1 /* $OpenBSD: uvm_fault.c,v 1.62 2011/07/03 18:34:14 oga Exp $ */ 2 /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */ 3 4 /* 5 * 6 * Copyright (c) 1997 Charles D. Cranor and Washington University. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by Charles D. Cranor and 20 * Washington University. 21 * 4. The name of the author may not be used to endorse or promote products 22 * derived from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 36 */ 37 38 /* 39 * uvm_fault.c: fault handler 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/malloc.h> 47 #include <sys/mman.h> 48 #include <sys/user.h> 49 50 #include <uvm/uvm.h> 51 52 /* 53 * 54 * a word on page faults: 55 * 56 * types of page faults we handle: 57 * 58 * CASE 1: upper layer faults CASE 2: lower layer faults 59 * 60 * CASE 1A CASE 1B CASE 2A CASE 2B 61 * read/write1 write>1 read/write +-cow_write/zero 62 * | | | | 63 * +--|--+ +--|--+ +-----+ + | + | +-----+ 64 * amap | V | | ----------->new| | | | ^ | 65 * +-----+ +-----+ +-----+ + | + | +--|--+ 66 * | | | 67 * +-----+ +-----+ +--|--+ | +--|--+ 68 * uobj | d/c | | d/c | | V | +----| | 69 * +-----+ +-----+ +-----+ +-----+ 70 * 71 * d/c = don't care 72 * 73 * case [0]: layerless fault 74 * no amap or uobj is present. this is an error. 75 * 76 * case [1]: upper layer fault [anon active] 77 * 1A: [read] or [write with anon->an_ref == 1] 78 * I/O takes place in top level anon and uobj is not touched. 79 * 1B: [write with anon->an_ref > 1] 80 * new anon is alloc'd and data is copied off ["COW"] 81 * 82 * case [2]: lower layer fault [uobj] 83 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 84 * I/O takes place directly in object. 85 * 2B: [write to copy_on_write] or [read on NULL uobj] 86 * data is "promoted" from uobj to a new anon. 87 * if uobj is null, then we zero fill. 88 * 89 * we follow the standard UVM locking protocol ordering: 90 * 91 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 92 * we hold a PG_BUSY page if we unlock for I/O 93 * 94 * 95 * the code is structured as follows: 96 * 97 * - init the "IN" params in the ufi structure 98 * ReFault: 99 * - do lookups [locks maps], check protection, handle needs_copy 100 * - check for case 0 fault (error) 101 * - establish "range" of fault 102 * - if we have an amap lock it and extract the anons 103 * - if sequential advice deactivate pages behind us 104 * - at the same time check pmap for unmapped areas and anon for pages 105 * that we could map in (and do map it if found) 106 * - check object for resident pages that we could map in 107 * - if (case 2) goto Case2 108 * - >>> handle case 1 109 * - ensure source anon is resident in RAM 110 * - if case 1B alloc new anon and copy from source 111 * - map the correct page in 112 * Case2: 113 * - >>> handle case 2 114 * - ensure source page is resident (if uobj) 115 * - if case 2B alloc new anon and copy from source (could be zero 116 * fill if uobj == NULL) 117 * - map the correct page in 118 * - done! 119 * 120 * note on paging: 121 * if we have to do I/O we place a PG_BUSY page in the correct object, 122 * unlock everything, and do the I/O. when I/O is done we must reverify 123 * the state of the world before assuming that our data structures are 124 * valid. [because mappings could change while the map is unlocked] 125 * 126 * alternative 1: unbusy the page in question and restart the page fault 127 * from the top (ReFault). this is easy but does not take advantage 128 * of the information that we already have from our previous lookup, 129 * although it is possible that the "hints" in the vm_map will help here. 130 * 131 * alternative 2: the system already keeps track of a "version" number of 132 * a map. [i.e. every time you write-lock a map (e.g. to change a 133 * mapping) you bump the version number up by one...] so, we can save 134 * the version number of the map before we release the lock and start I/O. 135 * then when I/O is done we can relock and check the version numbers 136 * to see if anything changed. this might save us some over 1 because 137 * we don't have to unbusy the page and may be less compares(?). 138 * 139 * alternative 3: put in backpointers or a way to "hold" part of a map 140 * in place while I/O is in progress. this could be complex to 141 * implement (especially with structures like amap that can be referenced 142 * by multiple map entries, and figuring out what should wait could be 143 * complex as well...). 144 * 145 * given that we are not currently multiprocessor or multithreaded we might 146 * as well choose alternative 2 now. maybe alternative 3 would be useful 147 * in the future. XXX keep in mind for future consideration//rechecking. 