1 /* $OpenBSD: ffs_alloc.c,v 1.104 2015/03/14 03:38:52 jsg Exp $ */ 2 /* $NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $ */ 3 4 /* 5 * Copyright (c) 2002 Networks Associates Technology, Inc. 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Marshall 9 * Kirk McKusick and Network Associates Laboratories, the Security 10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 12 * research program. 13 * 14 * Copyright (c) 1982, 1986, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94 42 */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/buf.h> 47 #include <sys/vnode.h> 48 #include <sys/mount.h> 49 #include <sys/syslog.h> 50 #include <sys/stdint.h> 51 #include <sys/time.h> 52 53 #include <ufs/ufs/quota.h> 54 #include <ufs/ufs/inode.h> 55 #include <ufs/ufs/ufsmount.h> 56 #include <ufs/ufs/ufs_extern.h> 57 58 #include <ufs/ffs/fs.h> 59 #include <ufs/ffs/ffs_extern.h> 60 61 #define ffs_fserr(fs, uid, cp) do { \ 62 log(LOG_ERR, "uid %u on %s: %s\n", (uid), \ 63 (fs)->fs_fsmnt, (cp)); \ 64 } while (0) 65 66 daddr_t ffs_alloccg(struct inode *, int, daddr_t, int); 67 struct buf * ffs_cgread(struct fs *, struct inode *, int); 68 daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t); 69 daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int); 70 ufsino_t ffs_dirpref(struct inode *); 71 daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int); 72 daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, 73 daddr_t (*)(struct inode *, int, daddr_t, int)); 74 daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int); 75 daddr_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int); 76 77 int ffs1_reallocblks(void *); 78 #ifdef FFS2 79 int ffs2_reallocblks(void *); 80 #endif 81 82 #ifdef DIAGNOSTIC 83 int ffs_checkblk(struct inode *, daddr_t, long); 84 #endif 85 86 static const struct timeval fserr_interval = { 2, 0 }; 87 88 89 /* 90 * Allocate a block in the file system. 91 * 92 * The size of the requested block is given, which must be some 93 * multiple of fs_fsize and <= fs_bsize. 94 * A preference may be optionally specified. If a preference is given 95 * the following hierarchy is used to allocate a block: 96 * 1) allocate the requested block. 97 * 2) allocate a rotationally optimal block in the same cylinder. 98 * 3) allocate a block in the same cylinder group. 99 * 4) quadratically rehash into other cylinder groups, until an 100 * available block is located. 101 * If no block preference is given the following hierarchy is used 102 * to allocate a block: 103 * 1) allocate a block in the cylinder group that contains the 104 * inode for the file. 105 * 2) quadratically rehash into other cylinder groups, until an 106 * available block is located. 107 */ 108 int 109 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, 110 struct ucred *cred, daddr_t *bnp) 111 { 112 static struct timeval fsfull_last; 113 struct fs *fs; 114 daddr_t bno; 115 int cg; 116 int error; 117 118 *bnp = 0; 119 fs = ip->i_fs; 120 #ifdef DIAGNOSTIC 121 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 122 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 123 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 124 panic("ffs_alloc: bad size"); 125 } 126 if (cred == NOCRED) 127 panic("ffs_alloc: missing credential"); 128 #endif /* DIAGNOSTIC */ 129 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 130 goto nospace; 131 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 132 goto nospace; 133 134 if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)) != 0) 135 return (error); 136 137 /* 138 * Start allocation in the preferred block's cylinder group or 139 * the file's inode's cylinder group if no preferred block was 140 * specified. 141 */ 142 if (bpref >= fs->fs_size) 143 bpref = 0; 144 if (bpref == 0) 145 cg = ino_to_cg(fs, ip->i_number); 146 else 147 cg = dtog(fs, bpref); 148 149 /* Try allocating a block. */ 150 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 151 if (bno > 0) { 152 /* allocation successful, update inode data */ 153 DIP_ADD(ip, blocks, btodb(size)); 154 ip->i_flag |= IN_CHANGE | IN_UPDATE; 155 *bnp = bno; 156 return (0); 157 } 158 159 /* Restore user's disk quota because allocation failed. */ 160 (void) ufs_quota_free_blocks(ip, btodb(size), cred); 161 162 nospace: 163 if (ratecheck(&fsfull_last, &fserr_interval)) { 164 ffs_fserr(fs, cred->cr_uid, "file system full"); 165 uprintf("\n%s: write failed, file system is full\n", 166 fs->fs_fsmnt); 167 } 168 return (ENOSPC); 169 } 170 171 /* 172 * Reallocate a fragment to a bigger size 173 * 174 * The number and size of the old block is given, and a preference 175 * and new size is also specified. The allocator attempts to extend 176 * the original block. Failing that, the regular block allocator is 177 * invoked to get an appropriate block. 178 */ 179 int 180 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize, 181 int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop) 182 { 183 static struct timeval fsfull_last; 184 struct fs *fs; 185 struct buf *bp = NULL; 186 daddr_t quota_updated = 0; 187 int cg, request, error; 188 daddr_t bprev, bno; 189 190 if (bpp != NULL) 191 *bpp = NULL; 192 fs = ip->i_fs; 193 #ifdef DIAGNOSTIC 194 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 195 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 196 printf( 197 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 198 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 199 panic("ffs_realloccg: bad size"); 200 } 201 if (cred == NOCRED) 202 panic("ffs_realloccg: missing credential"); 203 #endif /* DIAGNOSTIC */ 204 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 205 goto nospace; 206 207 bprev = DIP(ip, db[lbprev]); 208 209 if (bprev == 0) { 210 printf("dev = 0x%x, bsize = %d, bprev = %lld, fs = %s\n", 211 ip->i_dev, fs->fs_bsize, (long long)bprev, fs->fs_fsmnt); 212 panic("ffs_realloccg: bad bprev"); 213 } 214 215 /* 216 * Allocate the extra space in the buffer. 217 */ 218 if (bpp != NULL) { 219 if ((error = bread(ITOV(ip), lbprev, fs->fs_bsize, &bp)) != 0) 220 goto error; 221 bp->b_bcount = osize; 222 } 223 224 if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred)) 225 != 0) 226 goto error; 227 228 quota_updated = btodb(nsize - osize); 229 230 /* 231 * Check for extension in the existing location. 232 */ 233 cg = dtog(fs, bprev); 234 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) { 235 DIP_ADD(ip, blocks, btodb(nsize - osize)); 236 ip->i_flag |= IN_CHANGE | IN_UPDATE; 237 if (bpp != NULL) { 238 if (bp->b_blkno != fsbtodb(fs, bno)) 239 panic("ffs_realloccg: bad blockno"); 240 #ifdef DIAGNOSTIC 241 if (nsize > bp->b_bufsize) 242 panic("ffs_realloccg: small buf"); 243 #endif 244 bp->b_bcount = nsize; 245 bp->b_flags |= B_DONE; 246 memset(bp->b_data + osize, 0, nsize - osize); 247 *bpp = bp; 248 } 249 if (blknop != NULL) { 250 *blknop = bno; 251 } 252 return (0); 253 } 254 /* 255 * Allocate a new disk location. 256 */ 257 if (bpref >= fs->fs_size) 258 bpref = 0; 259 switch (fs->fs_optim) { 260 case FS_OPTSPACE: 261 /* 262 * Allocate an exact sized fragment. Although this makes 263 * best use of space, we will waste time relocating it if 264 * the file continues to grow. If the fragmentation is 265 * less than half of the minimum free reserve, we choose 266 * to begin optimizing for time. 267 */ 268 request = nsize; 269 if (fs->fs_minfree < 5 || 270 fs->fs_cstotal.cs_nffree > 271 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 272 break; 273 fs->fs_optim = FS_OPTTIME; 274 break; 275 case FS_OPTTIME: 276 /* 277 * At this point we have discovered a file that is trying to 278 * grow a small fragment to a larger fragment. To save time, 279 * we allocate a full sized block, then free the unused portion. 280 * If the file continues to grow, the `ffs_fragextend' call 281 * above will be able to grow it in place without further 282 * copying. If aberrant programs cause disk fragmentation to 283 * grow within 2% of the free reserve, we choose to begin 284 * optimizing for space. 