);
1488 			fail:
1489 				free(rte, M_MRTABLE);
1490 				m_freem(mb0);
1491 				splx(s);
1492 				return (ENOBUFS);
1493 			}
1494 
1495 			/* insert new entry at head of hash chain */
1496 			rt->mfc_origin = ip->ip_src;
1497 			rt->mfc_mcastgrp = ip->ip_dst;
1498 			rt->mfc_pkt_cnt = 0;
1499 			rt->mfc_byte_cnt = 0;
1500 			rt->mfc_wrong_if = 0;
1501 			rt->mfc_expire = UPCALL_EXPIRE;
1502 			nexpire[hash]++;
1503 			for (i = 0; i < numvifs; i++) {
1504 				rt->mfc_ttls[i] = 0;
1505 				rt->mfc_flags[i] = 0;
1506 			}
1507 			rt->mfc_parent = -1;
1508 
1509 			/* clear the RP address */
1510 			rt->mfc_rp = zeroin_addr;
1511 
1512 			rt->mfc_bw_meter = NULL;
1513 
1514 			/* link into table */
1515 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1516 			/* Add this entry to the end of the queue */
1517 			rt->mfc_stall = rte;
1518 		} else {
1519 			/* determine if q has overflowed */
1520 			struct rtdetq **p;
1521 			int npkts = 0;
1522 
1523 			/*
1524 			 * XXX ouch! we need to append to the list, but we
1525 			 * only have a pointer to the front, so we have to
1526 			 * scan the entire list every time.
1527 			 */
1528 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1529 				if (++npkts > MAX_UPQ) {
1530 					mrtstat.mrts_upq_ovflw++;
1531 				non_fatal:
1532 					free(rte, M_MRTABLE);
1533 					m_freem(mb0);
1534 					splx(s);
1535 					return (0);
1536 				}
1537 
1538 			/* Add this entry to the end of the queue */
1539 			*p = rte;
1540 		}
1541 
1542 		rte->next = NULL;
1543 		rte->m = mb0;
1544 		rte->ifp = ifp;
1545 	#ifdef UPCALL_TIMING
1546 		rte->t = tp;
1547 	#endif /* UPCALL_TIMING */
1548 
1549 		splx(s);
1550 
1551 		return (0);
1552 	}
1553 }
1554 
1555 
1556 /*ARGSUSED*/
1557 static void
1558 expire_upcalls(void *v)
1559 {
1560 	int i;
1561 	int s;
1562 
1563 	s = splsoftnet();
1564 
1565 	for (i = 0; i < MFCTBLSIZ; i++) {
1566 		struct mfc *rt, *nrt;
1567 
1568 		if (nexpire[i] == 0)
1569 			continue;
1570 
1571 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1572 			nrt = LIST_NEXT(rt, mfc_hash);
1573 
1574 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1575 				continue;
1576 			nexpire[i]--;
1577 
1578 			/*
1579 			 * free the bw_meter entries
1580 			 */
1581 			while (rt->mfc_bw_meter != NULL) {
1582 				struct bw_meter *x = rt->mfc_bw_meter;
1583 
1584 				rt->mfc_bw_meter = x->bm_mfc_next;
1585 				free(x, M_BWMETER);
1586 			}
1587 
1588 			++mrtstat.mrts_cache_cleanups;
1589 			if (mrtdebug & DEBUG_EXPIRE)
1590 				log(LOG_DEBUG,
1591 				    "expire_upcalls: expiring (%x %x)\n",
1592 				    ntohl(rt->mfc_origin.s_addr),
1593 				    ntohl(rt->mfc_mcastgrp.s_addr));
1594 
1595 			expire_mfc(rt);
1596 		}
1597 	}
1598 
1599 	splx(s);
1600 	timeout_add_msec(&expire_upcalls_ch, EXPIRE_TIMEOUT);
1601 }
1602 
1603 /*
1604  * Packet forwarding routine once entry in the cache is made
1605  */
1606 static int
1607 #ifdef RSVP_ISI
1608 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1609 #else
1610 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1611 #endif /* RSVP_ISI */
1612 {
1613 	struct ip  *ip = mtod(m, struct ip *);
1614 	vifi_t vifi;
1615 	struct vif *vifp;
1616 	int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1617 
1618 /*
1619  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1620  * input, they shouldn't get counted on output, so statistics keeping is
1621  * separate.
1622  */
1623 #define MC_SEND(ip, vifp, m) do {					\
1624 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
1625 		encap_send((ip), (vifp), (m));				\
1626 	else								\
1627 		phyint_send((ip), (vifp), (m));				\
1628 } while (/*CONSTCOND*/ 0)
1629 
1630 #ifdef RSVP_ISI
1631 	/*
1632 	 * If xmt_vif is not -1, send on only the requested vif.
1633 	 *
1634 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1635 	 */
1636 	if (xmt_vif < numvifs) {
1637 #ifdef PIM
1638 		if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1639 			pim_register_send(ip, viftable + xmt_vif, m, rt);
1640 		else
1641 #endif
1642 		MC_SEND(ip, viftable + xmt_vif, m);
1643 		return (1);
1644 	}
1645 #endif /* RSVP_ISI */
1646 
1647 	/*
1648 	 * Don't forward if it didn't arrive from the parent vif for its origin.
1649 	 */
1650 	vifi = rt->mfc_parent;
1651 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1652 		/* came in the wrong interface */
1653 		if (mrtdebug & DEBUG_FORWARD)
1654 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1655 			    ifp, vifi,
1656 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1657 		++mrtstat.mrts_wrong_if;
1658 		++rt->mfc_wrong_if;
1659 		/*
1660 		 * If we are doing PIM assert processing, send a message
1661 		 * to the routing daemon.
1662 		 *
1663 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1664 		 * can complete the SPT switch, regardless of the type
1665 		 * of interface (broadcast media, GRE tunnel, etc).
1666 		 */
1667 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1668 			struct timeval now;
1669 			u_int32_t delta;
1670 
1671 #ifdef PIM
1672 			if (ifp == &multicast_register_if)
1673 				pimstat.pims_rcv_registers_wrongiif++;
1674 #endif
1675 
1676 			/* Get vifi for the incoming packet */
1677 			for (vifi = 0;
1678 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
1679 			     vifi++)
1680 			    ;
1681 			if (vifi >= numvifs) {
1682 				/* The iif is not found: ignore the packet. */
1683 				return (0);
1684 			}
1685 
1686 			if (rt->mfc_flags[vifi] &
1687 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1688 				/* WRONGVIF disabled: ignore the packet */
1689 				return (0);
1690 			}
1691 
1692 			microtime(&now);
1693 
1694 			TV_DELTA(rt->mfc_last_assert, now, delta);
1695 
1696 			if (delta > ASSERT_MSG_TIME) {
1697 				struct igmpmsg *im;
1698 				int hlen = ip->ip_hl << 2;
1699 				struct mbuf *mm = m_copy(m, 0, hlen);
1700 
1701 				M_PULLUP(mm, hlen);
1702 				if (mm == NULL)
1703 					return (ENOBUFS);
1704 
1705 				rt->mfc_last_assert = now;
1706 
1707 				im = mtod(mm, struct igmpmsg *);
1708 				im->im_msgtype	= IGMPMSG_WRONGVIF;
1709 				im->im_mbz	= 0;
1710 				im->im_vif	= vifi;
1711 
1712 				mrtstat.mrts_upcalls++;
1713 
1714 				sin.sin_addr = im->im_src;
1715 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
1716 					log(LOG_WARNING, "ip_mforward: "
1717 					    "ip_mrouter socket queue full\n");
1718 					++mrtstat.mrts_upq_sockfull;
1719 					return (ENOBUFS);
1720 				}
1721 			}
1722 		}
1723 		return (0);
1724 	}
1725 
1726 	/* If I sourced this packet, it counts as output, else it was input. */
1727 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1728 		viftable[vifi].v_pkt_out++;
1729 		viftable[vifi].v_bytes_out += plen;
1730 	} else {
1731 		viftable[vifi].v_pkt_in++;
1732 		viftable[vifi].v_bytes_in += plen;
1733 	}
1734 	rt->mfc_pkt_cnt++;
1735 	rt->mfc_byte_cnt += plen;
1736 
1737 	/*
1738 	 * For each vif, decide if a copy of the packet should be forwarded.
