xref: /openbsd/sys/uvm/uvm_fault.c (revision 3cab2bb3)
1 /*	$OpenBSD: uvm_fault.c,v 1.97 2019/12/08 12:37:45 mpi Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/malloc.h>
40 #include <sys/mman.h>
41 
42 #include <uvm/uvm.h>
43 
44 /*
45  *
46  * a word on page faults:
47  *
48  * types of page faults we handle:
49  *
50  * CASE 1: upper layer faults                   CASE 2: lower layer faults
51  *
52  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
53  *    read/write1     write>1                  read/write   +-cow_write/zero
54  *         |             |                         |        |
55  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
56  * amap |  V  |       |  ----------->new|          |        | |  ^  |
57  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
58  *                                                 |        |    |
59  *      +-----+       +-----+                   +--|--+     | +--|--+
60  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
61  *      +-----+       +-----+                   +-----+       +-----+
62  *
63  * d/c = don't care
64  *
65  *   case [0]: layerless fault
66  *	no amap or uobj is present.   this is an error.
67  *
68  *   case [1]: upper layer fault [anon active]
69  *     1A: [read] or [write with anon->an_ref == 1]
70  *		I/O takes place in top level anon and uobj is not touched.
71  *     1B: [write with anon->an_ref > 1]
72  *		new anon is alloc'd and data is copied off ["COW"]
73  *
74  *   case [2]: lower layer fault [uobj]
75  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
76  *		I/O takes place directly in object.
77  *     2B: [write to copy_on_write] or [read on NULL uobj]
78  *		data is "promoted" from uobj to a new anon.
79  *		if uobj is null, then we zero fill.
80  *
81  * we follow the standard UVM locking protocol ordering:
82  *
83  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
84  * we hold a PG_BUSY page if we unlock for I/O
85  *
86  *
87  * the code is structured as follows:
88  *
89  *     - init the "IN" params in the ufi structure
90  *   ReFault:
91  *     - do lookups [locks maps], check protection, handle needs_copy
92  *     - check for case 0 fault (error)
93  *     - establish "range" of fault
94  *     - if we have an amap lock it and extract the anons
95  *     - if sequential advice deactivate pages behind us
96  *     - at the same time check pmap for unmapped areas and anon for pages
97  *	 that we could map in (and do map it if found)
98  *     - check object for resident pages that we could map in
99  *     - if (case 2) goto Case2
100  *     - >>> handle case 1
101  *           - ensure source anon is resident in RAM
102  *           - if case 1B alloc new anon and copy from source
103  *           - map the correct page in
104  *   Case2:
105  *     - >>> handle case 2
106  *           - ensure source page is resident (if uobj)
107  *           - if case 2B alloc new anon and copy from source (could be zero
108  *		fill if uobj == NULL)
109  *           - map the correct page in
110  *     - done!
111  *
112  * note on paging:
113  *   if we have to do I/O we place a PG_BUSY page in the correct object,
114  * unlock everything, and do the I/O.   when I/O is done we must reverify
115  * the state of the world before assuming that our data structures are
116  * valid.   [because mappings could change while the map is unlocked]
117  *
118  *  alternative 1: unbusy the page in question and restart the page fault
119  *    from the top (ReFault).   this is easy but does not take advantage
120  *    of the information that we already have from our previous lookup,
121  *    although it is possible that the "hints" in the vm_map will help here.
122  *
123  * alternative 2: the system already keeps track of a "version" number of
124  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
125  *    mapping) you bump the version number up by one...]   so, we can save
126  *    the version number of the map before we release the lock and start I/O.
127  *    then when I/O is done we can relock and check the version numbers
128  *    to see if anything changed.    this might save us some over 1 because
129  *    we don't have to unbusy the page and may be less compares(?).
130  *
131  * alternative 3: put in backpointers or a way to "hold" part of a map
132  *    in place while I/O is in progress.   this could be complex to
133  *    implement (especially with structures like amap that can be referenced
134  *    by multiple map entries, and figuring out what should wait could be
135  *    complex as well...).
136  *
137  * given that we are not currently multiprocessor or multithreaded we might
138  * as well choose alternative 2 now.   maybe alternative 3 would be useful
139  * in the future.    XXX keep in mind for future consideration//rechecking.
140  */
141 
142 /*
143  * local data structures
144  */
145 struct uvm_advice {
146 	int nback;
147 	int nforw;
148 };
149 
150 /*
151  * page range array: set up in uvmfault_init().
152  */
153 static struct uvm_advice uvmadvice[MADV_MASK + 1];
154 
155 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
156 
157 /*
158  * private prototypes
159  */
160 static void uvmfault_amapcopy(struct uvm_faultinfo *);
161 static __inline void uvmfault_anonflush(struct vm_anon **, int);
162 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
163 void	uvmfault_update_stats(struct uvm_faultinfo *);
164 
165 /*
166  * inline functions
167  */
168 /*
169  * uvmfault_anonflush: try and deactivate pages in specified anons
170  *
171  * => does not have to deactivate page if it is busy
172  */
173 static __inline void
174 uvmfault_anonflush(struct vm_anon **anons, int n)
175 {
176 	int lcv;
177 	struct vm_page *pg;
178 
179 	for (lcv = 0 ; lcv < n ; lcv++) {
180 		if (anons[lcv] == NULL)
181 			continue;
182 		pg = anons[lcv]->an_page;
183 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
184 			uvm_lock_pageq();
185 			if (pg->wire_count == 0) {
186 				pmap_page_protect(pg, PROT_NONE);
187 				uvm_pagedeactivate(pg);
188 			}
189 			uvm_unlock_pageq();
190 		}
191 	}
192 }
193 
194 /*
195  * normal functions
196  */
197 /*
198  * uvmfault_init: compute proper values for the uvmadvice[] array.
199  */
200 void
201 uvmfault_init(void)
202 {
203 	int npages;
204 
205 	npages = atop(16384);
206 	if (npages > 0) {
207 		KASSERT(npages <= UVM_MAXRANGE / 2);
208 		uvmadvice[MADV_NORMAL].nforw = npages;
209 		uvmadvice[MADV_NORMAL].nback = npages - 1;
210 	}
211 
212 	npages = atop(32768);
213 	if (npages > 0) {
214 		KASSERT(npages <= UVM_MAXRANGE / 2);
215 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
216 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
217 	}
218 }
219 
220 /*
221  * uvmfault_amapcopy: clear "needs_copy" in a map.