148 */ 149 150 /* 151 * local data structures 152 */ 153 154 struct uvm_advice { 155 int advice; 156 int nback; 157 int nforw; 158 }; 159 160 /* 161 * page range array: 162 * note: index in array must match "advice" value 163 * XXX: borrowed numbers from freebsd. do they work well for us? 164 */ 165 166 static struct uvm_advice uvmadvice[] = { 167 { MADV_NORMAL, 3, 4 }, 168 { MADV_RANDOM, 0, 0 }, 169 { MADV_SEQUENTIAL, 8, 7}, 170 }; 171 172 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */ 173 174 /* 175 * private prototypes 176 */ 177 178 static void uvmfault_amapcopy(struct uvm_faultinfo *); 179 static __inline void uvmfault_anonflush(struct vm_anon **, int); 180 void uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t); 181 182 /* 183 * inline functions 184 */ 185 186 /* 187 * uvmfault_anonflush: try and deactivate pages in specified anons 188 * 189 * => does not have to deactivate page if it is busy 190 */ 191 192 static __inline void 193 uvmfault_anonflush(struct vm_anon **anons, int n) 194 { 195 int lcv; 196 struct vm_page *pg; 197 198 for (lcv = 0 ; lcv < n ; lcv++) { 199 if (anons[lcv] == NULL) 200 continue; 201 simple_lock(&anons[lcv]->an_lock); 202 pg = anons[lcv]->an_page; 203 if (pg && (pg->pg_flags & PG_BUSY) == 0 && pg->loan_count == 0) { 204 uvm_lock_pageq(); 205 if (pg->wire_count == 0) { 206 #ifdef UBC 207 pmap_clear_reference(pg); 208 #else 209 pmap_page_protect(pg, VM_PROT_NONE); 210 #endif 211 uvm_pagedeactivate(pg); 212 } 213 uvm_unlock_pageq(); 214 } 215 simple_unlock(&anons[lcv]->an_lock); 216 } 217 } 218 219 /* 220 * normal functions 221 */ 222 223 /* 224 * uvmfault_amapcopy: clear "needs_copy" in a map. 225 * 226 * => called with VM data structures unlocked (usually, see below) 227 * => we get a write lock on the maps and clear needs_copy for a VA 228 * => if we are out of RAM we sleep (waiting for more) 229 */ 230 231 static void 232 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 233 { 234 235 /* 236 * while we haven't done the job 237 */ 238 239 while (1) { 240 241 /* 242 * no mapping? give up. 243 */ 244 245 if (uvmfault_lookup(ufi, TRUE) == FALSE) 246 return; 247 248 /* 249 * copy if needed. 250 */ 251 252 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 253 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE, 254 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 255 256 /* 257 * didn't work? must be out of RAM. unlock and sleep. 258 */ 259 260 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 261 uvmfault_unlockmaps(ufi, TRUE); 262 uvm_wait("fltamapcopy"); 263 continue; 264 } 265 266 /* 267 * got it! unlock and return. 268 */ 269 270 uvmfault_unlockmaps(ufi, TRUE); 271 return; 272 } 273 /*NOTREACHED*/ 274 } 275 276 /* 277 * uvmfault_anonget: get data in an anon into a non-busy, non-released 278 * page in that anon. 279 * 280 * => maps, amap, and anon locked by caller. 281 * => if we fail (result != VM_PAGER_OK) we unlock everything. 282 * => if we are successful, we return with everything still locked. 283 * => we don't move the page on the queues [gets moved later] 284 * => if we allocate a new page [we_own], it gets put on the queues. 285 * either way, the result is that the page is on the queues at return time 286 * => for pages which are on loan from a uvm_object (and thus are not 287 * owned by the anon): if successful, we return with the owning object 288 * locked. the caller must unlock this object when it unlocks everything 289 * else. 290 */ 291 292 int 293 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 294 struct vm_anon *anon) 295 { 296 boolean_t we_own; /* we own anon's page? */ 297 boolean_t locked; /* did we relock? */ 298 struct vm_page *pg; 299 int result; 300 301 result = 0; /* XXX shut up gcc */ 302 uvmexp.fltanget++; 303 /* bump rusage counters */ 304 if (anon->an_page) 305 curproc->p_addr->u_stats.p_ru.ru_minflt++; 306 else 307 curproc->p_addr->u_stats.p_ru.ru_majflt++; 308 309 /* 310 * loop until we get it, or fail. 311 */ 312 313 while (1) { 314 315 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */ 316 pg = anon->an_page; 317 318 /* 319 * if there is a resident page and it is loaned, then anon 320 * may not own it. call out to uvm_anon_lockpage() to ensure 321 * the real owner of the page has been identified and locked. 322 */ 323 324 if (pg && pg->loan_count) 325 pg = uvm_anon_lockloanpg(anon); 326 327 /* 328 * page there? make sure it is not busy/released. 329 */ 330 331 if (pg) { 332 333 /* 334 * at this point, if the page has a uobject [meaning 335 * we have it on loan], then that uobject is locked 336 * by us! if the page is busy, we drop all the 337 * locks (including uobject) and try again. 