1739 	 * Forward if:
1740 	 *		- the ttl exceeds the vif's threshold
1741 	 *		- there are group members downstream on interface
1742 	 */
1743 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1744 		if ((rt->mfc_ttls[vifi] > 0) &&
1745 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
1746 			vifp->v_pkt_out++;
1747 			vifp->v_bytes_out += plen;
1748 #ifdef PIM
1749 			if (vifp->v_flags & VIFF_REGISTER)
1750 				pim_register_send(ip, vifp, m, rt);
1751 			else
1752 #endif
1753 			MC_SEND(ip, vifp, m);
1754 		}
1755 
1756 	/*
1757 	 * Perform upcall-related bw measuring.
1758 	 */
1759 	if (rt->mfc_bw_meter != NULL) {
1760 		struct bw_meter *x;
1761 		struct timeval now;
1762 
1763 		microtime(&now);
1764 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1765 			bw_meter_receive_packet(x, plen, &now);
1766 	}
1767 
1768 	return (0);
1769 }
1770 
1771 #ifdef RSVP_ISI
1772 /*
1773  * check if a vif number is legal/ok. This is used by ip_output.
1774  */
1775 int
1776 legal_vif_num(int vif)
1777 {
1778 	if (vif >= 0 && vif < numvifs)
1779 		return (1);
1780 	else
1781 		return (0);
1782 }
1783 #endif /* RSVP_ISI */
1784 
1785 static void
1786 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1787 {
1788 	struct mbuf *mb_copy;
1789 	int hlen = ip->ip_hl << 2;
1790 
1791 	/*
1792 	 * Make a new reference to the packet; make sure that
1793 	 * the IP header is actually copied, not just referenced,
1794 	 * so that ip_output() only scribbles on the copy.
1795 	 */
1796 	mb_copy = m_copy(m, 0, M_COPYALL);
1797 	M_PULLUP(mb_copy, hlen);
1798 	if (mb_copy == NULL)
1799 		return;
1800 
1801 	send_packet(vifp, mb_copy);
1802 }
1803 
1804 static void
1805 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1806 {
1807 	struct mbuf *mb_copy;
1808 	struct ip *ip_copy;
1809 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1810 
1811 	/* Take care of delayed checksums */
1812 	if (m->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) {
1813 		in_delayed_cksum(m);
1814 		m->m_pkthdr.csum_flags &=
1815 		    ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT);
1816 	}
1817 
1818 	/*
1819 	 * copy the old packet & pullup its IP header into the
1820 	 * new mbuf so we can modify it.  Try to fill the new
1821 	 * mbuf since if we don't the ethernet driver will.
1822 	 */
1823 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1824 	if (mb_copy == NULL)
1825 		return;
1826 	mb_copy->m_data += max_linkhdr;
1827 	mb_copy->m_pkthdr.len = len;
1828 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
1829 
1830 	if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1831 		m_freem(mb_copy);
1832 		return;
1833 	}
1834 	i = MHLEN - max_linkhdr;
1835 	if (i > len)
1836 		i = len;
1837 	mb_copy = m_pullup(mb_copy, i);
1838 	if (mb_copy == NULL)
1839 		return;
1840 
1841 	/*
1842 	 * fill in the encapsulating IP header.
1843 	 */
1844 	ip_copy = mtod(mb_copy, struct ip *);
1845 	*ip_copy = multicast_encap_iphdr;
1846 	ip_copy->ip_id = htons(ip_randomid());
1847 	ip_copy->ip_len = htons(len);
1848 	ip_copy->ip_src = vifp->v_lcl_addr;
1849 	ip_copy->ip_dst = vifp->v_rmt_addr;
1850 
1851 	/*
1852 	 * turn the encapsulated IP header back into a valid one.
1853 	 */
1854 	ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1855 	--ip->ip_ttl;
1856 	ip->ip_sum = 0;
1857 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
1858 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1859 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1860 
1861 	send_packet(vifp, mb_copy);
1862 }
1863 
1864 static void
1865 send_packet(struct vif *vifp, struct mbuf *m)
1866 {
1867 	int error;
1868 	int s = splsoftnet();
1869 
1870 	if (vifp->v_flags & VIFF_TUNNEL) {
1871 		/* If tunnel options */
1872 		ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
1873 		    IP_FORWARDING, (struct ip_moptions *)NULL,
1874 		    (struct inpcb *)NULL);
1875 	} else {
1876 		/*
1877 		 * if physical interface option, extract the options
1878 		 * and then send
1879 		 */
1880 		struct ip_moptions imo;
1881 
1882 		imo.imo_multicast_ifp = vifp->v_ifp;
1883 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - IPTTLDEC;
1884 		imo.imo_multicast_loop = 1;
1885 #ifdef RSVP_ISI
1886 		imo.imo_multicast_vif = -1;
1887 #endif
1888 
1889 		error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL,
1890 		    IP_FORWARDING|IP_MULTICASTOPTS, &imo,
1891 		    (struct inpcb *)NULL);
1892 
1893 		if (mrtdebug & DEBUG_XMIT)
1894 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
1895 			    (long)(vifp - viftable), error);
1896 	}
1897 	splx(s);
1898 }
1899 
1900 #ifdef RSVP_ISI
1901 int
1902 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
1903 {
1904 	int vifi, s;
1905 
1906 	if (rsvpdebug)
1907 		printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1908 		    so->so_type, so->so_proto->pr_protocol);
1909 
1910 	if (so->so_type != SOCK_RAW ||
1911 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1912 		return (EOPNOTSUPP);
1913 
1914 	/* Check mbuf. */
1915 	if (m == NULL || m->m_len != sizeof(int)) {
1916 		return (EINVAL);
1917 	}
1918 	vifi = *(mtod(m, int *));
1919 
1920 	if (rsvpdebug)
1921 		printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
1922 		    vifi, rsvp_on);
1923 
1924 	s = splsoftnet();
1925 
1926 	/* Check vif. */
1927 	if (!legal_vif_num(vifi)) {
1928 		splx(s);
1929 		return (EADDRNOTAVAIL);
1930 	}
1931 
1932 	/* Check if socket is available. */
1933 	if (viftable[vifi].v_rsvpd != NULL) {
1934 		splx(s);
1935 		return (EADDRINUSE);
1936 	}
1937 
1938 	viftable[vifi].v_rsvpd = so;
1939 	/* This may seem silly, but we need to be sure we don't over-increment
1940 	 * the RSVP counter, in case something slips up.