222  *
223  * => if we are out of RAM we sleep (waiting for more)
224  */
225 static void
226 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
227 {
228 
229 	/* while we haven't done the job */
230 	while (1) {
231 		/* no mapping?  give up. */
232 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
233 			return;
234 
235 		/* copy if needed. */
236 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
237 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
238 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
239 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
240 
241 		/* didn't work?  must be out of RAM.  sleep. */
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
243 			uvmfault_unlockmaps(ufi, TRUE);
244 			uvm_wait("fltamapcopy");
245 			continue;
246 		}
247 
248 		/* got it! */
249 		uvmfault_unlockmaps(ufi, TRUE);
250 		return;
251 	}
252 	/*NOTREACHED*/
253 }
254 
255 /*
256  * uvmfault_anonget: get data in an anon into a non-busy, non-released
257  * page in that anon.
258  *
259  * => we don't move the page on the queues [gets moved later]
260  * => if we allocate a new page [we_own], it gets put on the queues.
261  *    either way, the result is that the page is on the queues at return time
262  */
263 int
264 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
265     struct vm_anon *anon)
266 {
267 	boolean_t we_own;	/* we own anon's page? */
268 	boolean_t locked;	/* did we relock? */
269 	struct vm_page *pg;
270 	int result;
271 
272 	result = 0;		/* XXX shut up gcc */
273 	uvmexp.fltanget++;
274         /* bump rusage counters */
275 	if (anon->an_page)
276 		curproc->p_ru.ru_minflt++;
277 	else
278 		curproc->p_ru.ru_majflt++;
279 
280 	/* loop until we get it, or fail. */
281 	while (1) {
282 		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
283 		pg = anon->an_page;
284 
285 		/* page there?   make sure it is not busy/released. */
286 		if (pg) {
287 			KASSERT(pg->pg_flags & PQ_ANON);
288 			KASSERT(pg->uanon == anon);
289 
290 			/*
291 			 * if the page is busy, we drop all the locks and
292 			 * try again.
293 			 */
294 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
295 				return (VM_PAGER_OK);
296 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
297 			uvmexp.fltpgwait++;
298 
299 			/*
300 			 * the last unlock must be an atomic unlock+wait on
301 			 * the owner of page
302 			 */
303 			uvmfault_unlockall(ufi, amap, NULL, NULL);
304 			tsleep_nsec(pg, PVM, "anonget2", INFSLP);
305 			/* ready to relock and try again */
306 		} else {
307 			/* no page, we must try and bring it in. */
308 			pg = uvm_pagealloc(NULL, 0, anon, 0);
309 
310 			if (pg == NULL) {		/* out of RAM.  */
311 				uvmfault_unlockall(ufi, amap, NULL, anon);
312 				uvmexp.fltnoram++;
313 				uvm_wait("flt_noram1");
314 				/* ready to relock and try again */
315 			} else {
316 				/* we set the PG_BUSY bit */
317 				we_own = TRUE;
318 				uvmfault_unlockall(ufi, amap, NULL, anon);
319 
320 				/*
321 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
322 				 * page into the uvm_swap_get function with
323 				 * all data structures unlocked.  note that
324 				 * it is ok to read an_swslot here because
325 				 * we hold PG_BUSY on the page.
326 				 */
327 				uvmexp.pageins++;
328 				result = uvm_swap_get(pg, anon->an_swslot,
329 				    PGO_SYNCIO);
330 
331 				/*
332 				 * we clean up after the i/o below in the
333 				 * "we_own" case
334 				 */
335 				/* ready to relock and try again */
336 			}
337 		}
338 
339 		/* now relock and try again */
340 		locked = uvmfault_relock(ufi);
341 
342 		/*
343 		 * if we own the page (i.e. we set PG_BUSY), then we need
344 		 * to clean up after the I/O. there are three cases to
345 		 * consider:
346 		 *   [1] page released during I/O: free anon and ReFault.
347 		 *   [2] I/O not OK.   free the page and cause the fault
348 		 *       to fail.
349 		 *   [3] I/O OK!   activate the page and sync with the
350 		 *       non-we_own case (i.e. drop anon lock if not locked).
351 		 */
352 		if (we_own) {
353 			if (pg->pg_flags & PG_WANTED) {
354 				wakeup(pg);
355 			}
356 			/* un-busy! */
357 			atomic_clearbits_int(&pg->pg_flags,
358 			    PG_WANTED|PG_BUSY|PG_FAKE);
359 			UVM_PAGE_OWN(pg, NULL);
360 
361 			/*
362 			 * if we were RELEASED during I/O, then our anon is
363 			 * no longer part of an amap.   we need to free the
364 			 * anon and try again.
365 			 */
366 			if (pg->pg_flags & PG_RELEASED) {
367 				pmap_page_protect(pg, PROT_NONE);
368 				uvm_anfree(anon);	/* frees page for us */
369 				if (locked)
370 					uvmfault_unlockall(ufi, amap, NULL,
371 							   NULL);
372 				uvmexp.fltpgrele++;
373 				return (VM_PAGER_REFAULT);	/* refault! */
374 			}
375 
376 			if (result != VM_PAGER_OK) {
377 				KASSERT(result != VM_PAGER_PEND);
378 
379 				/* remove page from anon */
380 				anon->an_page = NULL;
381 
382 				/*
383 				 * remove the swap slot from the anon
384 				 * and mark the anon as having no real slot.
385 				 * don't free the swap slot, thus preventing
386 				 * it from being used again.
387 				 */
388 				uvm_swap_markbad(anon->an_swslot, 1);
389 				anon->an_swslot = SWSLOT_BAD;
390 
391 				/*
392 				 * note: page was never !PG_BUSY, so it
393 				 * can't be mapped and thus no need to
394 				 * pmap_page_protect it...