285 */ 286 request = fs->fs_bsize; 287 if (fs->fs_cstotal.cs_nffree < 288 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 289 break; 290 fs->fs_optim = FS_OPTSPACE; 291 break; 292 default: 293 printf("dev = 0x%x, optim = %d, fs = %s\n", 294 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 295 panic("ffs_realloccg: bad optim"); 296 /* NOTREACHED */ 297 } 298 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 299 if (bno <= 0) 300 goto nospace; 301 302 (void) uvm_vnp_uncache(ITOV(ip)); 303 if (!DOINGSOFTDEP(ITOV(ip))) 304 ffs_blkfree(ip, bprev, (long)osize); 305 if (nsize < request) 306 ffs_blkfree(ip, bno + numfrags(fs, nsize), 307 (long)(request - nsize)); 308 DIP_ADD(ip, blocks, btodb(nsize - osize)); 309 ip->i_flag |= IN_CHANGE | IN_UPDATE; 310 if (bpp != NULL) { 311 bp->b_blkno = fsbtodb(fs, bno); 312 #ifdef DIAGNOSTIC 313 if (nsize > bp->b_bufsize) 314 panic("ffs_realloccg: small buf 2"); 315 #endif 316 bp->b_bcount = nsize; 317 bp->b_flags |= B_DONE; 318 memset(bp->b_data + osize, 0, nsize - osize); 319 *bpp = bp; 320 } 321 if (blknop != NULL) { 322 *blknop = bno; 323 } 324 return (0); 325 326 nospace: 327 if (ratecheck(&fsfull_last, &fserr_interval)) { 328 ffs_fserr(fs, cred->cr_uid, "file system full"); 329 uprintf("\n%s: write failed, file system is full\n", 330 fs->fs_fsmnt); 331 } 332 error = ENOSPC; 333 334 error: 335 if (bp != NULL) { 336 brelse(bp); 337 bp = NULL; 338 } 339 340 /* 341 * Restore user's disk quota because allocation failed. 342 */ 343 if (quota_updated != 0) 344 (void)ufs_quota_free_blocks(ip, quota_updated, cred); 345 346 return error; 347 } 348 349 /* 350 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 351 * 352 * The vnode and an array of buffer pointers for a range of sequential 353 * logical blocks to be made contiguous are given. The allocator attempts 354 * to find a range of sequential blocks starting as close as possible to 355 * an fs_rotdelay offset from the end of the allocation for the logical 356 * block immediately preceding the current range. If successful, the 357 * physical block numbers in the buffer pointers and in the inode are 358 * changed to reflect the new allocation. If unsuccessful, the allocation 359 * is left unchanged. The success in doing the reallocation is returned. 360 * Note that the error return is not reflected back to the user. Rather 361 * the previous block allocation will be used. 362 */ 363 364 int doasyncfree = 1; 365 int doreallocblks = 1; 366 int prtrealloc = 0; 367 368 int 369 ffs1_reallocblks(void *v) 370 { 371 struct vop_reallocblks_args *ap = v; 372 struct fs *fs; 373 struct inode *ip; 374 struct vnode *vp; 375 struct buf *sbp, *ebp; 376 int32_t *bap, *sbap, *ebap = NULL; 377 struct cluster_save *buflist; 378 daddr_t start_lbn, end_lbn, soff, newblk, blkno; 379 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 380 int i, len, start_lvl, end_lvl, pref, ssize; 381 382 vp = ap->a_vp; 383 ip = VTOI(vp); 384 fs = ip->i_fs; 385 if (fs->fs_contigsumsize <= 0) 386 return (ENOSPC); 387 buflist = ap->a_buflist; 388 len = buflist->bs_nchildren; 389 start_lbn = buflist->bs_children[0]->b_lblkno; 390 end_lbn = start_lbn + len - 1; 391 392 #ifdef DIAGNOSTIC 393 for (i = 0; i < len; i++) 394 if (!ffs_checkblk(ip, 395 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 396 panic("ffs1_reallocblks: unallocated block 1"); 397 398 for (i = 1; i < len; i++) 399 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 400 panic("ffs1_reallocblks: non-logical cluster"); 401 402 blkno = buflist->bs_children[0]->b_blkno; 403 ssize = fsbtodb(fs, fs->fs_frag); 404 for (i = 1; i < len - 1; i++) 405 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 406 panic("ffs1_reallocblks: non-physical cluster %d", i); 407 #endif 408 /* 409 * If the latest allocation is in a new cylinder group, assume that 410 * the filesystem has decided to move and do not force it back to 411 * the previous cylinder group. 412 */ 413 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 414 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 415 return (ENOSPC); 416 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 417 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 418 return (ENOSPC); 419 /* 420 * Get the starting offset and block map for the first block. 421 */ 422 if (start_lvl == 0) { 423 sbap = &ip->i_ffs1_db[0]; 424 soff = start_lbn; 425 } else { 426 idp = &start_ap[start_lvl - 1]; 427 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &sbp)) { 428 brelse(sbp); 429 return (ENOSPC); 430 } 431 sbap = (int32_t *)sbp->b_data; 432 soff = idp->in_off; 433 } 434 /* 435 * Find the preferred location for the cluster. 436 */ 437 pref = ffs1_blkpref(ip, start_lbn, soff, sbap); 438 /* 439 * If the block range spans two block maps, get the second map. 440 */ 441 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 442 ssize = len; 443 } else { 444 #ifdef DIAGNOSTIC 445 if (start_lvl > 1 && 446 start_ap[start_lvl-1].in_lbn == idp->in_lbn) 447 panic("ffs1_reallocblk: start == end"); 448 #endif 449 ssize = len - (idp->in_off + 1); 450 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &ebp)) 451 goto fail; 452 ebap = (int32_t *)ebp->b_data; 453 } 454 /* 455 * Search the block map looking for an allocation of the desired size. 456 */ 457 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, len, 458 ffs_clusteralloc)) == 0) 459 goto fail; 460 /* 461 * We have found a new contiguous block. 462 * 463 * First we have to replace the old block pointers with the new 464 * block pointers in the inode and indirect blocks associated 465 * with the file. 466 */ 467 #ifdef DEBUG 468 if (prtrealloc) 469 printf("realloc: ino %u, lbns %lld-%lld\n\told:", ip->i_number, 470 (long long)start_lbn, (long long)end_lbn); 471 #endif 472 blkno = newblk; 473 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 474 if (i == ssize) { 475 bap = ebap; 476 soff = -i; 477 } 478 #ifdef DIAGNOSTIC 479 if (!ffs_checkblk(ip, 480 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 481 panic("ffs1_reallocblks: unallocated block 2"); 482 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 483 panic("ffs1_reallocblks: alloc mismatch"); 484 #endif 485 #ifdef DEBUG 486 if (prtrealloc) 487 printf(" %d,", *bap); 488 #endif 489 if (DOINGSOFTDEP(vp)) { 490 if (sbap == &ip->i_ffs1_db[0] && i < ssize) 491 softdep_setup_allocdirect(ip, start_lbn + i, 492 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 493 buflist->bs_children[i]); 494 else 495 softdep_setup_allocindir_page(ip, start_lbn + i, 496 i < ssize ? sbp : ebp, soff + i, blkno, 497 *bap, buflist->bs_children[i]); 498 } 499 500 *bap++ = blkno; 501 } 502 /* 503 * Next we must write out the modified inode and indirect blocks. 504 * For strict correctness, the writes should be synchronous since 505 * the old block values may have been written to disk. In practise 506 * they are almost never written, but if we are concerned about 507 * strict correctness, the `doasyncfree' flag should be set to zero. 508 * 509 * The test on `doasyncfree' should be changed to test a flag 510 * that shows whether the associated buffers and inodes have 511 * been written. The flag should be set when the cluster is 512 * started and cleared whenever the buffer or inode is flushed. 513 * We can then check below to see if it is set, and do the 514 * synchronous write only when it has been cleared. 515 */ 516 if (sbap != &ip->i_ffs1_db[0]) { 517 if (doasyncfree) 518 bdwrite(sbp); 519 else 520 bwrite(sbp); 521 } else { 522 ip->i_flag |= IN_CHANGE | IN_UPDATE; 523 if (!doasyncfree) { 524 UFS_UPDATE(ip, 1); 525 } 526 } 527 if (ssize < len) { 528 if (doasyncfree) 529 bdwrite(ebp); 530 else 531 bwrite(ebp); 532 } 533 /* 534 * Last, free the old blocks and assign the new blocks to the buffers. 