1941 	 */
1942 	if (!viftable[vifi].v_rsvp_on) {
1943 		viftable[vifi].v_rsvp_on = 1;
1944 		rsvp_on++;
1945 	}
1946 
1947 	splx(s);
1948 	return (0);
1949 }
1950 
1951 int
1952 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
1953 {
1954 	int vifi, s;
1955 
1956 	if (rsvpdebug)
1957 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1958 		    so->so_type, so->so_proto->pr_protocol);
1959 
1960 	if (so->so_type != SOCK_RAW ||
1961 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1962 		return (EOPNOTSUPP);
1963 
1964 	/* Check mbuf. */
1965 	if (m == NULL || m->m_len != sizeof(int)) {
1966 		return (EINVAL);
1967 	}
1968 	vifi = *(mtod(m, int *));
1969 
1970 	s = splsoftnet();
1971 
1972 	/* Check vif. */
1973 	if (!legal_vif_num(vifi)) {
1974 		splx(s);
1975 		return (EADDRNOTAVAIL);
1976 	}
1977 
1978 	if (rsvpdebug)
1979 		printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1980 		    viftable[vifi].v_rsvpd, so);
1981 
1982 	viftable[vifi].v_rsvpd = NULL;
1983 	/*
1984 	 * This may seem silly, but we need to be sure we don't over-decrement
1985 	 * the RSVP counter, in case something slips up.
1986 	 */
1987 	if (viftable[vifi].v_rsvp_on) {
1988 		viftable[vifi].v_rsvp_on = 0;
1989 		rsvp_on--;
1990 	}
1991 
1992 	splx(s);
1993 	return (0);
1994 }
1995 
1996 void
1997 ip_rsvp_force_done(struct socket *so)
1998 {
1999 	int vifi, s;
2000 
2001 	/* Don't bother if it is not the right type of socket. */
2002 	if (so->so_type != SOCK_RAW ||
2003 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2004 		return;
2005 
2006 	s = splsoftnet();
2007 
2008 	/*
2009 	 * The socket may be attached to more than one vif...this
2010 	 * is perfectly legal.
2011 	 */
2012 	for (vifi = 0; vifi < numvifs; vifi++) {
2013 		if (viftable[vifi].v_rsvpd == so) {
2014 			viftable[vifi].v_rsvpd = NULL;
2015 			/*
2016 			 * This may seem silly, but we need to be sure we don't
2017 			 * over-decrement the RSVP counter, in case something
2018 			 * slips up.
2019 			 */
2020 			if (viftable[vifi].v_rsvp_on) {
2021 				viftable[vifi].v_rsvp_on = 0;
2022 				rsvp_on--;
2023 			}
2024 		}
2025 	}
2026 
2027 	splx(s);
2028 	return;
2029 }
2030 
2031 void
2032 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2033 {
2034 	int vifi, s;
2035 	struct ip *ip = mtod(m, struct ip *);
2036 	static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
2037 
2038 	if (rsvpdebug)
2039 		printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2040 
2041 	/*
2042 	 * Can still get packets with rsvp_on = 0 if there is a local member
2043 	 * of the group to which the RSVP packet is addressed.  But in this
2044 	 * case we want to throw the packet away.
2045 	 */
2046 	if (!rsvp_on) {
2047 		m_freem(m);
2048 		return;
2049 	}
2050 
2051 	/*
2052 	 * If the old-style non-vif-associated socket is set, then use
2053 	 * it and ignore the new ones.
2054 	 */
2055 	if (ip_rsvpd != NULL) {
2056 		if (rsvpdebug)
2057 			printf("rsvp_input: "
2058 			    "Sending packet up old-style socket\n");
2059 		rip_input(m, 0);	/*XXX*/
2060 		return;
2061 	}
2062 
2063 	s = splsoftnet();
2064 
2065 	if (rsvpdebug)
2066 		printf("rsvp_input: check vifs\n");
2067 
2068 	/* Find which vif the packet arrived on. */
2069 	for (vifi = 0; vifi < numvifs; vifi++) {
2070 		if (viftable[vifi].v_ifp == ifp)
2071 			break;
2072 	}
2073 
2074 	if (vifi == numvifs) {
2075 		/* Can't find vif packet arrived on. Drop packet. */
2076 		if (rsvpdebug)
2077 			printf("rsvp_input: "
2078 			    "Can't find vif for packet...dropping it.\n");
2079 		m_freem(m);
2080 		splx(s);
2081 		return;
2082 	}
2083 
2084 	if (rsvpdebug)
2085 		printf("rsvp_input: check socket\n");
2086 
2087 	if (viftable[vifi].v_rsvpd == NULL) {
2088 		/*
2089 	 	 * drop packet, since there is no specific socket for this
2090 		 * interface
2091 		 */
2092 		if (rsvpdebug)
2093 			printf("rsvp_input: No socket defined for vif %d\n",
2094 			    vifi);
2095 		m_freem(m);
2096 		splx(s);
2097 		return;
2098 	}
2099 
2100 	rsvp_src.sin_addr = ip->ip_src;
2101 
2102 	if (rsvpdebug && m)
2103 		printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2104 		    m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2105 
2106 	if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2107 		if (rsvpdebug)
2108 			printf("rsvp_input: Failed to append to socket\n");
2109 	else
2110 		if (rsvpdebug)
2111 			printf("rsvp_input: send packet up\n");
2112 
2113 	splx(s);
2114 }
2115 #endif /* RSVP_ISI */
2116 
2117 /*
2118  * Code for bandwidth monitors
2119  */
2120 
2121 /*
2122  * Define common interface for timeval-related methods
2123  */
2124 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2125 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2126 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2127 
2128 static uint32_t
2129 compute_bw_meter_flags(struct bw_upcall *req)
2130 {
2131 	uint32_t flags = 0;
2132 
2133 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2134 		flags |= BW_METER_UNIT_PACKETS;
2135 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2136 		flags |= BW_METER_UNIT_BYTES;
2137 	if (req->bu_flags & BW_UPCALL_GEQ)
2138 		flags |= BW_METER_GEQ;
2139 	if (req->bu_flags & BW_UPCALL_LEQ)
2140 		flags |= BW_METER_LEQ;
2141 
2142 	return (flags);
2143 }
2144 
2145 /*
2146  * Add a bw_meter entry
2147  */
2148 static int
2149 add_bw_upcall(struct mbuf *m)
2150 {
2151 	int s;
2152 	struct mfc *mfc;
2153 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2154 	    BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2155 	struct timeval now;
2156 	struct bw_meter *x;
2157 	uint32_t flags;
2158 	struct bw_upcall *req;
2159 
2160 	if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2161 		return (EINVAL);
2162 
2163 	req = mtod(m, struct bw_upcall *);
2164 
2165 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2166 		return (EOPNOTSUPP);
2167 
2168 	/* Test if the flags are valid */
2169 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2170 		return (EINVAL);
2171 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2172 		return (EINVAL);
2173 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2174 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2175 		return (EINVAL);
2176 
2177 	/* Test if the threshold time interval is valid */
2178 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2179 		return (EINVAL);
2180 
2181 	flags = compute_bw_meter_flags(req);
2182 
2183 	/* Find if we have already same bw_meter entry */
2184 	s = splsoftnet();
2185 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2186 	if (mfc == NULL) {
2187 		splx(s);
2188 		return (EADDRNOTAVAIL);