338 */ 339 340 if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) { 341 return (VM_PAGER_OK); 342 } 343 atomic_setbits_int(&pg->pg_flags, PG_WANTED); 344 uvmexp.fltpgwait++; 345 346 /* 347 * the last unlock must be an atomic unlock+wait on 348 * the owner of page 349 */ 350 if (pg->uobject) { /* owner is uobject ? */ 351 uvmfault_unlockall(ufi, amap, NULL, anon); 352 UVM_UNLOCK_AND_WAIT(pg, 353 &pg->uobject->vmobjlock, 354 FALSE, "anonget1",0); 355 } else { 356 /* anon owns page */ 357 uvmfault_unlockall(ufi, amap, NULL, NULL); 358 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0, 359 "anonget2",0); 360 } 361 /* ready to relock and try again */ 362 363 } else { 364 365 /* 366 * no page, we must try and bring it in. 367 */ 368 pg = uvm_pagealloc(NULL, 0, anon, 0); 369 370 if (pg == NULL) { /* out of RAM. */ 371 372 uvmfault_unlockall(ufi, amap, NULL, anon); 373 uvmexp.fltnoram++; 374 uvm_wait("flt_noram1"); 375 /* ready to relock and try again */ 376 377 } else { 378 379 /* we set the PG_BUSY bit */ 380 we_own = TRUE; 381 uvmfault_unlockall(ufi, amap, NULL, anon); 382 383 /* 384 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN 385 * page into the uvm_swap_get function with 386 * all data structures unlocked. note that 387 * it is ok to read an_swslot here because 388 * we hold PG_BUSY on the page. 389 */ 390 uvmexp.pageins++; 391 result = uvm_swap_get(pg, anon->an_swslot, 392 PGO_SYNCIO); 393 394 /* 395 * we clean up after the i/o below in the 396 * "we_own" case 397 */ 398 /* ready to relock and try again */ 399 } 400 } 401 402 /* 403 * now relock and try again 404 */ 405 406 locked = uvmfault_relock(ufi); 407 if (locked || we_own) 408 simple_lock(&anon->an_lock); 409 410 /* 411 * if we own the page (i.e. we set PG_BUSY), then we need 412 * to clean up after the I/O. there are three cases to 413 * consider: 414 * [1] page released during I/O: free anon and ReFault. 415 * [2] I/O not OK. free the page and cause the fault 416 * to fail. 417 * [3] I/O OK! activate the page and sync with the 418 * non-we_own case (i.e. drop anon lock if not locked). 419 */ 420 421 if (we_own) { 422 423 if (pg->pg_flags & PG_WANTED) { 424 /* still holding object lock */ 425 wakeup(pg); 426 } 427 /* un-busy! */ 428 atomic_clearbits_int(&pg->pg_flags, 429 PG_WANTED|PG_BUSY|PG_FAKE); 430 UVM_PAGE_OWN(pg, NULL); 431 432 /* 433 * if we were RELEASED during I/O, then our anon is 434 * no longer part of an amap. we need to free the 435 * anon and try again. 436 */ 437 if (pg->pg_flags & PG_RELEASED) { 438 pmap_page_protect(pg, VM_PROT_NONE); 439 simple_unlock(&anon->an_lock); 440 uvm_anfree(anon); /* frees page for us */ 441 if (locked) 442 uvmfault_unlockall(ufi, amap, NULL, 443 NULL); 444 uvmexp.fltpgrele++; 445 return (VM_PAGER_REFAULT); /* refault! */ 446 } 447 448 if (result != VM_PAGER_OK) { 449 KASSERT(result != VM_PAGER_PEND); 450 451 /* remove page from anon */ 452 anon->an_page = NULL; 453 454 /* 455 * remove the swap slot from the anon 456 * and mark the anon as having no real slot. 457 * don't free the swap slot, thus preventing 458 * it from being used again. 459 */ 460 uvm_swap_markbad(anon->an_swslot, 1); 461 anon->an_swslot = SWSLOT_BAD; 462 463 /* 464 * note: page was never !PG_BUSY, so it 465 * can't be mapped and thus no need to 466 * pmap_page_protect it... 467 */ 468 uvm_lock_pageq(); 469 uvm_pagefree(pg); 470 uvm_unlock_pageq(); 471 472 if (locked) 473 uvmfault_unlockall(ufi, amap, NULL, 474 anon); 475 else 476 simple_unlock(&anon->an_lock); 477 return (VM_PAGER_ERROR); 478 } 479 480 /* 481 * must be OK, clear modify (already PG_CLEAN) 482 * and activate 483 */ 484 pmap_clear_modify(pg); 485 uvm_lock_pageq(); 486 uvm_pageactivate(pg); 487 uvm_unlock_pageq(); 488 if (!locked) 489 simple_unlock(&anon->an_lock); 490 } 491 492 /* 493 * we were not able to relock. restart fault. 494 */ 495 496 if (!locked) 497 return (VM_PAGER_REFAULT); 498 499 /* 500 * verify no one has touched the amap and moved the anon on us. 501 */ 502 503 if (ufi != NULL && 504 amap_lookup(&ufi->entry->aref, 505 ufi->orig_rvaddr - ufi->entry->start) != anon) { 506 507 uvmfault_unlockall(ufi, amap, NULL, anon); 508 return (VM_PAGER_REFAULT); 509 } 510 511 /* 512 * try it again! 513 */ 514 515 uvmexp.fltanretry++; 516 continue; 517 518 } /* while (1) */ 519 520 /*NOTREACHED*/ 521 } 522 523 /* 524 * F A U L T - m a i n e n t r y p o i n t 525 */ 526 527 /* 528 * uvm_fault: page fault handler 529 * 530 * => called from MD code to resolve a page fault 531 * => VM data structures usually should be unlocked. however, it is 532 * possible to call here with the main map locked if the caller 533 * gets a write lock, sets it recursive, and then calls us (c.f. 534 * uvm_map_pageable). this should be avoided because it keeps 535 * the map locked off during I/O. 536 */ 537 538 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 539 ~VM_PROT_WRITE : VM_PROT_ALL) 540 541 int 542 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type, 543 vm_prot_t access_type) 544 { 545 struct uvm_faultinfo ufi; 546 vm_prot_t enter_prot; 547 boolean_t wired, narrow, promote, locked, shadowed; 548 int npages, nback, nforw, centeridx, result, lcv, gotpages; 549 vaddr_t startva, currva; 550 voff_t uoff; 551 paddr_t pa; 