535 */ 536 #ifdef DEBUG 537 if (prtrealloc) 538 printf("\n\tnew:"); 539 #endif 540 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 541 if (!DOINGSOFTDEP(vp)) 542 ffs_blkfree(ip, 543 dbtofsb(fs, buflist->bs_children[i]->b_blkno), 544 fs->fs_bsize); 545 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 546 #ifdef DIAGNOSTIC 547 if (!ffs_checkblk(ip, 548 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 549 panic("ffs1_reallocblks: unallocated block 3"); 550 if (prtrealloc) 551 printf(" %lld,", (long long)blkno); 552 #endif 553 } 554 #ifdef DEBUG 555 if (prtrealloc) { 556 prtrealloc--; 557 printf("\n"); 558 } 559 #endif 560 return (0); 561 562 fail: 563 if (ssize < len) 564 brelse(ebp); 565 if (sbap != &ip->i_ffs1_db[0]) 566 brelse(sbp); 567 return (ENOSPC); 568 } 569 570 #ifdef FFS2 571 int 572 ffs2_reallocblks(void *v) 573 { 574 struct vop_reallocblks_args *ap = v; 575 struct fs *fs; 576 struct inode *ip; 577 struct vnode *vp; 578 struct buf *sbp, *ebp; 579 daddr_t *bap, *sbap, *ebap = NULL; 580 struct cluster_save *buflist; 581 daddr_t start_lbn, end_lbn; 582 daddr_t soff, newblk, blkno, pref; 583 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 584 int i, len, start_lvl, end_lvl, ssize; 585 586 vp = ap->a_vp; 587 ip = VTOI(vp); 588 fs = ip->i_fs; 589 590 if (fs->fs_contigsumsize <= 0) 591 return (ENOSPC); 592 593 buflist = ap->a_buflist; 594 len = buflist->bs_nchildren; 595 start_lbn = buflist->bs_children[0]->b_lblkno; 596 end_lbn = start_lbn + len - 1; 597 598 #ifdef DIAGNOSTIC 599 for (i = 0; i < len; i++) 600 if (!ffs_checkblk(ip, 601 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 602 panic("ffs2_reallocblks: unallocated block 1"); 603 604 for (i = 1; i < len; i++) 605 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 606 panic("ffs2_reallocblks: non-logical cluster"); 607 608 blkno = buflist->bs_children[0]->b_blkno; 609 ssize = fsbtodb(fs, fs->fs_frag); 610 611 for (i = 1; i < len - 1; i++) 612 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 613 panic("ffs2_reallocblks: non-physical cluster %d", i); 614 #endif 615 616 /* 617 * If the latest allocation is in a new cylinder group, assume that 618 * the filesystem has decided to move and do not force it back to 619 * the previous cylinder group. 620 */ 621 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 622 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 623 return (ENOSPC); 624 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 625 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 626 return (ENOSPC); 627 628 /* 629 * Get the starting offset and block map for the first block. 630 */ 631 if (start_lvl == 0) { 632 sbap = &ip->i_din2->di_db[0]; 633 soff = start_lbn; 634 } else { 635 idp = &start_ap[start_lvl - 1]; 636 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &sbp)) { 637 brelse(sbp); 638 return (ENOSPC); 639 } 640 sbap = (daddr_t *)sbp->b_data; 641 soff = idp->in_off; 642 } 643 644 /* 645 * If the block range spans two block maps, get the second map. 646 */ 647 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 648 ssize = len; 649 } else { 650 #ifdef DIAGNOSTIC 651 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 652 panic("ffs2_reallocblk: start == end"); 653 #endif 654 ssize = len - (idp->in_off + 1); 655 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &ebp)) 656 goto fail; 657 ebap = (daddr_t *)ebp->b_data; 658 } 659 660 /* 661 * Find the preferred location for the cluster. 662 */ 663 pref = ffs2_blkpref(ip, start_lbn, soff, sbap); 664 665 /* 666 * Search the block map looking for an allocation of the desired size. 667 */ 668 if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref, 669 len, ffs_clusteralloc)) == 0) 670 goto fail; 671 672 /* 673 * We have found a new contiguous block. 674 * 675 * First we have to replace the old block pointers with the new 676 * block pointers in the inode and indirect blocks associated 677 * with the file. 678 */ 679 #ifdef DEBUG 680 if (prtrealloc) 681 printf("realloc: ino %u, lbns %lld-%lld\n\told:", ip->i_number, 682 (long long)start_lbn, (long long)end_lbn); 683 #endif 684 685 blkno = newblk; 686 687 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 688 if (i == ssize) { 689 bap = ebap; 690 soff = -i; 691 } 692 #ifdef DIAGNOSTIC 693 if (!ffs_checkblk(ip, 694 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 695 panic("ffs2_reallocblks: unallocated block 2"); 696 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 697 panic("ffs2_reallocblks: alloc mismatch"); 698 #endif 699 #ifdef DEBUG 700 if (prtrealloc) 701 printf(" %lld,", (long long)*bap); 702 #endif 703 if (DOINGSOFTDEP(vp)) { 704 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 705 softdep_setup_allocdirect(ip, start_lbn + i, 706 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 707 buflist->bs_children[i]); 708 else 709 softdep_setup_allocindir_page(ip, start_lbn + i, 710 i < ssize ? sbp : ebp, soff + i, blkno, 711 *bap, buflist->bs_children[i]); 712 } 713 *bap++ = blkno; 714 } 715 716 /* 717 * Next we must write out the modified inode and indirect blocks. 718 * For strict correctness, the writes should be synchronous since 719 * the old block values may have been written to disk. In practise 720 * they are almost never written, but if we are concerned about 721 * strict correctness, the `doasyncfree' flag should be set to zero. 722 * 723 * The test on `doasyncfree' should be changed to test a flag 724 * that shows whether the associated buffers and inodes have 725 * been written. The flag should be set when the cluster is 726 * started and cleared whenever the buffer or inode is flushed. 727 * We can then check below to see if it is set, and do the 728 * synchronous write only when it has been cleared. 729 */ 730 if (sbap != &ip->i_din2->di_db[0]) { 731 if (doasyncfree) 732 bdwrite(sbp); 733 else 734 bwrite(sbp); 735 } else { 736 ip->i_flag |= IN_CHANGE | IN_UPDATE; 737 if (!doasyncfree) 738 ffs_update(ip, 1); 739 } 740 741 if (ssize < len) { 742 if (doasyncfree) 743 bdwrite(ebp); 744 else 745 bwrite(ebp); 746 } 747 748 /* 749 * Last, free the old blocks and assign the new blocks to the buffers. 750 */ 751 #ifdef DEBUG 752 if (prtrealloc) 753 printf("\n\tnew:"); 754 #endif 755 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 756 if (!DOINGSOFTDEP(vp)) 757 ffs_blkfree(ip, dbtofsb(fs, 758 buflist->bs_children[i]->b_blkno), fs->fs_bsize); 759 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 760 #ifdef DIAGNOSTIC 761 if (!ffs_checkblk(ip, 762 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 763 panic("ffs2_reallocblks: unallocated block 3"); 764 #endif 765 #ifdef DEBUG 766 if (prtrealloc) 767 printf(" %lld,", (long long)blkno); 768 #endif 769 } 770 #ifdef DEBUG 771 if (prtrealloc) { 772 prtrealloc--; 773 printf("\n"); 774 } 775 #endif 776 777 return (0); 778 779 fail: 780 if (ssize < len) 781 brelse(ebp); 782 783 if (sbap != &ip->i_din2->di_db[0]) 784 brelse(sbp); 785 786 return (ENOSPC); 787 } 788 #endif /* FFS2 */ 789 790 int 791 ffs_reallocblks(void *v) 792 { 793 #ifdef FFS2 794 struct vop_reallocblks_args *ap = v; 795 #endif 796 797 if (!doreallocblks) 798 return (ENOSPC); 799 800 #ifdef FFS2 801 if (VTOI(ap->a_vp)->i_ump->um_fstype == UM_UFS2) 802 return (ffs2_reallocblks(v)); 803 #endif 804 805 return (ffs1_reallocblks(v)); 806 } 807 808 /* 809 * Allocate an inode in the file system. 810 * 811 * If allocating a directory, use ffs_dirpref to select the inode. 812 * If allocating in a directory, the following hierarchy is followed: 813 * 1) allocate the preferred inode. 814 * 2) allocate an inode in the same cylinder group. 815 * 3) quadratically rehash into other cylinder groups, until an 816 * available inode is located. 817 * If no inode preference is given the following hierarchy is used 818 * to allocate an inode: 819 * 1) allocate an inode in cylinder group 0. 820 * 2) quadratically rehash into other cylinder groups, until an 821 * available inode is located. 822 */ 823 int 824 ffs_inode_alloc(struct inode *pip, mode_t mode, struct ucred *cred, 825 struct vnode **vpp) 826 { 827 static struct timeval fsnoinodes_last; 828 struct vnode *pvp = ITOV(pip); 829 struct fs *fs; 830 struct inode *ip; 831 ufsino_t ino, ipref; 832 int cg, error; 833 834 *vpp = NULL; 835 fs = pip->i_fs; 836 if (fs->fs_cstotal.cs_nifree == 0) 837 goto noinodes; 838 839 if ((mode & IFMT) == IFDIR) 840 ipref = ffs_dirpref(pip); 841 else 842 ipref = pip->i_number; 843 if (ipref >= fs->fs_ncg * fs->fs_ipg) 844 ipref = 0; 845 cg = ino_to_cg(fs, ipref); 846 847 /* 848 * Track number of dirs created one after another 849 * in a same cg without intervening by files. 