2189 	}
2190 	for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2191 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2192 		    &req->bu_threshold.b_time, ==)) &&
2193 		    (x->bm_threshold.b_packets ==
2194 		    req->bu_threshold.b_packets) &&
2195 		    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2196 		    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2197 			splx(s);
2198 			return (0);	/* XXX Already installed */
2199 		}
2200 	}
2201 
2202 	/* Allocate the new bw_meter entry */
2203 	x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2204 	if (x == NULL) {
2205 		splx(s);
2206 		return (ENOBUFS);
2207 	}
2208 
2209 	/* Set the new bw_meter entry */
2210 	x->bm_threshold.b_time = req->bu_threshold.b_time;
2211 	microtime(&now);
2212 	x->bm_start_time = now;
2213 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2214 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2215 	x->bm_measured.b_packets = 0;
2216 	x->bm_measured.b_bytes = 0;
2217 	x->bm_flags = flags;
2218 	x->bm_time_next = NULL;
2219 	x->bm_time_hash = BW_METER_BUCKETS;
2220 
2221 	/* Add the new bw_meter entry to the front of entries for this MFC */
2222 	x->bm_mfc = mfc;
2223 	x->bm_mfc_next = mfc->mfc_bw_meter;
2224 	mfc->mfc_bw_meter = x;
2225 	schedule_bw_meter(x, &now);
2226 	splx(s);
2227 
2228 	return (0);
2229 }
2230 
2231 static void
2232 free_bw_list(struct bw_meter *list)
2233 {
2234 	while (list != NULL) {
2235 		struct bw_meter *x = list;
2236 
2237 		list = list->bm_mfc_next;
2238 		unschedule_bw_meter(x);
2239 		free(x, M_BWMETER);
2240 	}
2241 }
2242 
2243 /*
2244  * Delete one or multiple bw_meter entries
2245  */
2246 static int
2247 del_bw_upcall(struct mbuf *m)
2248 {
2249 	int s;
2250 	struct mfc *mfc;
2251 	struct bw_meter *x;
2252 	struct bw_upcall *req;
2253 
2254 	if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2255 		return (EINVAL);
2256 
2257 	req = mtod(m, struct bw_upcall *);
2258 
2259 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2260 		return (EOPNOTSUPP);
2261 
2262 	s = splsoftnet();
2263 	/* Find the corresponding MFC entry */
2264 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2265 	if (mfc == NULL) {
2266 		splx(s);
2267 		return (EADDRNOTAVAIL);
2268 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2269 		/* Delete all bw_meter entries for this mfc */
2270 		struct bw_meter *list;
2271 
2272 		list = mfc->mfc_bw_meter;
2273 		mfc->mfc_bw_meter = NULL;
2274 		free_bw_list(list);
2275 		splx(s);
2276 		return (0);
2277 	} else {	/* Delete a single bw_meter entry */
2278 		struct bw_meter *prev;
2279 		uint32_t flags = 0;
2280 
2281 		flags = compute_bw_meter_flags(req);
2282 
2283 		/* Find the bw_meter entry to delete */
2284 		for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2285 		    prev = x, x = x->bm_mfc_next) {
2286 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2287 			    &req->bu_threshold.b_time, ==)) &&
2288 			    (x->bm_threshold.b_packets ==
2289 			    req->bu_threshold.b_packets) &&
2290 			    (x->bm_threshold.b_bytes ==
2291 			    req->bu_threshold.b_bytes) &&
2292 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2293 				break;
2294 		}
2295 		if (x != NULL) { /* Delete entry from the list for this MFC */
2296 			if (prev != NULL) {
2297 				/* remove from middle */
2298 				prev->bm_mfc_next = x->bm_mfc_next;
2299 			} else {
2300 				/* new head of list */
2301 				x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;
2302 			}
2303 
2304 			unschedule_bw_meter(x);
2305 			splx(s);
2306 			/* Free the bw_meter entry */
2307 			free(x, M_BWMETER);
2308 			return (0);
2309 		} else {
2310 			splx(s);
2311 			return (EINVAL);
2312 		}
2313 	}
2314 	/* NOTREACHED */
2315 }
2316 
2317 /*
2318  * Perform bandwidth measurement processing that may result in an upcall
2319  */
2320 static void
2321 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2322 {
2323 	struct timeval delta;
2324 
2325 	delta = *nowp;
2326 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2327 
2328 	if (x->bm_flags & BW_METER_GEQ) {
2329 		/* Processing for ">=" type of bw_meter entry */
2330 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2331 			/* Reset the bw_meter entry */
2332 			x->bm_start_time = *nowp;
2333 			x->bm_measured.b_packets = 0;
2334 			x->bm_measured.b_bytes = 0;
2335 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2336 		}
2337 
2338 		/* Record that a packet is received */
2339 		x->bm_measured.b_packets++;
2340 		x->bm_measured.b_bytes += plen;
2341 
2342 		/* Test if we should deliver an upcall */
2343 		if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2344 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2345 			    (x->bm_measured.b_packets >=
2346 			    x->bm_threshold.b_packets)) ||
2347 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2348 			    (x->bm_measured.b_bytes >=
2349 			    x->bm_threshold.b_bytes))) {
2350 				/* Prepare an upcall for delivery */
2351 				bw_meter_prepare_upcall(x, nowp);
2352 				x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2353 			}
2354 		}
2355 	} else if (x->bm_flags & BW_METER_LEQ) {
2356 		/* Processing for "<=" type of bw_meter entry */
2357 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2358 			/*
2359 			 * We are behind time with the multicast forwarding
2360 			 * table scanning for "<=" type of bw_meter entries,
2361 			 * so test now if we should deliver an upcall.
2362 			 */
2363 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2364 			    (x->bm_measured.b_packets <=
2365 			    x->bm_threshold.b_packets)) ||
2366 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2367 			    (x->bm_measured.b_bytes <=
2368 			    x->bm_threshold.b_bytes))) {
2369 				/* Prepare an upcall for delivery */
2370 				bw_meter_prepare_upcall(x, nowp);
2371 			}
2372 			/* Reschedule the bw_meter entry */
2373 			unschedule_bw_meter(x);
2374 			schedule_bw_meter(x, nowp);
2375 		}
2376 
2377 		/* Record that a packet is received */
2378 		x->bm_measured.b_packets++;
2379 		x->bm_measured.b_bytes += plen;
2380 
2381 		/* Test if we should restart the measuring interval */
2382 		if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2383 		    x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2384 		    (x->bm_flags & BW_METER_UNIT_BYTES &&
2385 		    x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2386 			/* Don't restart the measuring interval */
2387 		} else {
2388 			/* Do restart the measuring interval */
2389 			/*
2390 			 * XXX: note that we don't unschedule and schedule,
2391 			 * because this might be too much overhead per packet.