552 struct vm_amap *amap; 553 struct uvm_object *uobj; 554 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon; 555 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage; 556 557 anon = NULL; 558 pg = NULL; 559 560 uvmexp.faults++; /* XXX: locking? */ 561 562 /* 563 * init the IN parameters in the ufi 564 */ 565 566 ufi.orig_map = orig_map; 567 ufi.orig_rvaddr = trunc_page(vaddr); 568 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 569 if (fault_type == VM_FAULT_WIRE) 570 narrow = TRUE; /* don't look for neighborhood 571 * pages on wire */ 572 else 573 narrow = FALSE; /* normal fault */ 574 575 /* 576 * "goto ReFault" means restart the page fault from ground zero. 577 */ 578 ReFault: 579 580 /* 581 * lookup and lock the maps 582 */ 583 584 if (uvmfault_lookup(&ufi, FALSE) == FALSE) { 585 return (EFAULT); 586 } 587 /* locked: maps(read) */ 588 589 #ifdef DIAGNOSTIC 590 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) 591 panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)", 592 ufi.map, vaddr); 593 #endif 594 595 /* 596 * check protection 597 */ 598 599 if ((ufi.entry->protection & access_type) != access_type) { 600 uvmfault_unlockmaps(&ufi, FALSE); 601 return (EACCES); 602 } 603 604 /* 605 * "enter_prot" is the protection we want to enter the page in at. 606 * for certain pages (e.g. copy-on-write pages) this protection can 607 * be more strict than ufi.entry->protection. "wired" means either 608 * the entry is wired or we are fault-wiring the pg. 609 */ 610 611 enter_prot = ufi.entry->protection; 612 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE); 613 if (wired) 614 access_type = enter_prot; /* full access for wired */ 615 616 /* 617 * handle "needs_copy" case. if we need to copy the amap we will 618 * have to drop our readlock and relock it with a write lock. (we 619 * need a write lock to change anything in a map entry [e.g. 620 * needs_copy]). 621 */ 622 623 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) { 624 if ((access_type & VM_PROT_WRITE) || 625 (ufi.entry->object.uvm_obj == NULL)) { 626 /* need to clear */ 627 uvmfault_unlockmaps(&ufi, FALSE); 628 uvmfault_amapcopy(&ufi); 629 uvmexp.fltamcopy++; 630 goto ReFault; 631 632 } else { 633 634 /* 635 * ensure that we pmap_enter page R/O since 636 * needs_copy is still true 637 */ 638 enter_prot &= ~VM_PROT_WRITE; 639 640 } 641 } 642 643 /* 644 * identify the players 645 */ 646 647 amap = ufi.entry->aref.ar_amap; /* top layer */ 648 uobj = ufi.entry->object.uvm_obj; /* bottom layer */ 649 650 /* 651 * check for a case 0 fault. if nothing backing the entry then 652 * error now. 653 */ 654 655 if (amap == NULL && uobj == NULL) { 656 uvmfault_unlockmaps(&ufi, FALSE); 657 return (EFAULT); 658 } 659 660 /* 661 * establish range of interest based on advice from mapper 662 * and then clip to fit map entry. note that we only want 663 * to do this the first time through the fault. if we 664 * ReFault we will disable this by setting "narrow" to true. 665 */ 666 667 if (narrow == FALSE) { 668 669 /* wide fault (!narrow) */ 670 KASSERT(uvmadvice[ufi.entry->advice].advice == 671 ufi.entry->advice); 672 nback = min(uvmadvice[ufi.entry->advice].nback, 673 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT); 674 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT); 675 nforw = min(uvmadvice[ufi.entry->advice].nforw, 676 ((ufi.entry->end - ufi.orig_rvaddr) >> 677 PAGE_SHIFT) - 1); 678 /* 679 * note: "-1" because we don't want to count the 680 * faulting page as forw 681 */ 682 npages = nback + nforw + 1; 683 centeridx = nback; 684 685 narrow = TRUE; /* ensure only once per-fault */ 686 687 } else { 688 689 /* narrow fault! */ 690 nback = nforw = 0; 691 startva = ufi.orig_rvaddr; 692 npages = 1; 693 centeridx = 0; 694 695 } 696 697 /* locked: maps(read) */ 698 699 /* 700 * if we've got an amap, lock it and extract current anons. 701 */ 702 703 if (amap) { 704 anons = anons_store; 705 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start, 706 anons, npages); 707 } else { 708 anons = NULL; /* to be safe */ 709 } 710 711 /* locked: maps(read), amap(if there) */ 712 713 /* 714 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 715 * now and then forget about them (for the rest of the fault). 