850 */ 851 if ((mode & IFMT) == IFDIR) { 852 if (fs->fs_contigdirs[cg] < 255) 853 fs->fs_contigdirs[cg]++; 854 } else { 855 if (fs->fs_contigdirs[cg] > 0) 856 fs->fs_contigdirs[cg]--; 857 } 858 ino = (ufsino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg); 859 if (ino == 0) 860 goto noinodes; 861 error = VFS_VGET(pvp->v_mount, ino, vpp); 862 if (error) { 863 ffs_inode_free(pip, ino, mode); 864 return (error); 865 } 866 867 ip = VTOI(*vpp); 868 869 if (DIP(ip, mode)) { 870 printf("mode = 0%o, inum = %u, fs = %s\n", 871 DIP(ip, mode), ip->i_number, fs->fs_fsmnt); 872 panic("ffs_valloc: dup alloc"); 873 } 874 875 if (DIP(ip, blocks)) { 876 printf("free inode %s/%d had %lld blocks\n", 877 fs->fs_fsmnt, ino, (long long)DIP(ip, blocks)); 878 DIP_ASSIGN(ip, blocks, 0); 879 } 880 881 DIP_ASSIGN(ip, flags, 0); 882 883 /* 884 * Set up a new generation number for this inode. 885 * XXX - just increment for now, this is wrong! (millert) 886 * Need a way to preserve randomization. 887 */ 888 if (DIP(ip, gen) != 0) 889 DIP_ADD(ip, gen, 1); 890 if (DIP(ip, gen) == 0) 891 DIP_ASSIGN(ip, gen, arc4random() & INT_MAX); 892 893 if (DIP(ip, gen) == 0 || DIP(ip, gen) == -1) 894 DIP_ASSIGN(ip, gen, 1); /* Shouldn't happen */ 895 896 return (0); 897 898 noinodes: 899 if (ratecheck(&fsnoinodes_last, &fserr_interval)) { 900 ffs_fserr(fs, cred->cr_uid, "out of inodes"); 901 uprintf("\n%s: create/symlink failed, no inodes free\n", 902 fs->fs_fsmnt); 903 } 904 return (ENOSPC); 905 } 906 907 /* 908 * Find a cylinder group to place a directory. 909 * 910 * The policy implemented by this algorithm is to allocate a 911 * directory inode in the same cylinder group as its parent 912 * directory, but also to reserve space for its files inodes 913 * and data. Restrict the number of directories which may be 914 * allocated one after another in the same cylinder group 915 * without intervening allocation of files. 916 * 917 * If we allocate a first level directory then force allocation 918 * in another cylinder group. 919 */ 920 ufsino_t 921 ffs_dirpref(struct inode *pip) 922 { 923 struct fs *fs; 924 int cg, prefcg, dirsize, cgsize; 925 int avgifree, avgbfree, avgndir, curdirsize; 926 int minifree, minbfree, maxndir; 927 int mincg, minndir; 928 int maxcontigdirs; 929 930 fs = pip->i_fs; 931 932 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 933 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 934 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 935 936 /* 937 * Force allocation in another cg if creating a first level dir. 938 */ 939 if (ITOV(pip)->v_flag & VROOT) { 940 prefcg = (arc4random() & INT_MAX) % fs->fs_ncg; 941 mincg = prefcg; 942 minndir = fs->fs_ipg; 943 for (cg = prefcg; cg < fs->fs_ncg; cg++) 944 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 945 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 946 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 947 mincg = cg; 948 minndir = fs->fs_cs(fs, cg).cs_ndir; 949 } 950 for (cg = 0; cg < prefcg; cg++) 951 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 952 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 953 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 954 mincg = cg; 955 minndir = fs->fs_cs(fs, cg).cs_ndir; 956 } 957 cg = mincg; 958 goto end; 959 } else 960 prefcg = ino_to_cg(fs, pip->i_number); 961 962 /* 963 * Count various limits which used for 964 * optimal allocation of a directory inode. 965 */ 966 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 967 minifree = avgifree - (avgifree / 4); 968 if (minifree < 1) 969 minifree = 1; 970 minbfree = avgbfree - (avgbfree / 4); 971 if (minbfree < 1) 972 minbfree = 1; 973 974 cgsize = fs->fs_fsize * fs->fs_fpg; 975 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 976 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 977 if (dirsize < curdirsize) 978 dirsize = curdirsize; 979 if (dirsize <= 0) 980 maxcontigdirs = 0; /* dirsize overflowed */ 981 else 982 maxcontigdirs = min(avgbfree * fs->fs_bsize / dirsize, 255); 983 if (fs->fs_avgfpdir > 0) 984 maxcontigdirs = min(maxcontigdirs, 985 fs->fs_ipg / fs->fs_avgfpdir); 986 if (maxcontigdirs == 0) 987 maxcontigdirs = 1; 988 989 /* 990 * Limit number of dirs in one cg and reserve space for 991 * regular files, but only if we have no deficit in 992 * inodes or space. 993 * 994 * We are trying to find a suitable cylinder group nearby 995 * our preferred cylinder group to place a new directory. 996 * We scan from our preferred cylinder group forward looking 997 * for a cylinder group that meets our criterion. If we get 998 * to the final cylinder group and do not find anything, 999 * we start scanning backwards from our preferred cylinder 1000 * group. The ideal would be to alternate looking forward 1001 * and backward, but tha tis just too complex to code for 1002 * the gain it would get. The most likely place where the 1003 * backward scan would take effect is when we start near 1004 * the end of the filesystem and do not find anything from 1005 * where we are to the end. In that case, scanning backward 1006 * will likely find us a suitable cylinder group much closer 1007 * to our desired location than if we were to start scanning 1008 * forward from the beginning for the filesystem. 1009 */ 1010 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1011 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1012 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1013 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1014 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1015 goto end; 1016 } 1017 for (cg = prefcg - 1; cg >= 0; cg--) 1018 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1019 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1020 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1021 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1022 goto end; 1023 } 1024 /* 1025 * This is a backstop when we have deficit in space. 1026 */ 1027 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1028 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1029 goto end; 1030 for (cg = prefcg - 1; cg >= 0; cg--) 1031 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1032 goto end; 1033 end: 1034 return ((ufsino_t)(fs->fs_ipg * cg)); 1035 } 1036 1037 /* 1038 * Select the desired position for the next block in a file. The file is 1039 * logically divided into sections. The first section is composed of the 1040 * direct blocks. Each additional section contains fs_maxbpg blocks. 1041 * 1042 * If no blocks have been allocated in the first section, the policy is to 1043 * request a block in the same cylinder group as the inode that describes 1044 * the file. The first indirect is allocated immediately following the last 1045 * direct block and the data blocks for the first indirect immediately 1046 * follow it. 1047 * 1048 * If no blocks have been allocated in any other section, the indirect 1049 * block(s) are allocated in the same cylinder group as its inode in an 1050 * area reserved immediately following the inode blocks. The policy for 1051 * the data blocks is to place them in a cylinder group with a greater than 1052 * average number of free blocks. An appropriate cylinder group is found 1053 * by using a rotor that sweeps the cylinder groups. When a new group of 1054 * blocks is needed, the sweep begins in the cylinder group following the 1055 * cylinder group from which the previous allocation was made. The sweep 1056 * continues until a cylinder group with greater than the average number 1057 * of free blocks is found. If the allocation is for the first block in an 1058 * indirect block, the information on the previous allocation is unavailable; 1059 * here a best guess is made based upon the logical block number being 1060 * allocated. 