2392 			 * Instead, when we process all entries for a given
2393 			 * timer hash bin, we check whether it is really a
2394 			 * timeout. If not, we reschedule at that time.
2395 			 */
2396 			x->bm_start_time = *nowp;
2397 			x->bm_measured.b_packets = 0;
2398 			x->bm_measured.b_bytes = 0;
2399 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2400 		}
2401 	}
2402 }
2403 
2404 /*
2405  * Prepare a bandwidth-related upcall
2406  */
2407 static void
2408 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2409 {
2410 	struct timeval delta;
2411 	struct bw_upcall *u;
2412 
2413 	/* Compute the measured time interval */
2414 	delta = *nowp;
2415 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2416 
2417 	/* If there are too many pending upcalls, deliver them now */
2418 	if (bw_upcalls_n >= BW_UPCALLS_MAX)
2419 		bw_upcalls_send();
2420 
2421 	/* Set the bw_upcall entry */
2422 	u = &bw_upcalls[bw_upcalls_n++];
2423 	u->bu_src = x->bm_mfc->mfc_origin;
2424 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2425 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2426 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2427 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2428 	u->bu_measured.b_time = delta;
2429 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2430 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2431 	u->bu_flags = 0;
2432 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2433 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2434 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2435 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2436 	if (x->bm_flags & BW_METER_GEQ)
2437 		u->bu_flags |= BW_UPCALL_GEQ;
2438 	if (x->bm_flags & BW_METER_LEQ)
2439 		u->bu_flags |= BW_UPCALL_LEQ;
2440 }
2441 
2442 /*
2443  * Send the pending bandwidth-related upcalls
2444  */
2445 static void
2446 bw_upcalls_send(void)
2447 {
2448 	struct mbuf *m;
2449 	int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2450 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2451 	static struct igmpmsg igmpmsg = {
2452 	    0,			/* unused1 */
2453 	    0,			/* unused2 */
2454 	    IGMPMSG_BW_UPCALL,	/* im_msgtype */
2455 	    0,			/* im_mbz  */
2456 	    0,			/* im_vif  */
2457 	    0,			/* unused3 */
2458 	    { 0 },		/* im_src  */
2459 	    { 0 } };		/* im_dst  */
2460 
2461 	if (bw_upcalls_n == 0)
2462 		return;		/* No pending upcalls */
2463 
2464 	bw_upcalls_n = 0;
2465 
2466 	/*
2467 	 * Allocate a new mbuf, initialize it with the header and
2468 	 * the payload for the pending calls.
2469 	 */
2470 	MGETHDR(m, M_DONTWAIT, MT_HEADER);
2471 	if (m == NULL) {
2472 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2473 		return;
2474 	}
2475 
2476 	m->m_len = m->m_pkthdr.len = 0;
2477 	m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2478 	m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2479 
2480 	/*
2481 	 * Send the upcalls
2482 	 * XXX do we need to set the address in k_igmpsrc ?
2483 	 */
2484 	mrtstat.mrts_upcalls++;
2485 	if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2486 		log(LOG_WARNING,
2487 		    "bw_upcalls_send: ip_mrouter socket queue full\n");
2488 		++mrtstat.mrts_upq_sockfull;
2489 	}
2490 }
2491 
2492 /*
2493  * Compute the timeout hash value for the bw_meter entries
2494  */
2495 #define	BW_METER_TIMEHASH(bw_meter, hash) do {				\
2496 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2497 									\
2498 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2499 	(hash) = next_timeval.tv_sec;					\
2500 	if (next_timeval.tv_usec)					\
2501 		(hash)++; /* XXX: make sure we don't timeout early */	\
2502 	(hash) %= BW_METER_BUCKETS;					\
2503 } while (/*CONSTCOND*/ 0)
2504 
2505 /*
2506  * Schedule a timer to process periodically bw_meter entry of type "<="
2507  * by linking the entry in the proper hash bucket.
2508  */
2509 static void
2510 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2511 {
2512 	int time_hash;
2513 
2514 	if (!(x->bm_flags & BW_METER_LEQ))
2515 		return;	/* XXX: we schedule timers only for "<=" entries */
2516 
2517 	/* Reset the bw_meter entry */
2518 	x->bm_start_time = *nowp;
2519 	x->bm_measured.b_packets = 0;
2520 	x->bm_measured.b_bytes = 0;
2521 	x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2522 
2523 	/* Compute the timeout hash value and insert the entry */
2524 	BW_METER_TIMEHASH(x, time_hash);
2525 	x->bm_time_next = bw_meter_timers[time_hash];
2526 	bw_meter_timers[time_hash] = x;
2527 	x->bm_time_hash = time_hash;
2528 }
2529 
2530 /*
2531  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2532  * by removing the entry from the proper hash bucket.
2533  */
2534 static void
2535 unschedule_bw_meter(struct bw_meter *x)
2536 {
2537 	int time_hash;
2538 	struct bw_meter *prev, *tmp;
2539 
2540 	if (!(x->bm_flags & BW_METER_LEQ))
2541 		return;	/* XXX: we schedule timers only for "<=" entries */
2542 
2543 	/* Compute the timeout hash value and delete the entry */
2544 	time_hash = x->bm_time_hash;
2545 	if (time_hash >= BW_METER_BUCKETS)
2546 		return;		/* Entry was not scheduled */
2547 
2548 	for (prev = NULL, tmp = bw_meter_timers[time_hash];
2549 	    tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2550 		if (tmp == x)
2551 			break;
2552 
2553 	if (tmp == NULL)
2554 		panic("unschedule_bw_meter: bw_meter entry not found");
2555 
2556 	if (prev != NULL)
2557 		prev->bm_time_next = x->bm_time_next;
2558 	else
2559 		bw_meter_timers[time_hash] = x->bm_time_next;
2560 
2561 	x->bm_time_next = NULL;
2562 	x->bm_time_hash = BW_METER_BUCKETS;
2563 }
2564 
2565 /*
2566  * Process all "<=" type of bw_meter that should be processed now,
2567  * and for each entry prepare an upcall if necessary. Each processed
2568  * entry is rescheduled again for the (periodic) processing.
2569  *
2570  * This is run periodically (once per second normally). On each round,
2571  * all the potentially matching entries are in the hash slot that we are
2572  * looking at.