716 */ 717 718 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) { 719 720 /* flush back-page anons? */ 721 if (amap) 722 uvmfault_anonflush(anons, nback); 723 724 /* flush object? */ 725 if (uobj) { 726 uoff = (startva - ufi.entry->start) + ufi.entry->offset; 727 simple_lock(&uobj->vmobjlock); 728 (void) uobj->pgops->pgo_flush(uobj, uoff, uoff + 729 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 730 simple_unlock(&uobj->vmobjlock); 731 } 732 733 /* now forget about the backpages */ 734 if (amap) 735 anons += nback; 736 startva += (nback << PAGE_SHIFT); 737 npages -= nback; 738 centeridx = 0; 739 } 740 741 /* locked: maps(read), amap(if there) */ 742 743 /* 744 * map in the backpages and frontpages we found in the amap in hopes 745 * of preventing future faults. we also init the pages[] array as 746 * we go. 747 */ 748 749 currva = startva; 750 shadowed = FALSE; 751 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) { 752 753 /* 754 * dont play with VAs that are already mapped 755 * except for center) 756 */ 757 if (lcv != centeridx && 758 pmap_extract(ufi.orig_map->pmap, currva, &pa)) { 759 pages[lcv] = PGO_DONTCARE; 760 continue; 761 } 762 763 /* 764 * unmapped or center page. check if any anon at this level. 765 */ 766 if (amap == NULL || anons[lcv] == NULL) { 767 pages[lcv] = NULL; 768 continue; 769 } 770 771 /* 772 * check for present page and map if possible. re-activate it. 773 */ 774 775 pages[lcv] = PGO_DONTCARE; 776 if (lcv == centeridx) { /* save center for later! */ 777 shadowed = TRUE; 778 continue; 779 } 780 anon = anons[lcv]; 781 simple_lock(&anon->an_lock); 782 /* ignore loaned pages */ 783 if (anon->an_page && anon->an_page->loan_count == 0 && 784 (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) { 785 uvm_lock_pageq(); 786 uvm_pageactivate(anon->an_page); /* reactivate */ 787 uvm_unlock_pageq(); 788 uvmexp.fltnamap++; 789 790 /* 791 * Since this isn't the page that's actually faulting, 792 * ignore pmap_enter() failures; it's not critical 793 * that we enter these right now. 794 */ 795 796 (void) pmap_enter(ufi.orig_map->pmap, currva, 797 VM_PAGE_TO_PHYS(anon->an_page), 798 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) : 799 enter_prot, 800 PMAP_CANFAIL | 801 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0)); 802 } 803 simple_unlock(&anon->an_lock); 804 pmap_update(ufi.orig_map->pmap); 805 } 806 807 /* locked: maps(read), amap(if there) */ 808 /* (shadowed == TRUE) if there is an anon at the faulting address */ 809 810 /* 811 * note that if we are really short of RAM we could sleep in the above 812 * call to pmap_enter with everything locked. bad? 813 * 814 * XXX Actually, that is bad; pmap_enter() should just fail in that 815 * XXX case. --thorpej 816 */ 817 818 /* 819 * if the desired page is not shadowed by the amap and we have a 820 * backing object, then we check to see if the backing object would 821 * prefer to handle the fault itself (rather than letting us do it 822 * with the usual pgo_get hook). the backing object signals this by 823 * providing a pgo_fault routine. 824 */ 825 826 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) { 827 simple_lock(&uobj->vmobjlock); 828 829 /* locked: maps(read), amap (if there), uobj */ 830 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages, 831 centeridx, fault_type, access_type, 832 PGO_LOCKED); 833 834 /* locked: nothing, pgo_fault has unlocked everything */ 835 836 if (result == VM_PAGER_OK) 837 return (0); /* pgo_fault did pmap enter */ 838 else if (result == VM_PAGER_REFAULT) 839 goto ReFault; /* try again! */ 840 else 841 return (EACCES); 842 } 843 844 /* 845 * now, if the desired page is not shadowed by the amap and we have 846 * a backing object that does not have a special fault routine, then 847 * we ask (with pgo_get) the object for resident pages that we care 848 * about and attempt to map them in. we do not let pgo_get block 849 * (PGO_LOCKED). 850 * 851 * ("get" has the option of doing a pmap_enter for us) 852 */ 853 854 if (uobj && shadowed == FALSE) { 855 simple_lock(&uobj->vmobjlock); 856 857 /* locked (!shadowed): maps(read), amap (if there), uobj */ 858 /* 859 * the following call to pgo_get does _not_ change locking state 860 */ 861 862 uvmexp.fltlget++; 863 gotpages = npages; 864 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset + 865 (startva - ufi.entry->start), 866 pages, &gotpages, centeridx, 867 access_type & MASK(ufi.entry), 868 ufi.entry->advice, PGO_LOCKED); 869 870 /* 871 * check for pages to map, if we got any 872 */ 873 874 uobjpage = NULL; 875 876 if (gotpages) { 877 currva = startva; 878 for (lcv = 0 ; lcv < npages ; 879 lcv++, currva += PAGE_SIZE) { 880 881 if (pages[lcv] == NULL || 882 pages[lcv] == PGO_DONTCARE) 883 continue; 884 885 KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0); 886 887 /* 888 * if center page is resident and not 889 * PG_BUSY, then pgo_get made it PG_BUSY 890 * for us and gave us a handle to it. 891 * remember this page as "uobjpage." 892 * (for later use). 893 */ 894 895 if (lcv == centeridx) { 896 uobjpage = pages[lcv]; 897 continue; 898 } 899 900 /* 901 * note: calling pgo_get with locked data 902 * structures returns us pages which are 903 * neither busy nor released, so we don't 904 * need to check for this. we can just 905 * directly enter the page (after moving it 906 * to the head of the active queue [useful?]). 