1061 */ 1062 int32_t 1063 ffs1_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap) 1064 { 1065 struct fs *fs; 1066 int cg, inocg, avgbfree, startcg; 1067 uint32_t pref; 1068 1069 KASSERT(indx <= 0 || bap != NULL); 1070 fs = ip->i_fs; 1071 /* 1072 * Allocation of indirect blocks is indicated by passing negative 1073 * values in indx: -1 for single indirect, -2 for double indirect, 1074 * -3 for triple indirect. As noted below, we attempt to allocate 1075 * the first indirect inline with the file data. For all later 1076 * indirect blocks, the data is often allocated in other cylinder 1077 * groups. However to speed random file access and to speed up 1078 * fsck, the filesystem reserves the first fs_metaspace blocks 1079 * (typically half of fs_minfree) of the data area of each cylinder 1080 * group to hold these later indirect blocks. 1081 */ 1082 inocg = ino_to_cg(fs, ip->i_number); 1083 if (indx < 0) { 1084 /* 1085 * Our preference for indirect blocks is the zone at the 1086 * beginning of the inode's cylinder group data area that 1087 * we try to reserve for indirect blocks. 1088 */ 1089 pref = cgmeta(fs, inocg); 1090 /* 1091 * If we are allocating the first indirect block, try to 1092 * place it immediately following the last direct block. 1093 */ 1094 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1095 ip->i_din1->di_db[NDADDR - 1] != 0) 1096 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 1097 return (pref); 1098 } 1099 /* 1100 * If we are allocating the first data block in the first indirect 1101 * block and the indirect has been allocated in the data block area, 1102 * try to place it immediately following the indirect block. 1103 */ 1104 if (lbn == NDADDR) { 1105 pref = ip->i_din1->di_ib[0]; 1106 if (pref != 0 && pref >= cgdata(fs, inocg) && 1107 pref < cgbase(fs, inocg + 1)) 1108 return (pref + fs->fs_frag); 1109 } 1110 /* 1111 * If we are the beginning of a file, or we have already allocated 1112 * the maximum number of blocks per cylinder group, or we do not 1113 * have a block allocated immediately preceding us, then we need 1114 * to decide where to start allocating new blocks. 1115 */ 1116 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1117 /* 1118 * If we are allocating a directory data block, we want 1119 * to place it in the metadata area. 1120 */ 1121 if ((DIP(ip, mode) & IFMT) == IFDIR) 1122 return (cgmeta(fs, inocg)); 1123 /* 1124 * Until we fill all the direct and all the first indirect's 1125 * blocks, we try to allocate in the data area of the inode's 1126 * cylinder group. 1127 */ 1128 if (lbn < NDADDR + NINDIR(fs)) 1129 return (cgdata(fs, inocg)); 1130 /* 1131 * Find a cylinder with greater than average number of 1132 * unused data blocks. 1133 */ 1134 if (indx == 0 || bap[indx - 1] == 0) 1135 startcg = inocg + lbn / fs->fs_maxbpg; 1136 else 1137 startcg = dtog(fs, bap[indx - 1]) + 1; 1138 startcg %= fs->fs_ncg; 1139 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1140 for (cg = startcg; cg < fs->fs_ncg; cg++) 1141 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1142 fs->fs_cgrotor = cg; 1143 return (cgdata(fs, cg)); 1144 } 1145 for (cg = 0; cg <= startcg; cg++) 1146 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1147 fs->fs_cgrotor = cg; 1148 return (cgdata(fs, cg)); 1149 } 1150 return (0); 1151 } 1152 /* 1153 * Otherwise, we just always try to lay things out contiguously. 1154 */ 1155 return (bap[indx - 1] + fs->fs_frag); 1156 } 1157 1158 /* 1159 * Same as above, for UFS2. 1160 */ 1161 #ifdef FFS2 1162 int64_t 1163 ffs2_blkpref(struct inode *ip, daddr_t lbn, int indx, int64_t *bap) 1164 { 1165 struct fs *fs; 1166 int cg, inocg, avgbfree, startcg; 1167 uint64_t pref; 1168 1169 KASSERT(indx <= 0 || bap != NULL); 1170 fs = ip->i_fs; 1171 /* 1172 * Allocation of indirect blocks is indicated by passing negative 1173 * values in indx: -1 for single indirect, -2 for double indirect, 1174 * -3 for triple indirect. As noted below, we attempt to allocate 1175 * the first indirect inline with the file data. For all later 1176 * indirect blocks, the data is often allocated in other cylinder 1177 * groups. However to speed random file access and to speed up 1178 * fsck, the filesystem reserves the first fs_metaspace blocks 1179 * (typically half of fs_minfree) of the data area of each cylinder 1180 * group to hold these later indirect blocks. 1181 */ 1182 inocg = ino_to_cg(fs, ip->i_number); 1183 if (indx < 0) { 1184 /* 1185 * Our preference for indirect blocks is the zone at the 1186 * beginning of the inode's cylinder group data area that 1187 * we try to reserve for indirect blocks. 1188 */ 1189 pref = cgmeta(fs, inocg); 1190 /* 1191 * If we are allocating the first indirect block, try to 1192 * place it immediately following the last direct block. 1193 */ 1194 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 1195 ip->i_din2->di_db[NDADDR - 1] != 0) 1196 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 1197 return (pref); 1198 } 1199 /* 1200 * If we are allocating the first data block in the first indirect 1201 * block and the indirect has been allocated in the data block area, 1202 * try to place it immediately following the indirect block. 1203 */ 1204 if (lbn == NDADDR) { 1205 pref = ip->i_din2->di_ib[0]; 1206 if (pref != 0 && pref >= cgdata(fs, inocg) && 1207 pref < cgbase(fs, inocg + 1)) 1208 return (pref + fs->fs_frag); 1209 } 1210 /* 1211 * If we are the beginning of a file, or we have already allocated 1212 * the maximum number of blocks per cylinder group, or we do not 1213 * have a block allocated immediately preceding us, then we need 1214 * to decide where to start allocating new blocks. 1215 */ 1216 1217 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1218 /* 1219 * If we are allocating a directory data block, we want 1220 * to place it in the metadata area. 1221 */ 1222 if ((DIP(ip, mode) & IFMT) == IFDIR) 1223 return (cgmeta(fs, inocg)); 1224 /* 1225 * Until we fill all the direct and all the first indirect's 1226 * blocks, we try to allocate in the data area of the inode's 1227 * cylinder group. 1228 */ 1229 if (lbn < NDADDR + NINDIR(fs)) 1230 return (cgdata(fs, inocg)); 1231 /* 1232 * Find a cylinder with greater than average number of 1233 * unused data blocks. 1234 */ 1235 if (indx == 0 || bap[indx - 1] == 0) 1236 startcg = inocg + lbn / fs->fs_maxbpg; 1237 else 1238 startcg = dtog(fs, bap[indx - 1] + 1); 1239 1240 startcg %= fs->fs_ncg; 1241 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1242 1243 for (cg = startcg; cg < fs->fs_ncg; cg++) 1244 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) 1245 return (cgbase(fs, cg) + fs->fs_frag); 1246 1247 for (cg = 0; cg < startcg; cg++) 1248 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) 1249 return (cgbase(fs, cg) + fs->fs_frag); 1250 1251 return (0); 1252 } 1253 1254 /* 1255 * Otherwise, we just always try to lay things out contiguously. 1256 */ 1257 return (bap[indx - 1] + fs->fs_frag); 1258 } 1259 #endif /* FFS2 */ 1260 1261 /* 1262 * Implement the cylinder overflow algorithm. 1263 * 1264 * The policy implemented by this algorithm is: 1265 * 1) allocate the block in its requested cylinder group. 1266 * 2) quadratically rehash on the cylinder group number. 1267 * 3) brute force search for a free block. 1268 */ 1269 /*VARARGS5*/ 1270 daddr_t 1271 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size, 1272 daddr_t (*allocator)(struct inode *, int, daddr_t, int)) 1273 { 1274 struct fs *fs; 1275 daddr_t result; 1276 int i, icg = cg; 1277 1278 fs = ip->i_fs; 1279 /* 1280 * 1: preferred cylinder group 1281 */ 1282 result = (*allocator)(ip, cg, pref, size); 1283 if (result) 1284 return (result); 1285 /* 1286 * 2: quadratic rehash 1287 */ 1288 for (i = 1; i < fs->fs_ncg; i *= 2) { 1289 cg += i; 1290 if (cg >= fs->fs_ncg) 1291 cg -= fs->fs_ncg; 1292 result = (*allocator)(ip, cg, 0, size); 1293 if (result) 1294 return (result); 1295 } 1296 /* 1297 * 3: brute force search 1298 * Note that we start at i == 2, since 0 was checked initially, 1299 * and 1 is always checked in the quadratic rehash. 1300 */ 1301 cg = (icg + 2) % fs->fs_ncg; 1302 for (i = 2; i < fs->fs_ncg; i++) { 1303 result = (*allocator)(ip, cg, 0, size); 1304 if (result) 1305 return (result); 1306 cg++; 1307 if (cg == fs->fs_ncg) 1308 cg = 0; 1309 } 1310 return (0); 1311 } 1312 1313 struct buf * 1314 ffs_cgread(struct fs *fs, struct inode *ip, int cg) 1315 { 1316 struct buf *bp; 1317 1318 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 1319 (int)fs->fs_cgsize, &bp)) { 1320 brelse(bp); 1321 return (NULL); 1322 } 1323 1324 if (!cg_chkmagic((struct cg *)bp->b_data)) { 1325 brelse(bp); 1326 return (NULL); 1327 } 1328 1329 return bp; 1330 } 1331 1332 /* 1333 * Determine whether a fragment can be extended. 