2573  */
2574 static void
2575 bw_meter_process()
2576 {
2577 	int s;
2578 	static uint32_t last_tv_sec;	/* last time we processed this */
2579 
2580 	uint32_t loops;
2581 	int i;
2582 	struct timeval now, process_endtime;
2583 
2584 	microtime(&now);
2585 	if (last_tv_sec == now.tv_sec)
2586 		return;		/* nothing to do */
2587 
2588 	loops = now.tv_sec - last_tv_sec;
2589 	last_tv_sec = now.tv_sec;
2590 	if (loops > BW_METER_BUCKETS)
2591 		loops = BW_METER_BUCKETS;
2592 
2593 	s = splsoftnet();
2594 	/*
2595 	 * Process all bins of bw_meter entries from the one after the last
2596 	 * processed to the current one. On entry, i points to the last bucket
2597 	 * visited, so we need to increment i at the beginning of the loop.
2598 	 */
2599 	for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2600 		struct bw_meter *x, *tmp_list;
2601 
2602 		if (++i >= BW_METER_BUCKETS)
2603 			i = 0;
2604 
2605 		/* Disconnect the list of bw_meter entries from the bin */
2606 		tmp_list = bw_meter_timers[i];
2607 		bw_meter_timers[i] = NULL;
2608 
2609 		/* Process the list of bw_meter entries */
2610 		while (tmp_list != NULL) {
2611 			x = tmp_list;
2612 			tmp_list = tmp_list->bm_time_next;
2613 
2614 			/* Test if the time interval is over */
2615 			process_endtime = x->bm_start_time;
2616 			BW_TIMEVALADD(&process_endtime,
2617 			    &x->bm_threshold.b_time);
2618 			if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2619 				/* Not yet: reschedule, but don't reset */
2620 				int time_hash;
2621 
2622 				BW_METER_TIMEHASH(x, time_hash);
2623 				if (time_hash == i &&
2624 				    process_endtime.tv_sec == now.tv_sec) {
2625 					/*
2626 					 * XXX: somehow the bin processing is
2627 					 * a bit ahead of time. Put the entry
2628 					 * in the next bin.
2629 					 */
2630 					if (++time_hash >= BW_METER_BUCKETS)
2631 						time_hash = 0;
2632 				}
2633 				x->bm_time_next = bw_meter_timers[time_hash];
2634 				bw_meter_timers[time_hash] = x;
2635 				x->bm_time_hash = time_hash;
2636 
2637 				continue;
2638 			}
2639 
2640 			/* Test if we should deliver an upcall */
2641 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2642 			    (x->bm_measured.b_packets <=
2643 			    x->bm_threshold.b_packets)) ||
2644 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2645 			    (x->bm_measured.b_bytes <=
2646 			    x->bm_threshold.b_bytes))) {
2647 				/* Prepare an upcall for delivery */
2648 				bw_meter_prepare_upcall(x, &now);
2649 			}
2650 
2651 			/* Reschedule for next processing */
2652 			schedule_bw_meter(x, &now);
2653 		}
2654 	}
2655 
2656 	/* Send all upcalls that are pending delivery */
2657 	bw_upcalls_send();
2658 
2659 	splx(s);
2660 }
2661 
2662 /*
2663  * A periodic function for sending all upcalls that are pending delivery
2664  */
2665 static void
2666 expire_bw_upcalls_send(void *unused)
2667 {
2668 	int s;
2669 
2670 	s = splsoftnet();
2671 	bw_upcalls_send();
2672 	splx(s);
2673 
2674 	timeout_add_msec(&bw_upcalls_ch, BW_UPCALLS_PERIOD);
2675 }
2676 
2677 /*
2678  * A periodic function for periodic scanning of the multicast forwarding
2679  * table for processing all "<=" bw_meter entries.
2680  */
2681 static void
2682 expire_bw_meter_process(void *unused)
2683 {
2684 	if (mrt_api_config & MRT_MFC_BW_UPCALL)
2685 		bw_meter_process();
2686 
2687 	timeout_add_msec(&bw_meter_ch, BW_METER_PERIOD);
2688 }
2689 
2690 /*
2691  * End of bandwidth monitoring code
2692  */
2693 
2694 #ifdef PIM
2695 /*
2696  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2697  */
2698 static int
2699 pim_register_send(struct ip *ip, struct vif *vifp,
2700 	struct mbuf *m, struct mfc *rt)
2701 {
2702 	struct mbuf *mb_copy, *mm;
2703 
2704 	if (mrtdebug & DEBUG_PIM)
2705 		log(LOG_DEBUG, "pim_register_send: ");
2706 
2707 	mb_copy = pim_register_prepare(ip, m);
2708 	if (mb_copy == NULL)
2709 		return (ENOBUFS);
2710 
2711 	/*
2712 	 * Send all the fragments. Note that the mbuf for each fragment
2713 	 * is freed by the sending machinery.
2714 	 */
2715 	for (mm = mb_copy; mm; mm = mb_copy) {
2716 		mb_copy = mm->m_nextpkt;
2717 		mm->m_nextpkt = NULL;
2718 		mm = m_pullup(mm, sizeof(struct ip));
2719 		if (mm != NULL) {
2720 			ip = mtod(mm, struct ip *);
2721 			if ((mrt_api_config & MRT_MFC_RP) &&
2722 			    !in_nullhost(rt->mfc_rp)) {
2723 				pim_register_send_rp(ip, vifp, mm, rt);
2724 			} else {
2725 				pim_register_send_upcall(ip, vifp, mm, rt);
2726 			}
2727 		}
2728 	}
2729 
2730 	return (0);
2731 }
2732 
2733 /*
2734  * Return a copy of the data packet that is ready for PIM Register
2735  * encapsulation.
2736  * XXX: Note that in the returned copy the IP header is a valid one.
2737  */
2738 static struct mbuf *
2739 pim_register_prepare(struct ip *ip, struct mbuf *m)
2740 {
2741 	struct mbuf *mb_copy = NULL;
2742 	int mtu;
2743 
2744 	/* Take care of delayed checksums */
2745 	if (m->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) {
2746 		in_delayed_cksum(m);
2747 		m->m_pkthdr.csum_flags &=
2748 		    ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT);
2749 	}
2750 
2751 	/*
2752 	 * Copy the old packet & pullup its IP header into the
2753 	 * new mbuf so we can modify it.
2754 	 */
2755 	mb_copy = m_copy(m, 0, M_COPYALL);
2756 	if (mb_copy == NULL)
2757 		return (NULL);
2758 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2759 	if (mb_copy == NULL)
2760 		return (NULL);
2761 
2762 	/* take care of the TTL */
2763 	ip = mtod(mb_copy, struct ip *);
2764 	--ip->ip_ttl;
2765 
2766 	/* Compute the MTU after the PIM Register encapsulation */
2767 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2768 
2769 	if (ntohs(ip->ip_len) <= mtu) {
2770 		/* Turn the IP header into a valid one */
2771 		ip->ip_sum = 0;
2772 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2773 	} else {
2774 		/* Fragment the packet */
2775 		if (ip_fragment(mb_copy, NULL, mtu) != 0) {
2776 			/* XXX: mb_copy was freed by ip_fragment() */
2777 			return (NULL);
2778 		}
2779 	}
2780 	return (mb_copy);
2781 }
2782 
2783 /*
2784  * Send an upcall with the data packet to the user-level process.