907 */ 908 909 uvm_lock_pageq(); 910 uvm_pageactivate(pages[lcv]); /* reactivate */ 911 uvm_unlock_pageq(); 912 uvmexp.fltnomap++; 913 914 /* 915 * Since this page isn't the page that's 916 * actually fauling, ignore pmap_enter() 917 * failures; it's not critical that we 918 * enter these right now. 919 */ 920 921 (void) pmap_enter(ufi.orig_map->pmap, currva, 922 VM_PAGE_TO_PHYS(pages[lcv]), 923 enter_prot & MASK(ufi.entry), 924 PMAP_CANFAIL | 925 (wired ? PMAP_WIRED : 0)); 926 927 /* 928 * NOTE: page can't be PG_WANTED because 929 * we've held the lock the whole time 930 * we've had the handle. 931 */ 932 933 atomic_clearbits_int(&pages[lcv]->pg_flags, 934 PG_BUSY); 935 UVM_PAGE_OWN(pages[lcv], NULL); 936 } /* for "lcv" loop */ 937 pmap_update(ufi.orig_map->pmap); 938 } /* "gotpages" != 0 */ 939 /* note: object still _locked_ */ 940 } else { 941 uobjpage = NULL; 942 } 943 944 /* locked (shadowed): maps(read), amap */ 945 /* locked (!shadowed): maps(read), amap(if there), 946 uobj(if !null), uobjpage(if !null) */ 947 948 /* 949 * note that at this point we are done with any front or back pages. 950 * we are now going to focus on the center page (i.e. the one we've 951 * faulted on). if we have faulted on the top (anon) layer 952 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 953 * not touched it yet). if we have faulted on the bottom (uobj) 954 * layer [i.e. case 2] and the page was both present and available, 955 * then we've got a pointer to it as "uobjpage" and we've already 956 * made it BUSY. 957 */ 958 959 /* 960 * there are four possible cases we must address: 1A, 1B, 2A, and 2B 961 */ 962 963 /* 964 * redirect case 2: if we are not shadowed, go to case 2. 965 */ 966 967 if (shadowed == FALSE) 968 goto Case2; 969 970 /* locked: maps(read), amap */ 971 972 /* 973 * handle case 1: fault on an anon in our amap 974 */ 975 976 anon = anons[centeridx]; 977 simple_lock(&anon->an_lock); 978 979 /* locked: maps(read), amap, anon */ 980 981 /* 982 * no matter if we have case 1A or case 1B we are going to need to 983 * have the anon's memory resident. ensure that now. 984 */ 985 986 /* 987 * let uvmfault_anonget do the dirty work. 988 * if it fails (!OK) it will unlock everything for us. 989 * if it succeeds, locks are still valid and locked. 990 * also, if it is OK, then the anon's page is on the queues. 991 * if the page is on loan from a uvm_object, then anonget will 992 * lock that object for us if it does not fail. 993 */ 994 995 result = uvmfault_anonget(&ufi, amap, anon); 996 switch (result) { 997 case VM_PAGER_OK: 998 break; 999 1000 case VM_PAGER_REFAULT: 1001 goto ReFault; 1002 1003 case VM_PAGER_ERROR: 1004 /* 1005 * An error occured while trying to bring in the 1006 * page -- this is the only error we return right 1007 * now. 1008 */ 1009 return (EACCES); /* XXX */ 1010 1011 default: 1012 #ifdef DIAGNOSTIC 1013 panic("uvm_fault: uvmfault_anonget -> %d", result); 1014 #else 1015 return (EACCES); 1016 #endif 1017 } 1018 1019 /* 1020 * uobj is non null if the page is on loan from an object (i.e. uobj) 1021 */ 1022 1023 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */ 1024 1025 /* locked: maps(read), amap, anon, uobj(if one) */ 1026 1027 /* 1028 * special handling for loaned pages 1029 */ 1030 1031 if (anon->an_page->loan_count) { 1032 1033 if ((access_type & VM_PROT_WRITE) == 0) { 1034 1035 /* 1036 * for read faults on loaned pages we just cap the 1037 * protection at read-only. 1038 */ 1039 1040 enter_prot = enter_prot & ~VM_PROT_WRITE; 1041 1042 } else { 1043 /* 1044 * note that we can't allow writes into a loaned page! 1045 * 1046 * if we have a write fault on a loaned page in an 1047 * anon then we need to look at the anon's ref count. 1048 * if it is greater than one then we are going to do 1049 * a normal copy-on-write fault into a new anon (this 1050 * is not a problem). however, if the reference count 1051 * is one (a case where we would normally allow a 1052 * write directly to the page) then we need to kill 1053 * the loan before we continue. 1054 */ 1055 1056 /* >1 case is already ok */ 1057 if (anon->an_ref == 1) { 1058 1059 /* get new un-owned replacement page */ 1060 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1061 if (pg == NULL) { 1062 uvmfault_unlockall(&ufi, amap, uobj, 1063 anon); 1064 uvm_wait("flt_noram2"); 1065 goto ReFault; 1066 } 1067 1068 /* 1069 * copy data, kill loan, and drop uobj lock 1070 * (if any) 1071 */ 1072 /* copy old -> new */ 1073 uvm_pagecopy(anon->an_page, pg); 1074 1075 /* force reload */ 1076 pmap_page_protect(anon->an_page, 1077 VM_PROT_NONE); 1078 uvm_lock_pageq(); /* KILL loan */ 1079 if (uobj) 1080 /* if we were loaning */ 1081 anon->an_page->loan_count--; 1082 anon->an_page->uanon = NULL; 1083 /* in case we owned */ 1084 atomic_clearbits_int( 1085 &anon->an_page->pg_flags, PQ_ANON); 1086 uvm_pageactivate(pg); 1087 uvm_unlock_pageq(); 1088 if (uobj) { 1089 simple_unlock(&uobj->vmobjlock); 1090 uobj = NULL; 