395 				 */
396 				uvm_lock_pageq();
397 				uvm_pagefree(pg);
398 				uvm_unlock_pageq();
399 
400 				if (locked)
401 					uvmfault_unlockall(ufi, amap, NULL,
402 					    anon);
403 				return (VM_PAGER_ERROR);
404 			}
405 
406 			/*
407 			 * must be OK, clear modify (already PG_CLEAN)
408 			 * and activate
409 			 */
410 			pmap_clear_modify(pg);
411 			uvm_lock_pageq();
412 			uvm_pageactivate(pg);
413 			uvm_unlock_pageq();
414 		}
415 
416 		/* we were not able to relock.   restart fault. */
417 		if (!locked)
418 			return (VM_PAGER_REFAULT);
419 
420 		/* verify no one touched the amap and moved the anon on us. */
421 		if (ufi != NULL &&
422 		    amap_lookup(&ufi->entry->aref,
423 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
424 
425 			uvmfault_unlockall(ufi, amap, NULL, anon);
426 			return (VM_PAGER_REFAULT);
427 		}
428 
429 		/* try it again! */
430 		uvmexp.fltanretry++;
431 		continue;
432 
433 	} /* while (1) */
434 	/*NOTREACHED*/
435 }
436 
437 /*
438  * Update statistics after fault resolution.
439  * - maxrss
440  */
441 void
442 uvmfault_update_stats(struct uvm_faultinfo *ufi)
443 {
444 	struct vm_map		*map;
445 	struct proc		*p;
446 	vsize_t			 res;
447 
448 	map = ufi->orig_map;
449 
450 	/*
451 	 * If this is a nested pmap (eg, a virtual machine pmap managed
452 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
453 	 *
454 	 * pmap_nested() on other archs is #defined to 0, so this is a
455 	 * no-op.
456 	 */
457 	if (pmap_nested(map->pmap))
458 		return;
459 
460 	/* Update the maxrss for the process. */
461 	if (map->flags & VM_MAP_ISVMSPACE) {
462 		p = curproc;
463 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
464 
465 		res = pmap_resident_count(map->pmap);
466 		/* Convert res from pages to kilobytes. */
467 		res <<= (PAGE_SHIFT - 10);
468 
469 		if (p->p_ru.ru_maxrss < res)
470 			p->p_ru.ru_maxrss = res;
471 	}
472 }
473 
474 /*
475  *   F A U L T   -   m a i n   e n t r y   p o i n t
476  */
477 
478 /*
479  * uvm_fault: page fault handler
480  *
481  * => called from MD code to resolve a page fault
482  * => VM data structures usually should be unlocked.   however, it is
483  *	possible to call here with the main map locked if the caller
484  *	gets a write lock, sets it recursive, and then calls us (c.f.
485  *	uvm_map_pageable).   this should be avoided because it keeps
486  *	the map locked off during I/O.
487  */
488 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
489 			 ~PROT_WRITE : PROT_MASK)
490 int
491 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
492     vm_prot_t access_type)
493 {
494 	struct uvm_faultinfo ufi;
495 	vm_prot_t enter_prot;
496 	boolean_t wired, narrow, promote, locked, shadowed;
497 	int npages, nback, nforw, centeridx, result, lcv, gotpages, ret;
498 	vaddr_t startva, currva;
499 	voff_t uoff;
500 	paddr_t pa, pa_flags;
501 	struct vm_amap *amap;
502 	struct uvm_object *uobj;
503 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
504 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
505 
506 	anon = NULL;
507 	pg = NULL;
508 
509 	uvmexp.faults++;	/* XXX: locking? */
510 
511 	/* init the IN parameters in the ufi */
512 	ufi.orig_map = orig_map;
513 	ufi.orig_rvaddr = trunc_page(vaddr);
514 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
515 	if (fault_type == VM_FAULT_WIRE)
516 		narrow = TRUE;		/* don't look for neighborhood
517 					 * pages on wire */
518 	else
519 		narrow = FALSE;		/* normal fault */
520 
521 	/* "goto ReFault" means restart the page fault from ground zero. */
522 ReFault:
523 	/* lookup and lock the maps */
524 	if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
525 		return (EFAULT);
526 	}
527 
528 #ifdef DIAGNOSTIC
529 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0)
530 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
531 		    ufi.map, vaddr);
532 #endif
533 
534 	/* check protection */
535 	if ((ufi.entry->protection & access_type) != access_type) {
536 		uvmfault_unlockmaps(&ufi, FALSE);
537 		return (EACCES);
538 	}
539 
540 	/*
541 	 * "enter_prot" is the protection we want to enter the page in at.
542 	 * for certain pages (e.g. copy-on-write pages) this protection can
543 	 * be more strict than ufi.entry->protection.  "wired" means either
544 	 * the entry is wired or we are fault-wiring the pg.
545 	 */
546 
547 	enter_prot = ufi.entry->protection;
548 	pa_flags = UVM_ET_ISWC(ufi.entry) ? PMAP_WC : 0;
549 	wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
550 	if (wired)
551 		access_type = enter_prot; /* full access for wired */
552 
553 	/* handle "needs_copy" case. */
554 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
555 		if ((access_type & PROT_WRITE) ||
556 		    (ufi.entry->object.uvm_obj == NULL)) {
557 			/* need to clear */
558 			uvmfault_unlockmaps(&ufi, FALSE);
559 			uvmfault_amapcopy(&ufi);
560 			uvmexp.fltamcopy++;
561 			goto ReFault;
562 		} else {
563 			/*
564 			 * ensure that we pmap_enter page R/O since
565 			 * needs_copy is still true
566 			 */
567 			enter_prot &= ~PROT_WRITE;
568 		}
569 	}
570 
571 	/* identify the players */
572 	amap = ufi.entry->aref.ar_amap;		/* top layer */
573 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
574 
575 	/*
576 	 * check for a case 0 fault.  if nothing backing the entry then
577 	 * error now.
578 	 */
579 	if (amap == NULL && uobj == NULL) {
580 		uvmfault_unlockmaps(&ufi, FALSE);
581 		return (EFAULT);
582 	}
583 
584 	/*
585 	 * establish range of interest based on advice from mapper
586 	 * and then clip to fit map entry.   note that we only want
587 	 * to do this the first time through the fault.   if we
588 	 * ReFault we will disable this by setting "narrow" to true.