2785  */
2786 static int
2787 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2788 	struct mbuf *mb_copy, struct mfc *rt)
2789 {
2790 	struct mbuf *mb_first;
2791 	int len = ntohs(ip->ip_len);
2792 	struct igmpmsg *im;
2793 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2794 
2795 	/* Add a new mbuf with an upcall header */
2796 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2797 	if (mb_first == NULL) {
2798 		m_freem(mb_copy);
2799 		return (ENOBUFS);
2800 	}
2801 	mb_first->m_data += max_linkhdr;
2802 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2803 	mb_first->m_len = sizeof(struct igmpmsg);
2804 	mb_first->m_next = mb_copy;
2805 
2806 	/* Send message to routing daemon */
2807 	im = mtod(mb_first, struct igmpmsg *);
2808 	im->im_msgtype = IGMPMSG_WHOLEPKT;
2809 	im->im_mbz = 0;
2810 	im->im_vif = vifp - viftable;
2811 	im->im_src = ip->ip_src;
2812 	im->im_dst = ip->ip_dst;
2813 
2814 	k_igmpsrc.sin_addr = ip->ip_src;
2815 
2816 	mrtstat.mrts_upcalls++;
2817 
2818 	if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2819 		if (mrtdebug & DEBUG_PIM)
2820 			log(LOG_WARNING, "mcast: pim_register_send_upcall: "
2821 			    "ip_mrouter socket queue full");
2822 		++mrtstat.mrts_upq_sockfull;
2823 		return (ENOBUFS);
2824 	}
2825 
2826 	/* Keep statistics */
2827 	pimstat.pims_snd_registers_msgs++;
2828 	pimstat.pims_snd_registers_bytes += len;
2829 
2830 	return (0);
2831 }
2832 
2833 /*
2834  * Encapsulate the data packet in PIM Register message and send it to the RP.
2835  */
2836 static int
2837 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2838 	struct mbuf *mb_copy, struct mfc *rt)
2839 {
2840 	struct mbuf *mb_first;
2841 	struct ip *ip_outer;
2842 	struct pim_encap_pimhdr *pimhdr;
2843 	int len = ntohs(ip->ip_len);
2844 	vifi_t vifi = rt->mfc_parent;
2845 
2846 	if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2847 		m_freem(mb_copy);
2848 		return (EADDRNOTAVAIL);		/* The iif vif is invalid */
2849 	}
2850 
2851 	/* Add a new mbuf with the encapsulating header */
2852 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2853 	if (mb_first == NULL) {
2854 		m_freem(mb_copy);
2855 		return (ENOBUFS);
2856 	}
2857 	mb_first->m_data += max_linkhdr;
2858 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2859 	mb_first->m_next = mb_copy;
2860 
2861 	mb_first->m_pkthdr.len = len + mb_first->m_len;
2862 
2863 	/* Fill in the encapsulating IP and PIM header */
2864 	ip_outer = mtod(mb_first, struct ip *);
2865 	*ip_outer = pim_encap_iphdr;
2866 	ip_outer->ip_id = htons(ip_randomid());
2867 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2868 	    sizeof(pim_encap_pimhdr));
2869 	ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2870 	ip_outer->ip_dst = rt->mfc_rp;
2871 	/*
2872 	 * Copy the inner header TOS to the outer header, and take care of the
2873 	 * IP_DF bit.
2874 	 */
2875 	ip_outer->ip_tos = ip->ip_tos;
2876 	if (ntohs(ip->ip_off) & IP_DF)
2877 		ip_outer->ip_off |= htons(IP_DF);
2878 	pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2879 	    + sizeof(pim_encap_iphdr));
2880 	*pimhdr = pim_encap_pimhdr;
2881 	/* If the iif crosses a border, set the Border-bit */
2882 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2883 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2884 
2885 	mb_first->m_data += sizeof(pim_encap_iphdr);
2886 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2887 	mb_first->m_data -= sizeof(pim_encap_iphdr);
2888 
2889 	send_packet(vifp, mb_first);
2890 
2891 	/* Keep statistics */
2892 	pimstat.pims_snd_registers_msgs++;
2893 	pimstat.pims_snd_registers_bytes += len;
2894 
2895 	return (0);
2896 }
2897 
2898 /*
2899  * PIM-SMv2 and PIM-DM messages processing.
2900  * Receives and verifies the PIM control messages, and passes them
2901  * up to the listening socket, using rip_input().
2902  * The only message with special processing is the PIM_REGISTER message
2903  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2904  * is passed to if_simloop().
2905  */
2906 void
2907 pim_input(struct mbuf *m, ...)
2908 {
2909 	struct ip *ip = mtod(m, struct ip *);
2910 	struct pim *pim;
2911 	int minlen;
2912 	int datalen;
2913 	int ip_tos;
2914 	int iphlen;
2915 	va_list ap;
2916 
2917 	va_start(ap, m);
2918 	iphlen = va_arg(ap, int);
2919 	va_end(ap);
2920 
2921 	datalen = ntohs(ip->ip_len) - iphlen;
2922 
2923 	/* Keep statistics */
2924 	pimstat.pims_rcv_total_msgs++;
2925 	pimstat.pims_rcv_total_bytes += datalen;
2926 
2927 	/* Validate lengths */
2928 	if (datalen < PIM_MINLEN) {
2929 		pimstat.pims_rcv_tooshort++;
2930 		log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2931 		    datalen, (u_long)ip->ip_src.s_addr);
2932 		m_freem(m);
2933 		return;
2934 	}
2935 
2936 	/*
2937 	 * If the packet is at least as big as a REGISTER, go agead
2938 	 * and grab the PIM REGISTER header size, to avoid another
2939 	 * possible m_pullup() later.
2940 	 *
2941 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2942 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2943 	 */
2944 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ?
2945 	    PIM_REG_MINLEN : PIM_MINLEN);
2946 	/*
2947 	 * Get the IP and PIM headers in contiguous memory, and
2948 	 * possibly the PIM REGISTER header.
2949 	 */
2950 	if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2951 	    (m = m_pullup(m, minlen)) == NULL) {
2952 		log(LOG_ERR, "pim_input: m_pullup failure\n");
2953 		return;
2954 	}
2955 	/* m_pullup() may have given us a new mbuf so reset ip. */
2956 	ip = mtod(m, struct ip *);
2957 	ip_tos = ip->ip_tos;
2958 
2959 	/* adjust mbuf to point to the PIM header */
2960 	m->m_data += iphlen;
2961 	m->m_len  -= iphlen;
2962 	pim = mtod(m, struct pim *);
2963 
2964 	/*
2965 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
2966 	 *
2967 	 * XXX: some older PIMv2 implementations don't make this distinction,
2968 	 * so for compatibility reason perform the checksum over part of the
2969 	 * message, and if error, then over the whole message.