1091 } 1092 1093 /* install new page in anon */ 1094 anon->an_page = pg; 1095 pg->uanon = anon; 1096 atomic_setbits_int(&pg->pg_flags, PQ_ANON); 1097 atomic_clearbits_int(&pg->pg_flags, 1098 PG_BUSY|PG_FAKE); 1099 UVM_PAGE_OWN(pg, NULL); 1100 1101 /* done! */ 1102 } /* ref == 1 */ 1103 } /* write fault */ 1104 } /* loan count */ 1105 1106 /* 1107 * if we are case 1B then we will need to allocate a new blank 1108 * anon to transfer the data into. note that we have a lock 1109 * on anon, so no one can busy or release the page until we are done. 1110 * also note that the ref count can't drop to zero here because 1111 * it is > 1 and we are only dropping one ref. 1112 * 1113 * in the (hopefully very rare) case that we are out of RAM we 1114 * will unlock, wait for more RAM, and refault. 1115 * 1116 * if we are out of anon VM we kill the process (XXX: could wait?). 1117 */ 1118 1119 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) { 1120 uvmexp.flt_acow++; 1121 oanon = anon; /* oanon = old, locked anon */ 1122 anon = uvm_analloc(); 1123 if (anon) { 1124 pg = uvm_pagealloc(NULL, 0, anon, 0); 1125 } 1126 1127 /* check for out of RAM */ 1128 if (anon == NULL || pg == NULL) { 1129 if (anon) 1130 uvm_anfree(anon); 1131 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1132 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1133 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) { 1134 uvmexp.fltnoanon++; 1135 return (ENOMEM); 1136 } 1137 1138 uvmexp.fltnoram++; 1139 uvm_wait("flt_noram3"); /* out of RAM, wait for more */ 1140 goto ReFault; 1141 } 1142 1143 /* got all resources, replace anon with nanon */ 1144 1145 uvm_pagecopy(oanon->an_page, pg); /* pg now !PG_CLEAN */ 1146 /* un-busy! new page */ 1147 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE); 1148 UVM_PAGE_OWN(pg, NULL); 1149 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1150 anon, 1); 1151 1152 /* deref: can not drop to zero here by defn! */ 1153 oanon->an_ref--; 1154 1155 /* 1156 * note: oanon still locked. anon is _not_ locked, but we 1157 * have the sole references to in from amap which _is_ locked. 1158 * thus, no one can get at it until we are done with it. 1159 */ 1160 1161 } else { 1162 1163 uvmexp.flt_anon++; 1164 oanon = anon; /* old, locked anon is same as anon */ 1165 pg = anon->an_page; 1166 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1167 enter_prot = enter_prot & ~VM_PROT_WRITE; 1168 1169 } 1170 1171 /* locked: maps(read), amap, oanon */ 1172 1173 /* 1174 * now map the page in ... 1175 * XXX: old fault unlocks object before pmap_enter. this seems 1176 * suspect since some other thread could blast the page out from 1177 * under us between the unlock and the pmap_enter. 1178 */ 1179 1180 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1181 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1182 != 0) { 1183 /* 1184 * No need to undo what we did; we can simply think of 1185 * this as the pmap throwing away the mapping information. 1186 * 1187 * We do, however, have to go through the ReFault path, 1188 * as the map may change while we're asleep. 1189 */ 1190 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1191 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1192 if (uvmexp.swpgonly == uvmexp.swpages) { 1193 /* XXX instrumentation */ 1194 return (ENOMEM); 1195 } 1196 /* XXX instrumentation */ 1197 uvm_wait("flt_pmfail1"); 1198 goto ReFault; 1199 } 1200 1201 /* 1202 * ... update the page queues. 1203 */ 1204 1205 uvm_lock_pageq(); 1206 1207 if (fault_type == VM_FAULT_WIRE) { 1208 uvm_pagewire(pg); 1209 1210 /* 1211 * since the now-wired page cannot be paged out, 1212 * release its swap resources for others to use. 1213 * since an anon with no swap cannot be PG_CLEAN, 1214 * clear its clean flag now. 1215 */ 1216 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1217 uvm_anon_dropswap(anon); 1218 } else { 1219 /* activate it */ 1220 uvm_pageactivate(pg); 1221 } 1222 1223 uvm_unlock_pageq(); 1224 1225 /* 1226 * done case 1! finish up by unlocking everything and returning success 1227 */ 1228 1229 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1230 pmap_update(ufi.orig_map->pmap); 1231 return (0); 1232 1233 1234 Case2: 1235 /* 1236 * handle case 2: faulting on backing object or zero fill 1237 */ 1238 1239 /* 1240 * locked: 1241 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1242 */ 1243 1244 /* 1245 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1246 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1247 * have a backing object, check and see if we are going to promote 1248 * the data up to an anon during the fault. 1249 */ 1250 1251 if (uobj == NULL) { 1252 uobjpage = PGO_DONTCARE; 1253 promote = TRUE; /* always need anon here */ 1254 } else { 1255 KASSERT(uobjpage != PGO_DONTCARE); 1256 promote = (access_type & VM_PROT_WRITE) && 1257 UVM_ET_ISCOPYONWRITE(ufi.entry); 1258 } 1259 1260 /* 1261 * if uobjpage is not null then we do not need to do I/O to get the 1262 * uobjpage. 