589 	 */
590 	if (narrow == FALSE) {
591 
592 		/* wide fault (!narrow) */
593 		nback = min(uvmadvice[ufi.entry->advice].nback,
594 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
595 		startva = ufi.orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
596 		nforw = min(uvmadvice[ufi.entry->advice].nforw,
597 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
598 			     PAGE_SHIFT) - 1);
599 		/*
600 		 * note: "-1" because we don't want to count the
601 		 * faulting page as forw
602 		 */
603 		npages = nback + nforw + 1;
604 		centeridx = nback;
605 
606 		narrow = TRUE;	/* ensure only once per-fault */
607 	} else {
608 		/* narrow fault! */
609 		nback = nforw = 0;
610 		startva = ufi.orig_rvaddr;
611 		npages = 1;
612 		centeridx = 0;
613 	}
614 
615 	/* if we've got an amap, extract current anons. */
616 	if (amap) {
617 		anons = anons_store;
618 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
619 		    anons, npages);
620 	} else {
621 		anons = NULL;	/* to be safe */
622 	}
623 
624 	/*
625 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
626 	 * now and then forget about them (for the rest of the fault).
627 	 */
628 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
629 		/* flush back-page anons? */
630 		if (amap)
631 			uvmfault_anonflush(anons, nback);
632 
633 		/* flush object? */
634 		if (uobj) {
635 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
636 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
637 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
638 		}
639 
640 		/* now forget about the backpages */
641 		if (amap)
642 			anons += nback;
643 		startva += ((vsize_t)nback << PAGE_SHIFT);
644 		npages -= nback;
645 		centeridx = 0;
646 	}
647 
648 	/*
649 	 * map in the backpages and frontpages we found in the amap in hopes
650 	 * of preventing future faults.    we also init the pages[] array as
651 	 * we go.
652 	 */
653 	currva = startva;
654 	shadowed = FALSE;
655 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
656 		/*
657 		 * dont play with VAs that are already mapped
658 		 * except for center)
659 		 */
660 		if (lcv != centeridx &&
661 		    pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
662 			pages[lcv] = PGO_DONTCARE;
663 			continue;
664 		}
665 
666 		/* unmapped or center page.   check if any anon at this level. */
667 		if (amap == NULL || anons[lcv] == NULL) {
668 			pages[lcv] = NULL;
669 			continue;
670 		}
671 
672 		/* check for present page and map if possible.   re-activate it. */
673 		pages[lcv] = PGO_DONTCARE;
674 		if (lcv == centeridx) {		/* save center for later! */
675 			shadowed = TRUE;
676 			continue;
677 		}
678 		anon = anons[lcv];
679 		if (anon->an_page &&
680 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
681 			uvm_lock_pageq();
682 			uvm_pageactivate(anon->an_page);	/* reactivate */
683 			uvm_unlock_pageq();
684 			uvmexp.fltnamap++;
685 
686 			/*
687 			 * Since this isn't the page that's actually faulting,
688 			 * ignore pmap_enter() failures; it's not critical
689 			 * that we enter these right now.
690 			 */
691 			(void) pmap_enter(ufi.orig_map->pmap, currva,
692 			    VM_PAGE_TO_PHYS(anon->an_page) | pa_flags,
693 			    (anon->an_ref > 1) ? (enter_prot & ~PROT_WRITE) :
694 			    enter_prot,
695 			    PMAP_CANFAIL |
696 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
697 		}
698 	}
699 	if (npages > 1)
700 		pmap_update(ufi.orig_map->pmap);
701 
702 	/* (shadowed == TRUE) if there is an anon at the faulting address */
703 	/*
704 	 * note that if we are really short of RAM we could sleep in the above
705 	 * call to pmap_enter.   bad?
706 	 *
707 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
708 	 * XXX case.  --thorpej
709 	 */
710 	/*
711 	 * if the desired page is not shadowed by the amap and we have a
712 	 * backing object, then we check to see if the backing object would
713 	 * prefer to handle the fault itself (rather than letting us do it
714 	 * with the usual pgo_get hook).  the backing object signals this by
715 	 * providing a pgo_fault routine.
716 	 */
717 	if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
718 		result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
719 				    centeridx, fault_type, access_type,
720 				    PGO_LOCKED);
721 
722 		if (result == VM_PAGER_OK)
723 			return (0);		/* pgo_fault did pmap enter */
724 		else if (result == VM_PAGER_REFAULT)
725 			goto ReFault;		/* try again! */
726 		else
727 			return (EACCES);
728 	}
729 
730 	/*
731 	 * now, if the desired page is not shadowed by the amap and we have
732 	 * a backing object that does not have a special fault routine, then
733 	 * we ask (with pgo_get) the object for resident pages that we care
734 	 * about and attempt to map them in.  we do not let pgo_get block
735 	 * (PGO_LOCKED).
736 	 *
737 	 * ("get" has the option of doing a pmap_enter for us)
738 	 */
739 	if (uobj && shadowed == FALSE) {
740 		uvmexp.fltlget++;
741 		gotpages = npages;
742 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
743 				(startva - ufi.entry->start),
744 				pages, &gotpages, centeridx,
745 				access_type & MASK(ufi.entry),
746 				ufi.entry->advice, PGO_LOCKED);
747 
748 		/* check for pages to map, if we got any */
749 		uobjpage = NULL;
750 		if (gotpages) {
751 			currva = startva;
752 			for (lcv = 0 ; lcv < npages ;
753 			    lcv++, currva += PAGE_SIZE) {
754 				if (pages[lcv] == NULL ||
755 				    pages[lcv] == PGO_DONTCARE)
756 					continue;
757 
758 				KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
759 
760 				/*
761 				 * if center page is resident and not
762 				 * PG_BUSY, then pgo_get made it PG_BUSY
763 				 * for us and gave us a handle to it.
764 				 * remember this page as "uobjpage."
765 				 * (for later use).
766 				 */
767 				if (lcv == centeridx) {
768 					uobjpage = pages[lcv];
769 					continue;
770 				}
771 
772 				/*
773 				 * note: calling pgo_get with locked data
774 				 * structures returns us pages which are
775 				 * neither busy nor released, so we don't
776 				 * need to check for this.   we can just
777 				 * directly enter the page (after moving it
778 				 * to the head of the active queue [useful?]).