2970 	 */
2971 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER &&
2972 	    in_cksum(m, PIM_MINLEN) == 0) {
2973 		/* do nothing, checksum okay */
2974 	} else if (in_cksum(m, datalen)) {
2975 		pimstat.pims_rcv_badsum++;
2976 		if (mrtdebug & DEBUG_PIM)
2977 			log(LOG_DEBUG, "pim_input: invalid checksum");
2978 		m_freem(m);
2979 		return;
2980 	}
2981 
2982 	/* PIM version check */
2983 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2984 		pimstat.pims_rcv_badversion++;
2985 		log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2986 		    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2987 		m_freem(m);
2988 		return;
2989 	}
2990 
2991 	/* restore mbuf back to the outer IP */
2992 	m->m_data -= iphlen;
2993 	m->m_len  += iphlen;
2994 
2995 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2996 		/*
2997 		 * Since this is a REGISTER, we'll make a copy of the register
2998 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2999 		 * routing daemon.
3000 		 */
3001 		int s;
3002 		struct sockaddr_in dst = { sizeof(dst), AF_INET };
3003 		struct mbuf *mcp;
3004 		struct ip *encap_ip;
3005 		u_int32_t *reghdr;
3006 		struct ifnet *vifp;
3007 
3008 		s = splsoftnet();
3009 		if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3010 			splx(s);
3011 			if (mrtdebug & DEBUG_PIM)
3012 				log(LOG_DEBUG, "pim_input: register vif "
3013 				    "not set: %d\n", reg_vif_num);
3014 			m_freem(m);
3015 			return;
3016 		}
3017 		/* XXX need refcnt? */
3018 		vifp = viftable[reg_vif_num].v_ifp;
3019 		splx(s);
3020 
3021 		/* Validate length */
3022 		if (datalen < PIM_REG_MINLEN) {
3023 			pimstat.pims_rcv_tooshort++;
3024 			pimstat.pims_rcv_badregisters++;
3025 			log(LOG_ERR, "pim_input: register packet size "
3026 			    "too small %d from %lx\n",
3027 			    datalen, (u_long)ip->ip_src.s_addr);
3028 			m_freem(m);
3029 			return;
3030 		}
3031 
3032 		reghdr = (u_int32_t *)(pim + 1);
3033 		encap_ip = (struct ip *)(reghdr + 1);
3034 
3035 		if (mrtdebug & DEBUG_PIM) {
3036 			log(LOG_DEBUG, "pim_input[register], encap_ip: "
3037 			    "%lx -> %lx, encap_ip len %d\n",
3038 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
3039 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
3040 			    ntohs(encap_ip->ip_len));
3041 		}
3042 
3043 		/* verify the version number of the inner packet */
3044 		if (encap_ip->ip_v != IPVERSION) {
3045 			pimstat.pims_rcv_badregisters++;
3046 			if (mrtdebug & DEBUG_PIM) {
3047 				log(LOG_DEBUG, "pim_input: invalid IP version"
3048 				    " (%d) of the inner packet\n",
3049 				    encap_ip->ip_v);
3050 			}
3051 			m_freem(m);
3052 			return;
3053 		}
3054 
3055 		/* verify the inner packet is destined to a mcast group */
3056 		if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3057 			pimstat.pims_rcv_badregisters++;
3058 			if (mrtdebug & DEBUG_PIM)
3059 				log(LOG_DEBUG,
3060 				    "pim_input: inner packet of register is"
3061 				    " not multicast %lx\n",
3062 				    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3063 			m_freem(m);
3064 			return;
3065 		}
3066 
3067 		/* If a NULL_REGISTER, pass it to the daemon */
3068 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3069 			goto pim_input_to_daemon;
3070 
3071 		/*
3072 		 * Copy the TOS from the outer IP header to the inner
3073 		 * IP header.
3074 		 */
3075 		if (encap_ip->ip_tos != ip_tos) {
3076 			/* Outer TOS -> inner TOS */
3077 			encap_ip->ip_tos = ip_tos;
3078 			/* Recompute the inner header checksum. Sigh... */
3079 
3080 			/* adjust mbuf to point to the inner IP header */
3081 			m->m_data += (iphlen + PIM_MINLEN);
3082 			m->m_len  -= (iphlen + PIM_MINLEN);
3083 
3084 			encap_ip->ip_sum = 0;
3085 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3086 
3087 			/* restore mbuf to point back to the outer IP header */
3088 			m->m_data -= (iphlen + PIM_MINLEN);
3089 			m->m_len  += (iphlen + PIM_MINLEN);
3090 		}
3091 
3092 		/*
3093 		 * Decapsulate the inner IP packet and loopback to forward it
3094 		 * as a normal multicast packet. Also, make a copy of the
3095 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3096 		 * to pass to the daemon later, so it can take the appropriate
3097 		 * actions (e.g., send back PIM_REGISTER_STOP).
3098 		 * XXX: here m->m_data points to the outer IP header.
3099 		 */
3100 		mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3101 		if (mcp == NULL) {
3102 			log(LOG_ERR, "pim_input: pim register: could not "
3103 			    "copy register head\n");
3104 			m_freem(m);
3105 			return;
3106 		}
3107 
3108 		/* Keep statistics */
3109 		/* XXX: registers_bytes include only the encap. mcast pkt */
3110 		pimstat.pims_rcv_registers_msgs++;
3111 		pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3112 
3113 		/* forward the inner ip packet; point m_data at the inner ip. */
3114 		m_adj(m, iphlen + PIM_MINLEN);
3115 
3116 		if (mrtdebug & DEBUG_PIM) {
3117 			log(LOG_DEBUG,
3118 			    "pim_input: forwarding decapsulated register: "
3119 			    "src %lx, dst %lx, vif %d\n",
3120 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
3121 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
3122 			    reg_vif_num);
3123 		}
3124 		/* NB: vifp was collected above; can it change on us? */
3125 		looutput(vifp, m, (struct sockaddr *)&dst,
3126 		    (struct rtentry *)NULL);
3127 
3128 		/* prepare the register head to send to the mrouting daemon */
3129 		m = mcp;
3130 	}
3131 
3132 pim_input_to_daemon:
3133 	/*
3134 	 * Pass the PIM message up to the daemon; if it is a Register message,
3135 	 * pass the 'head' only up to the daemon. This includes the
3136 	 * outer IP header, PIM header, PIM-Register header and the
3137 	 * inner IP header.
3138 	 * XXX: the outer IP header pkt size of a Register is not adjust to
3139 	 * reflect the fact that the inner multicast data is truncated.
3140 	 */
3141 	rip_input(m);
3142 
3143 	return;
3144 }
3145 
3146 /*
3147  * Sysctl for pim variables.
3148  */
3149 int
3150 pim_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
3151     void *newp, size_t newlen)
3152 {
3153 	/* All sysctl names at this level are terminal. */
3154 	if (namelen != 1)
3155 		return (ENOTDIR);
3156 
3157 	switch (name[0]) {
3158 	case PIMCTL_STATS:
3159 		if (newp != NULL)
3160 			return (EPERM);
3161 		return (sysctl_struct(oldp, oldlenp, newp, newlen,
3162 		    &pimstat, sizeof(pimstat)));
3163 
3164 	default:
3165 		return (ENOPROTOOPT);
3166 	}
3167 	/* NOTREACHED */
3168 }
3169 
3170 
3171 #endif /* PIM */
3172