1334 * 1335 * Check to see if the necessary fragments are available, and 1336 * if they are, allocate them. 1337 */ 1338 daddr_t 1339 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize) 1340 { 1341 struct fs *fs; 1342 struct cg *cgp; 1343 struct buf *bp; 1344 daddr_t bno; 1345 int i, frags, bbase; 1346 1347 fs = ip->i_fs; 1348 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1349 return (0); 1350 frags = numfrags(fs, nsize); 1351 bbase = fragnum(fs, bprev); 1352 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1353 /* cannot extend across a block boundary */ 1354 return (0); 1355 } 1356 1357 if (!(bp = ffs_cgread(fs, ip, cg))) 1358 return (0); 1359 1360 cgp = (struct cg *)bp->b_data; 1361 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1362 1363 bno = dtogd(fs, bprev); 1364 for (i = numfrags(fs, osize); i < frags; i++) 1365 if (isclr(cg_blksfree(cgp), bno + i)) { 1366 brelse(bp); 1367 return (0); 1368 } 1369 /* 1370 * the current fragment can be extended 1371 * deduct the count on fragment being extended into 1372 * increase the count on the remaining fragment (if any) 1373 * allocate the extended piece 1374 */ 1375 for (i = frags; i < fs->fs_frag - bbase; i++) 1376 if (isclr(cg_blksfree(cgp), bno + i)) 1377 break; 1378 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1379 if (i != frags) 1380 cgp->cg_frsum[i - frags]++; 1381 for (i = numfrags(fs, osize); i < frags; i++) { 1382 clrbit(cg_blksfree(cgp), bno + i); 1383 cgp->cg_cs.cs_nffree--; 1384 fs->fs_cstotal.cs_nffree--; 1385 fs->fs_cs(fs, cg).cs_nffree--; 1386 } 1387 fs->fs_fmod = 1; 1388 if (DOINGSOFTDEP(ITOV(ip))) 1389 softdep_setup_blkmapdep(bp, fs, bprev); 1390 1391 bdwrite(bp); 1392 return (bprev); 1393 } 1394 1395 /* 1396 * Determine whether a block can be allocated. 1397 * 1398 * Check to see if a block of the appropriate size is available, 1399 * and if it is, allocate it. 1400 */ 1401 daddr_t 1402 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 1403 { 1404 struct fs *fs; 1405 struct cg *cgp; 1406 struct buf *bp; 1407 daddr_t bno, blkno; 1408 int i, frags, allocsiz; 1409 1410 fs = ip->i_fs; 1411 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1412 return (0); 1413 1414 if (!(bp = ffs_cgread(fs, ip, cg))) 1415 return (0); 1416 1417 cgp = (struct cg *)bp->b_data; 1418 if (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize) { 1419 brelse(bp); 1420 return (0); 1421 } 1422 1423 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1424 1425 if (size == fs->fs_bsize) { 1426 /* allocate and return a complete data block */ 1427 bno = ffs_alloccgblk(ip, bp, bpref); 1428 bdwrite(bp); 1429 return (bno); 1430 } 1431 /* 1432 * check to see if any fragments are already available 1433 * allocsiz is the size which will be allocated, hacking 1434 * it down to a smaller size if necessary 1435 */ 1436 frags = numfrags(fs, size); 1437 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1438 if (cgp->cg_frsum[allocsiz] != 0) 1439 break; 1440 if (allocsiz == fs->fs_frag) { 1441 /* 1442 * no fragments were available, so a block will be 1443 * allocated, and hacked up 1444 */ 1445 if (cgp->cg_cs.cs_nbfree == 0) { 1446 brelse(bp); 1447 return (0); 1448 } 1449 bno = ffs_alloccgblk(ip, bp, bpref); 1450 bpref = dtogd(fs, bno); 1451 for (i = frags; i < fs->fs_frag; i++) 1452 setbit(cg_blksfree(cgp), bpref + i); 1453 i = fs->fs_frag - frags; 1454 cgp->cg_cs.cs_nffree += i; 1455 fs->fs_cstotal.cs_nffree += i; 1456 fs->fs_cs(fs, cg).cs_nffree += i; 1457 fs->fs_fmod = 1; 1458 cgp->cg_frsum[i]++; 1459 bdwrite(bp); 1460 return (bno); 1461 } 1462 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1463 if (bno < 0) { 1464 brelse(bp); 1465 return (0); 1466 } 1467 1468 for (i = 0; i < frags; i++) 1469 clrbit(cg_blksfree(cgp), bno + i); 1470 cgp->cg_cs.cs_nffree -= frags; 1471 fs->fs_cstotal.cs_nffree -= frags; 1472 fs->fs_cs(fs, cg).cs_nffree -= frags; 1473 fs->fs_fmod = 1; 1474 cgp->cg_frsum[allocsiz]--; 1475 if (frags != allocsiz) 1476 cgp->cg_frsum[allocsiz - frags]++; 1477 1478 blkno = cgbase(fs, cg) + bno; 1479 if (DOINGSOFTDEP(ITOV(ip))) 1480 softdep_setup_blkmapdep(bp, fs, blkno); 1481 bdwrite(bp); 1482 return (blkno); 1483 } 1484 1485 /* 1486 * Allocate a block in a cylinder group. 1487 * Note that this routine only allocates fs_bsize blocks; these 1488 * blocks may be fragmented by the routine that allocates them. 1489 */ 1490 daddr_t 1491 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref) 1492 { 1493 struct fs *fs; 1494 struct cg *cgp; 1495 daddr_t bno, blkno; 1496 u_int8_t *blksfree; 1497 int cylno, cgbpref; 1498 1499 fs = ip->i_fs; 1500 cgp = (struct cg *) bp->b_data; 1501 blksfree = cg_blksfree(cgp); 1502 1503 if (bpref == 0) { 1504 bpref = cgp->cg_rotor; 1505 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1506 /* map bpref to correct zone in this cg */ 1507 if (bpref < cgdata(fs, cgbpref)) 1508 bpref = cgmeta(fs, cgp->cg_cgx); 1509 else 1510 bpref = cgdata(fs, cgp->cg_cgx); 1511 } 1512 /* 1513 * If the requested block is available, use it. 1514 */ 1515 bno = dtogd(fs, blknum(fs, bpref)); 1516 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1517 goto gotit; 1518 /* 1519 * Take the next available block in this cylinder group. 1520 */ 1521 bno = ffs_mapsearch(fs, cgp, bpref, (int) fs->fs_frag); 1522 if (bno < 0) 1523 return (0); 1524 1525 /* Update cg_rotor only if allocated from the data zone */ 1526 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1527 cgp->cg_rotor = bno; 1528 1529 gotit: 1530 blkno = fragstoblks(fs, bno); 1531 ffs_clrblock(fs, blksfree, blkno); 1532 ffs_clusteracct(fs, cgp, blkno, -1); 1533 cgp->cg_cs.cs_nbfree--; 1534 fs->fs_cstotal.cs_nbfree--; 1535 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1536 1537 if (fs->fs_magic != FS_UFS2_MAGIC) { 1538 cylno = cbtocylno(fs, bno); 1539 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 1540 cg_blktot(cgp)[cylno]--; 1541 } 1542 1543 fs->fs_fmod = 1; 1544 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1545 1546 if (DOINGSOFTDEP(ITOV(ip))) 1547 softdep_setup_blkmapdep(bp, fs, blkno); 1548 1549 return (blkno); 1550 } 1551 1552 /* 1553 * Determine whether a cluster can be allocated. 1554 * 1555 * We do not currently check for optimal rotational layout if there 1556 * are multiple choices in the same cylinder group. Instead we just 1557 * take the first one that we find following bpref. 1558 */ 1559 daddr_t 1560 ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len) 1561 { 1562 struct fs *fs; 1563 struct cg *cgp; 1564 struct buf *bp; 1565 int i, got, run, bno, bit, map; 1566 u_char *mapp; 1567 int32_t *lp; 1568 1569 fs = ip->i_fs; 1570 if (fs->fs_maxcluster[cg] < len) 1571 return (0); 1572 1573 if (!(bp = ffs_cgread(fs, ip, cg))) 1574 return (0); 1575 1576 cgp = (struct cg *)bp->b_data; 1577 1578 /* 1579 * Check to see if a cluster of the needed size (or bigger) is 1580 * available in this cylinder group. 1581 */ 1582 lp = &cg_clustersum(cgp)[len]; 1583 for (i = len; i <= fs->fs_contigsumsize; i++) 1584 if (*lp++ > 0) 1585 break; 1586 if (i > fs->fs_contigsumsize) { 1587 /* 1588 * This is the first time looking for a cluster in this 1589 * cylinder group. Update the cluster summary information 1590 * to reflect the true maximum sized cluster so that 1591 * future cluster allocation requests can avoid reading 1592 * the cylinder group map only to find no clusters. 1593 */ 1594 lp = &cg_clustersum(cgp)[len - 1]; 1595 for (i = len - 1; i > 0; i--) 1596 if (*lp-- > 0) 1597 break; 1598 fs->fs_maxcluster[cg] = i; 1599 goto fail; 1600 } 1601 /* 1602 * Search the cluster map to find a big enough cluster. 1603 * We take the first one that we find, even if it is larger 1604 * than we need as we prefer to get one close to the previous 1605 * block allocation. We do not search before the current 1606 * preference point as we do not want to allocate a block 1607 * that is allocated before the previous one (as we will 1608 * then have to wait for another pass of the elevator 1609 * algorithm before it will be read). We prefer to fail and 1610 * be recalled to try an allocation in the next cylinder group. 