779 				 */
780 
781 				uvm_lock_pageq();
782 				uvm_pageactivate(pages[lcv]);	/* reactivate */
783 				uvm_unlock_pageq();
784 				uvmexp.fltnomap++;
785 
786 				/*
787 				 * Since this page isn't the page that's
788 				 * actually faulting, ignore pmap_enter()
789 				 * failures; it's not critical that we
790 				 * enter these right now.
791 				 */
792 				(void) pmap_enter(ufi.orig_map->pmap, currva,
793 				    VM_PAGE_TO_PHYS(pages[lcv]) | pa_flags,
794 				    enter_prot & MASK(ufi.entry),
795 				    PMAP_CANFAIL |
796 				     (wired ? PMAP_WIRED : 0));
797 
798 				/*
799 				 * NOTE: page can't be PG_WANTED because
800 				 * we've held the lock the whole time
801 				 * we've had the handle.
802 				 */
803 				atomic_clearbits_int(&pages[lcv]->pg_flags,
804 				    PG_BUSY);
805 				UVM_PAGE_OWN(pages[lcv], NULL);
806 			}	/* for "lcv" loop */
807 			pmap_update(ufi.orig_map->pmap);
808 		}   /* "gotpages" != 0 */
809 		/* note: object still _locked_ */
810 	} else {
811 		uobjpage = NULL;
812 	}
813 
814 	/*
815 	 * note that at this point we are done with any front or back pages.
816 	 * we are now going to focus on the center page (i.e. the one we've
817 	 * faulted on).  if we have faulted on the top (anon) layer
818 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
819 	 * not touched it yet).  if we have faulted on the bottom (uobj)
820 	 * layer [i.e. case 2] and the page was both present and available,
821 	 * then we've got a pointer to it as "uobjpage" and we've already
822 	 * made it BUSY.
823 	 */
824 	/*
825 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
826 	 */
827 	/* redirect case 2: if we are not shadowed, go to case 2. */
828 	if (shadowed == FALSE)
829 		goto Case2;
830 
831 	/* handle case 1: fault on an anon in our amap */
832 	anon = anons[centeridx];
833 
834 	/*
835 	 * no matter if we have case 1A or case 1B we are going to need to
836 	 * have the anon's memory resident.   ensure that now.
837 	 */
838 	/*
839 	 * let uvmfault_anonget do the dirty work.
840 	 * also, if it is OK, then the anon's page is on the queues.
841 	 */
842 	result = uvmfault_anonget(&ufi, amap, anon);
843 	switch (result) {
844 	case VM_PAGER_OK:
845 		break;
846 
847 	case VM_PAGER_REFAULT:
848 		goto ReFault;
849 
850 	case VM_PAGER_ERROR:
851 		/*
852 		 * An error occured while trying to bring in the
853 		 * page -- this is the only error we return right
854 		 * now.
855 		 */
856 		return (EACCES);	/* XXX */
857 	default:
858 #ifdef DIAGNOSTIC
859 		panic("uvm_fault: uvmfault_anonget -> %d", result);
860 #else
861 		return (EACCES);
862 #endif
863 	}
864 
865 	/*
866 	 * if we are case 1B then we will need to allocate a new blank
867 	 * anon to transfer the data into.   note that we have a lock
868 	 * on anon, so no one can busy or release the page until we are done.
869 	 * also note that the ref count can't drop to zero here because
870 	 * it is > 1 and we are only dropping one ref.
871 	 *
872 	 * in the (hopefully very rare) case that we are out of RAM we
873 	 * will wait for more RAM, and refault.
874 	 *
875 	 * if we are out of anon VM we wait for RAM to become available.
876 	 */
877 
878 	if ((access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
879 		uvmexp.flt_acow++;
880 		oanon = anon;		/* oanon = old */
881 		anon = uvm_analloc();
882 		if (anon) {
883 			pg = uvm_pagealloc(NULL, 0, anon, 0);
884 		}
885 
886 		/* check for out of RAM */
887 		if (anon == NULL || pg == NULL) {
888 			uvmfault_unlockall(&ufi, amap, NULL, oanon);
889 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
890 			if (anon == NULL)
891 				uvmexp.fltnoanon++;
892 			else {
893 				uvm_anfree(anon);
894 				uvmexp.fltnoram++;
895 			}
896 
897 			if (uvmexp.swpgonly == uvmexp.swpages)
898 				return (ENOMEM);
899 
900 			/* out of RAM, wait for more */
901 			if (anon == NULL)
902 				uvm_anwait();
903 			else
904 				uvm_wait("flt_noram3");
905 			goto ReFault;
906 		}
907 
908 		/* got all resources, replace anon with nanon */
909 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
910 		/* un-busy! new page */
911 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
912 		UVM_PAGE_OWN(pg, NULL);
913 		ret = amap_add(&ufi.entry->aref,
914 		    ufi.orig_rvaddr - ufi.entry->start, anon, 1);
915 		KASSERT(ret == 0);
916 
917 		/* deref: can not drop to zero here by defn! */
918 		oanon->an_ref--;
919 
920 		/*
921 		 * note: anon is _not_ locked, but we have the sole references
922 		 * to in from amap.
923 		 * thus, no one can get at it until we are done with it.
924 		 */
925 	} else {
926 		uvmexp.flt_anon++;
927 		oanon = anon;
928 		pg = anon->an_page;
929 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
930 			enter_prot = enter_prot & ~PROT_WRITE;
931 	}
932 
933 	/*
934 	 * now map the page in ...
935 	 * XXX: old fault unlocks object before pmap_enter.  this seems
936 	 * suspect since some other thread could blast the page out from
937 	 * under us between the unlock and the pmap_enter.
938 	 */
939 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr,
940 	    VM_PAGE_TO_PHYS(pg) | pa_flags, enter_prot,
941 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
942 		/*
943 		 * No need to undo what we did; we can simply think of
944 		 * this as the pmap throwing away the mapping information.
945 		 *
946 		 * We do, however, have to go through the ReFault path,
947 		 * as the map may change while we're asleep.
948 		 */
949 		uvmfault_unlockall(&ufi, amap, NULL, oanon);
950 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
951 		if (uvmexp.swpgonly == uvmexp.swpages) {
952 			/* XXX instrumentation */
953 			return (ENOMEM);
954 		}
955 		/* XXX instrumentation */
956 		uvm_wait("flt_pmfail1");
957 		goto ReFault;
958 	}
959 
960 	/* ... update the page queues. */
961 	uvm_lock_pageq();
962 
963 	if (fault_type == VM_FAULT_WIRE) {
964 		uvm_pagewire(pg);
965 		/*
966 		 * since the now-wired page cannot be paged out,
967 		 * release its swap resources for others to use.
968 		 * since an anon with no swap cannot be PG_CLEAN,
969 		 * clear its clean flag now.
970 		 */
971 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
972 		uvm_anon_dropswap(anon);
973 	} else {
974 		/* activate it */
975 		uvm_pageactivate(pg);
976 	}
977 
978 	uvm_unlock_pageq();
979 
980 	/* done case 1!  finish up by unlocking everything and returning success */
981 	uvmfault_unlockall(&ufi, amap, NULL, oanon);
982 	pmap_update(ufi.orig_map->pmap);
983 	return (0);
984 
985 
986 Case2:
987 	/* handle case 2: faulting on backing object or zero fill */
988 	/*
989 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
990 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
991 	 * have a backing object, check and see if we are going to promote
992 	 * the data up to an anon during the fault.
993 	 */
994 	if (uobj == NULL) {
995 		uobjpage = PGO_DONTCARE;
996 		promote = TRUE;		/* always need anon here */
997 	} else {
998 		KASSERT(uobjpage != PGO_DONTCARE);
999 		promote = (access_type & PROT_WRITE) &&
1000 		     UVM_ET_ISCOPYONWRITE(ufi.entry);
1001 	}
1002 
1003 	/*
1004 	 * if uobjpage is not null then we do not need to do I/O to get the
1005 	 * uobjpage.
1006 	 *
1007 	 * if uobjpage is null, then we need to ask the pager to
1008 	 * get the data for us.   once we have the data, we need to reverify
1009 	 * the state the world.   we are currently not holding any resources.
1010 	 */
1011 	if (uobjpage) {
1012 		/* update rusage counters */
1013 		curproc->p_ru.ru_minflt++;
1014 	} else {
1015 		/* update rusage counters */
1016 		curproc->p_ru.ru_majflt++;
1017 
1018 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1019 
1020 		uvmexp.fltget++;
1021 		gotpages = 1;
1022 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1023 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1024 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1025 		    PGO_SYNCIO);
1026 
1027 		/* recover from I/O */
1028 		if (result != VM_PAGER_OK) {
1029 			KASSERT(result != VM_PAGER_PEND);
1030 
1031 			if (result == VM_PAGER_AGAIN) {
1032 				tsleep_nsec(&lbolt, PVM, "fltagain2", INFSLP);
1033 				goto ReFault;
1034 			}
1035 
1036 			if (!UVM_ET_ISNOFAULT(ufi.entry))
1037 				return (EIO);
1038 
1039 			uobjpage = PGO_DONTCARE;
1040 			promote = TRUE;
1041 		}
1042 
1043 		/* re-verify the state of the world.  */
1044 		locked = uvmfault_relock(&ufi);
1045 
1046 		/*
1047 		 * Re-verify that amap slot is still free. if there is
1048 		 * a problem, we clean up.
1049 		 */
1050 		if (locked && amap && amap_lookup(&ufi.entry->aref,
1051 		      ufi.orig_rvaddr - ufi.entry->start)) {
1052 			if (locked)
1053 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1054 			locked = FALSE;
1055 		}
1056 
1057 		/* didn't get the lock?   release the page and retry. */
1058 		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1059 			uvm_lock_pageq();
1060 			/* make sure it is in queues */
1061 			uvm_pageactivate(uobjpage);
1062 			uvm_unlock_pageq();
1063 
1064 			if (uobjpage->pg_flags & PG_WANTED)
1065 				/* still holding object lock */
1066 				wakeup(uobjpage);
1067 			atomic_clearbits_int(&uobjpage->pg_flags,
1068 			    PG_BUSY|PG_WANTED);
1069 			UVM_PAGE_OWN(uobjpage, NULL);
1070 			goto ReFault;
1071 		}
1072 		if (locked == FALSE)
1073 			goto ReFault;
1074 
1075 		/*
1076 		 * we have the data in uobjpage which is PG_BUSY
1077 		 */
1078 	}
1079 
1080 	/*
1081 	 * notes:
1082 	 *  - at this point uobjpage can not be NULL
1083 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1084 	 */
1085 	if (promote == FALSE) {
1086 		/*
1087 		 * we are not promoting.   if the mapping is COW ensure that we
1088 		 * don't give more access than we should (e.g. when doing a read
1089 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1090 		 * R/O even though the entry protection could be R/W).
1091 		 *
1092 		 * set "pg" to the page we want to map in (uobjpage, usually)
1093 		 */
1094 		uvmexp.flt_obj++;
1095 		if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1096 			enter_prot &= ~PROT_WRITE;
1097 		pg = uobjpage;		/* map in the actual object */
1098 
1099 		/* assert(uobjpage != PGO_DONTCARE) */
1100 
1101 		/*
1102 		 * we are faulting directly on the page.
1103 		 */
1104 	} else {
1105 		/*
1106 		 * if we are going to promote the data to an anon we
1107 		 * allocate a blank anon here and plug it into our amap.
1108 		 */
1109 #ifdef DIAGNOSTIC
1110 		if (amap == NULL)
1111 			panic("uvm_fault: want to promote data, but no anon");
1112 #endif
1113 
1114 		anon = uvm_analloc();
1115 		if (anon) {
1116 			/*
1117 			 * In `Fill in data...' below, if
1118 			 * uobjpage == PGO_DONTCARE, we want
1119 			 * a zero'd, dirty page, so have
1120 			 * uvm_pagealloc() do that for us.
1121 			 */
1122 			pg = uvm_pagealloc(NULL, 0, anon,
1123 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1124 		}
1125 
1126 		/*
1127 		 * out of memory resources?