1611 */ 1612 if (dtog(fs, bpref) != cg) 1613 bpref = cgdata(fs, cg); 1614 else 1615 bpref = blknum(fs, bpref); 1616 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1617 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1618 map = *mapp++; 1619 bit = 1 << (bpref % NBBY); 1620 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1621 if ((map & bit) == 0) { 1622 run = 0; 1623 } else { 1624 run++; 1625 if (run == len) 1626 break; 1627 } 1628 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1629 bit <<= 1; 1630 } else { 1631 map = *mapp++; 1632 bit = 1; 1633 } 1634 } 1635 if (got >= cgp->cg_nclusterblks) 1636 goto fail; 1637 /* 1638 * Allocate the cluster that we have found. 1639 */ 1640 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1641 1642 #ifdef DIAGNOSTIC 1643 for (i = 1; i <= len; i++) 1644 if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i)) 1645 panic("ffs_clusteralloc: map mismatch"); 1646 #endif 1647 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1648 #ifdef DIAGNOSTIC 1649 if (dtog(fs, bno) != cg) 1650 panic("ffs_clusteralloc: allocated out of group"); 1651 #endif 1652 1653 len = blkstofrags(fs, len); 1654 for (i = 0; i < len; i += fs->fs_frag) 1655 if (ffs_alloccgblk(ip, bp, bno + i) != bno + i) 1656 panic("ffs_clusteralloc: lost block"); 1657 bdwrite(bp); 1658 return (bno); 1659 1660 fail: 1661 brelse(bp); 1662 return (0); 1663 } 1664 1665 /* inode allocation routine */ 1666 daddr_t 1667 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 1668 { 1669 struct fs *fs; 1670 struct cg *cgp; 1671 struct buf *bp; 1672 int start, len, loc, map, i; 1673 #ifdef FFS2 1674 struct buf *ibp = NULL; 1675 struct ufs2_dinode *dp2; 1676 #endif 1677 1678 /* 1679 * For efficiency, before looking at the bitmaps for free inodes, 1680 * check the counters kept in the superblock cylinder group summaries, 1681 * and in the cylinder group itself. 1682 */ 1683 fs = ip->i_fs; 1684 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1685 return (0); 1686 1687 if (!(bp = ffs_cgread(fs, ip, cg))) 1688 return (0); 1689 1690 cgp = (struct cg *)bp->b_data; 1691 if (cgp->cg_cs.cs_nifree == 0) { 1692 brelse(bp); 1693 return (0); 1694 } 1695 1696 /* 1697 * We are committed to the allocation from now on, so update the time 1698 * on the cylinder group. 1699 */ 1700 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1701 1702 /* 1703 * If there was a preferred location for the new inode, try to find it. 1704 */ 1705 if (ipref) { 1706 ipref %= fs->fs_ipg; 1707 if (isclr(cg_inosused(cgp), ipref)) 1708 goto gotit; /* inode is free, grab it. */ 1709 } 1710 1711 /* 1712 * Otherwise, look for the next available inode, starting at cg_irotor 1713 * (the position in the bitmap of the last used inode). 1714 */ 1715 start = cgp->cg_irotor / NBBY; 1716 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1717 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 1718 if (loc == 0) { 1719 /* 1720 * If we didn't find a free inode in the upper part of the 1721 * bitmap (from cg_irotor to the end), then look at the bottom 1722 * part (from 0 to cg_irotor). 1723 */ 1724 len = start + 1; 1725 start = 0; 1726 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 1727 if (loc == 0) { 1728 /* 1729 * If we failed again, then either the bitmap or the 1730 * counters kept for the cylinder group are wrong. 1731 */ 1732 printf("cg = %d, irotor = %d, fs = %s\n", 1733 cg, cgp->cg_irotor, fs->fs_fsmnt); 1734 panic("ffs_nodealloccg: map corrupted"); 1735 /* NOTREACHED */ 1736 } 1737 } 1738 1739 /* skpc() returns the position relative to the end */ 1740 i = start + len - loc; 1741 1742 /* 1743 * Okay, so now in 'i' we have the location in the bitmap of a byte 1744 * holding a free inode. Find the corresponding bit and set it, 1745 * updating cg_irotor as well, accordingly. 1746 */ 1747 map = cg_inosused(cgp)[i]; 1748 ipref = i * NBBY; 1749 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1750 if ((map & i) == 0) { 1751 cgp->cg_irotor = ipref; 1752 goto gotit; 1753 } 1754 } 1755 1756 printf("fs = %s\n", fs->fs_fsmnt); 1757 panic("ffs_nodealloccg: block not in map"); 1758 /* NOTREACHED */ 1759 1760 gotit: 1761 1762 #ifdef FFS2 1763 /* 1764 * For FFS2, check if all inodes in this cylinder group have been used 1765 * at least once. If they haven't, and we are allocating an inode past 1766 * the last allocated block of inodes, read in a block and initialize 1767 * all inodes in it. 1768 */ 1769 if (fs->fs_magic == FS_UFS2_MAGIC && 1770 /* Inode is beyond last initialized block of inodes? */ 1771 ipref + INOPB(fs) > cgp->cg_initediblk && 1772 /* Has any inode not been used at least once? */ 1773 cgp->cg_initediblk < cgp->cg_ffs2_niblk) { 1774 1775 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1776 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1777 (int)fs->fs_bsize, 0, 0); 1778 1779 memset(ibp->b_data, 0, fs->fs_bsize); 1780 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1781 1782 /* Give each inode a positive generation number */ 1783 for (i = 0; i < INOPB(fs); i++) { 1784 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1; 1785 dp2++; 1786 } 1787 1788 /* Update the counter of initialized inodes */ 1789 cgp->cg_initediblk += INOPB(fs); 1790 } 1791 #endif /* FFS2 */ 1792 1793 if (DOINGSOFTDEP(ITOV(ip))) 1794 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1795 1796 setbit(cg_inosused(cgp), ipref); 1797 1798 /* Update the counters we keep on free inodes */ 1799 cgp->cg_cs.cs_nifree--; 1800 fs->fs_cstotal.cs_nifree--; 1801 fs->fs_cs(fs, cg).cs_nifree--; 1802 fs->fs_fmod = 1; /* file system was modified */ 1803 1804 /* Update the counters we keep on allocated directories */ 1805 if ((mode & IFMT) == IFDIR) { 1806 cgp->cg_cs.cs_ndir++; 1807 fs->fs_cstotal.cs_ndir++; 1808 fs->fs_cs(fs, cg).cs_ndir++; 1809 } 1810 1811 bdwrite(bp); 1812 1813 #ifdef FFS2 1814 if (ibp != NULL) 1815 bawrite(ibp); 1816 #endif 1817 1818 /* Return the allocated inode number */ 1819 return (cg * fs->fs_ipg + ipref); 1820 } 1821 1822 /* 1823 * Free a block or fragment. 1824 * 1825 * The specified block or fragment is placed back in the 1826 * free map. If a fragment is deallocated, a possible 1827 * block reassembly is checked. 1828 */ 1829 void 1830 ffs_blkfree(struct inode *ip, daddr_t bno, long size) 1831 { 1832 struct fs *fs; 1833 struct cg *cgp; 1834 struct buf *bp; 1835 daddr_t blkno; 1836 int i, cg, blk, frags, bbase; 1837 1838 fs = ip->i_fs; 1839 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1840 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1841 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n", 1842 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 1843 panic("ffs_blkfree: bad size"); 1844 } 1845 cg = dtog(fs, bno); 1846 if ((u_int)bno >= fs->fs_size) { 1847 printf("bad block %lld, ino %u\n", (long long)bno, 1848 ip->i_number); 1849 ffs_fserr(fs, DIP(ip, uid), "bad block"); 1850 return; 1851 } 1852 if (!