1128 		 */
1129 		if (anon == NULL || pg == NULL) {
1130 			/* arg!  must unbusy our page and fail or sleep. */
1131 			if (uobjpage != PGO_DONTCARE) {
1132 				uvm_lock_pageq();
1133 				uvm_pageactivate(uobjpage);
1134 				uvm_unlock_pageq();
1135 
1136 				if (uobjpage->pg_flags & PG_WANTED)
1137 					wakeup(uobjpage);
1138 				atomic_clearbits_int(&uobjpage->pg_flags,
1139 				    PG_BUSY|PG_WANTED);
1140 				UVM_PAGE_OWN(uobjpage, NULL);
1141 			}
1142 
1143 			/* unlock and fail ... */
1144 			uvmfault_unlockall(&ufi, amap, uobj, NULL);
1145 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1146 			if (anon == NULL)
1147 				uvmexp.fltnoanon++;
1148 			else {
1149 				uvm_anfree(anon);
1150 				uvmexp.fltnoram++;
1151 			}
1152 
1153 			if (uvmexp.swpgonly == uvmexp.swpages)
1154 				return (ENOMEM);
1155 
1156 			/* out of RAM, wait for more */
1157 			if (anon == NULL)
1158 				uvm_anwait();
1159 			else
1160 				uvm_wait("flt_noram5");
1161 			goto ReFault;
1162 		}
1163 
1164 		/* fill in the data */
1165 		if (uobjpage != PGO_DONTCARE) {
1166 			uvmexp.flt_prcopy++;
1167 			/* copy page [pg now dirty] */
1168 			uvm_pagecopy(uobjpage, pg);
1169 
1170 			/*
1171 			 * promote to shared amap?  make sure all sharing
1172 			 * procs see it
1173 			 */
1174 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1175 				pmap_page_protect(uobjpage, PROT_NONE);
1176 			}
1177 
1178 			/* dispose of uobjpage. drop handle to uobj as well. */
1179 			if (uobjpage->pg_flags & PG_WANTED)
1180 				wakeup(uobjpage);
1181 			atomic_clearbits_int(&uobjpage->pg_flags,
1182 			    PG_BUSY|PG_WANTED);
1183 			UVM_PAGE_OWN(uobjpage, NULL);
1184 			uvm_lock_pageq();
1185 			uvm_pageactivate(uobjpage);
1186 			uvm_unlock_pageq();
1187 			uobj = NULL;
1188 		} else {
1189 			uvmexp.flt_przero++;
1190 			/*
1191 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1192 			 * above.
1193 			 */
1194 		}
1195 
1196 		if (amap_add(&ufi.entry->aref,
1197 		    ufi.orig_rvaddr - ufi.entry->start, anon, 0)) {
1198 			uvmfault_unlockall(&ufi, amap, NULL, oanon);
1199 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1200 			uvm_anfree(anon);
1201 			uvmexp.fltnoamap++;
1202 
1203 			if (uvmexp.swpgonly == uvmexp.swpages)
1204 				return (ENOMEM);
1205 
1206 			amap_populate(&ufi.entry->aref,
1207 			    ufi.orig_rvaddr - ufi.entry->start);
1208 			goto ReFault;
1209 		}
1210 	}
1211 
1212 	/* note: pg is either the uobjpage or the new page in the new anon */
1213 	/*
1214 	 * all resources are present.   we can now map it in and free our
1215 	 * resources.
1216 	 */
1217 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr,
1218 	    VM_PAGE_TO_PHYS(pg) | pa_flags, enter_prot,
1219 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1220 		/*
1221 		 * No need to undo what we did; we can simply think of
1222 		 * this as the pmap throwing away the mapping information.
1223 		 *
1224 		 * We do, however, have to go through the ReFault path,
1225 		 * as the map may change while we're asleep.
1226 		 */
1227 		if (pg->pg_flags & PG_WANTED)
1228 			wakeup(pg);
1229 
1230 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1231 		UVM_PAGE_OWN(pg, NULL);
1232 		uvmfault_unlockall(&ufi, amap, uobj, NULL);
1233 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1234 		if (uvmexp.swpgonly == uvmexp.swpages) {
1235 			/* XXX instrumentation */
1236 			return (ENOMEM);
1237 		}
1238 		/* XXX instrumentation */
1239 		uvm_wait("flt_pmfail2");
1240 		goto ReFault;
1241 	}
1242 
1243 	uvm_lock_pageq();
1244 
1245 	if (fault_type == VM_FAULT_WIRE) {
1246 		uvm_pagewire(pg);
1247 		if (pg->pg_flags & PQ_AOBJ) {
1248 			/*
1249 			 * since the now-wired page cannot be paged out,
1250 			 * release its swap resources for others to use.
1251 			 * since an aobj page with no swap cannot be PG_CLEAN,
1252 			 * clear its clean flag now.
1253 			 */
1254 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1255 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1256 		}
1257 	} else {
1258 		/* activate it */
1259 		uvm_pageactivate(pg);
1260 	}
1261 	uvm_unlock_pageq();
1262 
1263 	if (pg->pg_flags & PG_WANTED)
1264 		wakeup(pg);
1265 
1266 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1267 	UVM_PAGE_OWN(pg, NULL);
1268 	uvmfault_unlockall(&ufi, amap, uobj, NULL);
1269 	pmap_update(ufi.orig_map->pmap);
1270 
1271 	return (0);
1272 }
1273 
1274 
1275 /*
1276  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1277  *
1278  * => map may be read-locked by caller, but MUST NOT be write-locked.
1279  * => if map is read-locked, any operations which may cause map to
1280  *	be write-locked in uvm_fault() must be taken care of by
1281  *	the caller.  See uvm_map_pageable().
1282  */
1283 int
1284 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1285 {
1286 	vaddr_t va;
1287 	int rv;
1288 
1289 	/*
1290 	 * now fault it in a page at a time.   if the fault fails then we have
1291 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1292 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1293 	 */
1294 	for (va = start ; va < end ; va += PAGE_SIZE) {
1295 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1296 		if (rv) {
1297 			if (va != start) {
1298 				uvm_fault_unwire(map, start, va);
1299 			}
1300 			return (rv);
1301 		}
1302 	}
1303 
1304 	return (0);
1305 }
1306 
1307 /*
1308  * uvm_fault_unwire(): unwire range of virtual space.
1309  */
1310 void
1311 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1312 {
1313 
1314 	vm_map_lock_read(map);
1315 	uvm_fault_unwire_locked(map, start, end);
1316 	vm_map_unlock_read(map);
1317 }
1318 
1319 /*
1320  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1321  *
1322  * => map must be at least read-locked.
1323  */
1324 void
1325 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1326 {
1327 	vm_map_entry_t entry, next;
1328 	pmap_t pmap = vm_map_pmap(map);
1329 	vaddr_t va;
1330 	paddr_t pa;
1331 	struct vm_page *pg;
1332 
1333 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1334 
1335 	/*
1336 	 * we assume that the area we are unwiring has actually been wired
1337 	 * in the first place.   this means that we should be able to extract
1338 	 * the PAs from the pmap.   we also lock out the page daemon so that
1339 	 * we can call uvm_pageunwire.
1340 	 */
1341 	uvm_lock_pageq();
1342 
1343 	/* find the beginning map entry for the region. */
1344 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1345 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1346 		panic("uvm_fault_unwire_locked: address not in map");
1347 
1348 	for (va = start; va < end ; va += PAGE_SIZE) {
1349 		if (pmap_extract(pmap, va, &pa) == FALSE)
1350 			continue;
1351 
1352 		/* find the map entry for the current address. */
1353 		KASSERT(va >= entry->start);
1354 		while (va >= entry->end) {
1355 			next = RBT_NEXT(uvm_map_addr, entry);
1356 			KASSERT(next != NULL && next->start <= entry->end);
1357 			entry = next;
1358 		}
1359 
1360 		/* if the entry is no longer wired, tell the pmap. */
1361 		if (VM_MAPENT_ISWIRED(entry) == 0)
1362 			pmap_unwire(pmap, va);
1363 
1364 		pg = PHYS_TO_VM_PAGE(pa);
1365 		if (pg)
1366 			uvm_pageunwire(pg);
1367 	}
1368 
1369 	uvm_unlock_pageq();
1370 }
1371 
1372 /*
1373  * uvmfault_unlockmaps: unlock the maps
1374  */
1375 void
1376 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1377 {
1378 	/*
1379 	 * ufi can be NULL when this isn't really a fault,
1380 	 * but merely paging in anon data.
1381 	 */
1382 	if (ufi == NULL) {
1383 		return;
1384 	}
1385 
1386 	uvmfault_update_stats(ufi);
1387 	if (write_locked) {
1388 		vm_map_unlock(ufi->map);
1389 	} else {
1390 		vm_map_unlock_read(ufi->map);
1391 	}
1392 }
1393 
1394 /*
1395  * uvmfault_unlockall: unlock everything passed in.
1396  *
1397  * => maps must be read-locked (not write-locked).
1398  */
1399 void
1400 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1401     struct uvm_object *uobj, struct vm_anon *anon)
1402 {
1403 
1404 	uvmfault_unlockmaps(ufi, FALSE);
1405 }
1406 
1407 /*
1408  * uvmfault_lookup: lookup a virtual address in a map
1409  *
1410  * => caller must provide a uvm_faultinfo structure with the IN
1411  *	params properly filled in
1412  * => we will lookup the map entry (handling submaps) as we go
1413  * => if the lookup is a success we will return with the maps locked
1414  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1415  *	get a read lock.
1416  * => note that submaps can only appear in the kernel and they are
1417  *	required to use the same virtual addresses as the map they
1418  *	are referenced by (thus address translation between the main
1419  *	map and the submap is unnecessary).
1420  */
1421 
1422 boolean_t
1423 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1424 {
1425 	vm_map_t tmpmap;
1426 
1427 	/* init ufi values for lookup. */
1428 	ufi->map = ufi->orig_map;
1429 	ufi->size = ufi->orig_size;
1430 
1431 	/*
1432 	 * keep going down levels until we are done.   note that there can
1433 	 * only be two levels so we won't loop very long.
1434 	 */
1435 	while (1) {
1436 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1437 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1438 			return(FALSE);
1439 
1440 		/* lock map */
1441 		if (write_lock) {
1442 			vm_map_lock(ufi->map);
1443 		} else {
1444 			vm_map_lock_read(ufi->map);
1445 		}
1446 
1447 		/* lookup */
1448 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1449 		    &ufi->entry)) {
1450 			uvmfault_unlockmaps(ufi, write_lock);
1451 			return(FALSE);
1452 		}
1453 
1454 		/* reduce size if necessary */
1455 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1456 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1457 
1458 		/*
1459 		 * submap?    replace map with the submap and lookup again.
1460 		 * note: VAs in submaps must match VAs in main map.
1461 		 */
1462 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1463 			tmpmap = ufi->entry->object.sub_map;
1464 			uvmfault_unlockmaps(ufi, write_lock);
1465 			ufi->map = tmpmap;
1466 			continue;
1467 		}
1468 
1469 		/* got it! */
1470 		ufi->mapv = ufi->map->timestamp;
1471 		return(TRUE);
1472 
1473 	}
1474 	/*NOTREACHED*/
1475 }
1476 
1477 /*
1478  * uvmfault_relock: attempt to relock the same version of the map
1479  *
1480  * => fault data structures should be unlocked before calling.
1481  * => if a success (TRUE) maps will be locked after call.
1482  */
1483 boolean_t
1484 uvmfault_relock(struct uvm_faultinfo *ufi)
1485 {
1486 	/*
1487 	 * ufi can be NULL when this isn't really a fault,
1488 	 * but merely paging in anon data.
1489 	 */
1490 	if (ufi == NULL) {
1491 		return TRUE;
1492 	}
1493 
1494 	uvmexp.fltrelck++;
1495 
1496 	/*
1497 	 * relock map.   fail if version mismatch (in which case nothing
1498 	 * gets locked).
1499 	 */
1500 	vm_map_lock_read(ufi->map);
1501 	if (ufi->mapv != ufi->map->timestamp) {
1502 		vm_map_unlock_read(ufi->map);
1503 		return(FALSE);
1504 	}
1505 
1506 	uvmexp.fltrelckok++;
1507 	return(TRUE);		/* got it! */
1508 }
1509