(bp = ffs_cgread(fs, ip, cg))) 1853 return; 1854 1855 cgp = (struct cg *)bp->b_data; 1856 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1857 1858 bno = dtogd(fs, bno); 1859 if (size == fs->fs_bsize) { 1860 blkno = fragstoblks(fs, bno); 1861 if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) { 1862 printf("dev = 0x%x, block = %lld, fs = %s\n", 1863 ip->i_dev, (long long)bno, fs->fs_fsmnt); 1864 panic("ffs_blkfree: freeing free block"); 1865 } 1866 ffs_setblock(fs, cg_blksfree(cgp), blkno); 1867 ffs_clusteracct(fs, cgp, blkno, 1); 1868 cgp->cg_cs.cs_nbfree++; 1869 fs->fs_cstotal.cs_nbfree++; 1870 fs->fs_cs(fs, cg).cs_nbfree++; 1871 1872 if (fs->fs_magic != FS_UFS2_MAGIC) { 1873 i = cbtocylno(fs, bno); 1874 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 1875 cg_blktot(cgp)[i]++; 1876 } 1877 1878 } else { 1879 bbase = bno - fragnum(fs, bno); 1880 /* 1881 * decrement the counts associated with the old frags 1882 */ 1883 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1884 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1885 /* 1886 * deallocate the fragment 1887 */ 1888 frags = numfrags(fs, size); 1889 for (i = 0; i < frags; i++) { 1890 if (isset(cg_blksfree(cgp), bno + i)) { 1891 printf("dev = 0x%x, block = %lld, fs = %s\n", 1892 ip->i_dev, (long long)(bno + i), 1893 fs->fs_fsmnt); 1894 panic("ffs_blkfree: freeing free frag"); 1895 } 1896 setbit(cg_blksfree(cgp), bno + i); 1897 } 1898 cgp->cg_cs.cs_nffree += i; 1899 fs->fs_cstotal.cs_nffree += i; 1900 fs->fs_cs(fs, cg).cs_nffree += i; 1901 /* 1902 * add back in counts associated with the new frags 1903 */ 1904 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1905 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1906 /* 1907 * if a complete block has been reassembled, account for it 1908 */ 1909 blkno = fragstoblks(fs, bbase); 1910 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { 1911 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1912 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1913 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1914 ffs_clusteracct(fs, cgp, blkno, 1); 1915 cgp->cg_cs.cs_nbfree++; 1916 fs->fs_cstotal.cs_nbfree++; 1917 fs->fs_cs(fs, cg).cs_nbfree++; 1918 1919 if (fs->fs_magic != FS_UFS2_MAGIC) { 1920 i = cbtocylno(fs, bbase); 1921 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 1922 cg_blktot(cgp)[i]++; 1923 } 1924 } 1925 } 1926 fs->fs_fmod = 1; 1927 bdwrite(bp); 1928 } 1929 1930 int 1931 ffs_inode_free(struct inode *pip, ufsino_t ino, mode_t mode) 1932 { 1933 struct vnode *pvp = ITOV(pip); 1934 1935 if (DOINGSOFTDEP(pvp)) { 1936 softdep_freefile(pvp, ino, mode); 1937 return (0); 1938 } 1939 1940 return (ffs_freefile(pip, ino, mode)); 1941 } 1942 1943 /* 1944 * Do the actual free operation. 1945 * The specified inode is placed back in the free map. 1946 */ 1947 int 1948 ffs_freefile(struct inode *pip, ufsino_t ino, mode_t mode) 1949 { 1950 struct fs *fs; 1951 struct cg *cgp; 1952 struct buf *bp; 1953 int cg; 1954 1955 fs = pip->i_fs; 1956 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1957 panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s", 1958 pip->i_dev, ino, fs->fs_fsmnt); 1959 1960 cg = ino_to_cg(fs, ino); 1961 if (!(bp = ffs_cgread(fs, pip, cg))) 1962 return (0); 1963 1964 cgp = (struct cg *)bp->b_data; 1965 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1966 1967 ino %= fs->fs_ipg; 1968 if (isclr(cg_inosused(cgp), ino)) { 1969 printf("dev = 0x%x, ino = %u, fs = %s\n", 1970 pip->i_dev, ino, fs->fs_fsmnt); 1971 if (fs->fs_ronly == 0) 1972 panic("ffs_freefile: freeing free inode"); 1973 } 1974 clrbit(cg_inosused(cgp), ino); 1975 if (ino < cgp->cg_irotor) 1976 cgp->cg_irotor = ino; 1977 cgp->cg_cs.cs_nifree++; 1978 fs->fs_cstotal.cs_nifree++; 1979 fs->fs_cs(fs, cg).cs_nifree++; 1980 if ((mode & IFMT) == IFDIR) { 1981 cgp->cg_cs.cs_ndir--; 1982 fs->fs_cstotal.cs_ndir--; 1983 fs->fs_cs(fs, cg).cs_ndir--; 1984 } 1985 fs->fs_fmod = 1; 1986 bdwrite(bp); 1987 return (0); 1988 } 1989 1990 #ifdef DIAGNOSTIC 1991 /* 1992 * Verify allocation of a block or fragment. Returns true if block or 1993 * fragment is allocated, false if it is free. 1994 */ 1995 int 1996 ffs_checkblk(struct inode *ip, daddr_t bno, long size) 1997 { 1998 struct fs *fs; 1999 struct cg *cgp; 2000 struct buf *bp; 2001 int i, frags, free; 2002 2003 fs = ip->i_fs; 2004 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2005 printf("bsize = %d, size = %ld, fs = %s\n", 2006 fs->fs_bsize, size, fs->fs_fsmnt); 2007 panic("ffs_checkblk: bad size"); 2008 } 2009 if ((u_int)bno >= fs->fs_size) 2010 panic("ffs_checkblk: bad block %lld", (long long)bno); 2011 2012 if (!(bp = ffs_cgread(fs, ip, dtog(fs, bno)))) 2013 return (0); 2014 2015 cgp = (struct cg *)bp->b_data; 2016 bno = dtogd(fs, bno); 2017 if (size == fs->fs_bsize) { 2018 free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 2019 } else { 2020 frags = numfrags(fs, size); 2021 for (free = 0, i = 0; i < frags; i++) 2022 if (isset(cg_blksfree(cgp), bno + i)) 2023 free++; 2024 if (free != 0 && free != frags) 2025 panic("ffs_checkblk: partially free fragment"); 2026 } 2027 brelse(bp); 2028 return (!free); 2029 } 2030 #endif /* DIAGNOSTIC */ 2031 2032 2033 /* 2034 * Find a block of the specified size in the specified cylinder group. 2035 * 2036 * It is a panic if a request is made to find a block if none are 2037 * available. 2038 */ 2039 daddr_t 2040 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz) 2041 { 2042 daddr_t bno; 2043 int start, len, loc, i; 2044 int blk, field, subfield, pos; 2045 2046 /* 2047 * find the fragment by searching through the free block 2048 * map for an appropriate bit pattern 2049 */ 2050 if (bpref) 2051 start = dtogd(fs, bpref) / NBBY; 2052 else 2053 start = cgp->cg_frotor / NBBY; 2054 len = howmany(fs->fs_fpg, NBBY) - start; 2055 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start], 2056 (u_char *)fragtbl[fs->fs_frag], 2057 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2058 if (loc == 0) { 2059 len = start + 1; 2060 start = 0; 2061 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0], 2062 (u_char *)fragtbl[fs->fs_frag], 2063 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2064 if (loc == 0) { 2065 printf("start = %d, len = %d, fs = %s\n", 2066 start, len, fs->fs_fsmnt); 2067 panic("ffs_alloccg: map corrupted"); 2068 /* NOTREACHED */ 2069 } 2070 } 2071 bno = (start + len - loc) * NBBY; 2072 cgp->cg_frotor = bno; 2073 /* 2074 * found the byte in the map 2075 * sift through the bits to find the selected frag 2076 */ 2077 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2078 blk = blkmap(fs, cg_blksfree(cgp), bno); 2079 blk <<= 1; 2080 field = around[allocsiz]; 2081 subfield = inside[allocsiz]; 2082 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2083 if ((blk & field) == subfield) 2084 return (bno + pos); 2085 field <<= 1; 2086 subfield <<= 1; 2087 } 2088 } 2089 printf("bno = %lld, fs = %s\n", (long long)bno, fs->fs_fsmnt); 2090 panic("ffs_alloccg: block not in map"); 2091 return (-1); 2092 } 2093 2094 /* 2095 * Update the cluster map because of an allocation or free. 2096 * 2097 * Cnt == 1 means free; cnt == -1 means allocating. 2098 */ 2099 void 2100 ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt) 2101 { 2102 int32_t *sump; 2103 int32_t *lp; 2104 u_char *freemapp, *mapp; 2105 int i, start, end, forw, back, map, bit; 2106 2107 if (fs->fs_contigsumsize <= 0) 2108 return; 2109 freemapp = cg_clustersfree(cgp); 2110 sump = cg_clustersum(cgp); 2111 /* 2112 * Allocate or clear the actual block. 2113 */ 2114 if (cnt > 0) 2115 setbit(freemapp, blkno); 2116 else 2117 clrbit(freemapp, blkno); 2118 /* 2119 * Find the size of the cluster going forward. 2120 */ 2121 start = blkno + 1; 2122 end = start + fs->fs_contigsumsize; 2123 if (end >= cgp->cg_nclusterblks) 2124 end = cgp->cg_nclusterblks; 2125 mapp = &freemapp[start / NBBY]; 2126 map = *mapp++; 2127 bit = 1 << (start % NBBY); 2128 for (i = start; i < end; i++) { 2129 if ((map & bit) == 0) 2130 break; 2131 if ((i & (NBBY - 1)) != (NBBY - 1)) { 2132 bit <<= 1; 2133 } else { 2134 map = *mapp++; 2135 bit = 1; 2136 } 2137 } 2138 forw = i - start; 2139 /* 2140 * Find the size of the cluster going backward. 2141 */ 2142 start = blkno - 1; 2143 end = start - fs->fs_contigsumsize; 2144 if (end < 0) 2145 end = -1; 2146 mapp = &freemapp[start / NBBY]; 2147 map = *mapp--; 2148 bit = 1 << (start % NBBY); 2149 for (i = start; i > end; i--) { 2150 if ((map & bit) == 0) 2151 break; 2152 if ((i & (NBBY - 1)) != 0) { 2153 bit >>= 1; 2154 } else { 2155 map = *mapp--; 2156 bit = 1 << (NBBY - 1); 2157 } 2158 } 2159 back = start - i; 2160 /* 2161 * Account for old cluster and the possibly new forward and 2162 * back clusters. 2163 */ 2164 i = back + forw + 1; 2165 if (i > fs->fs_contigsumsize) 2166 i = fs->fs_contigsumsize; 2167 sump[i] += cnt; 2168 if (back > 0) 2169 sump[back] -= cnt; 2170 if (forw > 0) 2171 sump[forw] -= cnt; 2172 /* 2173 * Update cluster summary information. 2174 */ 2175 lp = &sump[fs->fs_contigsumsize]; 2176 for (i = fs->fs_contigsumsize; i > 0; i--) 2177 if (*lp-- > 0) 2178 break; 2179 fs->fs_maxcluster[cgp->cg_cgx] = i; 2180 } 2181