1263 * 1264 * if uobjpage is null, then we need to unlock and ask the pager to 1265 * get the data for us. once we have the data, we need to reverify 1266 * the state the world. we are currently not holding any resources. 1267 */ 1268 1269 if (uobjpage) { 1270 /* update rusage counters */ 1271 curproc->p_addr->u_stats.p_ru.ru_minflt++; 1272 } else { 1273 /* update rusage counters */ 1274 curproc->p_addr->u_stats.p_ru.ru_majflt++; 1275 1276 /* locked: maps(read), amap(if there), uobj */ 1277 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1278 /* locked: uobj */ 1279 1280 uvmexp.fltget++; 1281 gotpages = 1; 1282 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset; 1283 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, 1284 0, access_type & MASK(ufi.entry), ufi.entry->advice, 1285 PGO_SYNCIO); 1286 1287 /* locked: uobjpage(if result OK) */ 1288 1289 /* 1290 * recover from I/O 1291 */ 1292 1293 if (result != VM_PAGER_OK) { 1294 KASSERT(result != VM_PAGER_PEND); 1295 1296 if (result == VM_PAGER_AGAIN) { 1297 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0); 1298 goto ReFault; 1299 } 1300 1301 return (EACCES); /* XXX i/o error */ 1302 } 1303 1304 /* locked: uobjpage */ 1305 1306 /* 1307 * re-verify the state of the world by first trying to relock 1308 * the maps. always relock the object. 1309 */ 1310 1311 locked = uvmfault_relock(&ufi); 1312 simple_lock(&uobj->vmobjlock); 1313 1314 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */ 1315 /* locked(!locked): uobj, uobjpage */ 1316 1317 /* 1318 * Re-verify that amap slot is still free. if there is 1319 * a problem, we unlock and clean up. 1320 */ 1321 1322 if (locked && amap && amap_lookup(&ufi.entry->aref, 1323 ufi.orig_rvaddr - ufi.entry->start)) { 1324 if (locked) 1325 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1326 locked = FALSE; 1327 } 1328 1329 /* 1330 * didn't get the lock? release the page and retry. 1331 */ 1332 1333 if (locked == FALSE) { 1334 if (uobjpage->pg_flags & PG_WANTED) 1335 /* still holding object lock */ 1336 wakeup(uobjpage); 1337 1338 uvm_lock_pageq(); 1339 /* make sure it is in queues */ 1340 uvm_pageactivate(uobjpage); 1341 1342 uvm_unlock_pageq(); 1343 atomic_clearbits_int(&uobjpage->pg_flags, 1344 PG_BUSY|PG_WANTED); 1345 UVM_PAGE_OWN(uobjpage, NULL); 1346 simple_unlock(&uobj->vmobjlock); 1347 goto ReFault; 1348 1349 } 1350 1351 /* 1352 * we have the data in uobjpage which is PG_BUSY and we are 1353 * holding object lock. 1354 */ 1355 1356 /* locked: maps(read), amap(if !null), uobj, uobjpage */ 1357 } 1358 1359 /* 1360 * locked: 1361 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1362 */ 1363 1364 /* 1365 * notes: 1366 * - at this point uobjpage can not be NULL 1367 * - at this point uobjpage could be PG_WANTED (handle later) 1368 */ 1369 1370 if (promote == FALSE) { 1371 1372 /* 1373 * we are not promoting. if the mapping is COW ensure that we 1374 * don't give more access than we should (e.g. when doing a read 1375 * fault on a COPYONWRITE mapping we want to map the COW page in 1376 * R/O even though the entry protection could be R/W). 1377 * 1378 * set "pg" to the page we want to map in (uobjpage, usually) 1379 */ 1380 1381 uvmexp.flt_obj++; 1382 if (UVM_ET_ISCOPYONWRITE(ufi.entry)) 1383 enter_prot &= ~VM_PROT_WRITE; 1384 pg = uobjpage; /* map in the actual object */ 1385 1386 /* assert(uobjpage != PGO_DONTCARE) */ 1387 1388 /* 1389 * we are faulting directly on the page. be careful 1390 * about writing to loaned pages... 1391 */ 1392 if (uobjpage->loan_count) { 1393 1394 if ((access_type & VM_PROT_WRITE) == 0) { 1395 /* read fault: cap the protection at readonly */ 1396 /* cap! */ 1397 enter_prot = enter_prot & ~VM_PROT_WRITE; 1398 } else { 1399 /* write fault: must break the loan here */ 1400 1401 /* alloc new un-owned page */ 1402 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1403 1404 if (pg == NULL) { 1405 /* 1406 * drop ownership of page, it can't 1407 * be released 1408 */ 1409 if (uobjpage->pg_flags & PG_WANTED) 1410 wakeup(uobjpage); 1411 atomic_clearbits_int( 1412 &uobjpage->pg_flags, 1413 PG_BUSY|PG_WANTED); 1414 UVM_PAGE_OWN(uobjpage, NULL); 1415 1416 uvm_lock_pageq(); 1417 /* activate: we will need it later */ 1418 uvm_pageactivate(uobjpage); 1419 1420 uvm_unlock_pageq(); 1421 uvmfault_unlockall(&ufi, amap, uobj, 1422 NULL); 1423 uvmexp.fltnoram++; 1424 uvm_wait("flt_noram4"); 1425 goto ReFault; 1426 } 1427 1428 /* 1429 * copy the data from the old page to the new 1430 * one and clear the fake/clean flags on the 1431 * new page (keep it busy). force a reload 1432 * of the old page by clearing it from all 1433 * pmaps. then lock the page queues to 1434 * rename the pages. 1435 */ 1436 uvm_pagecopy(uobjpage, pg); /* old -> new */ 1437 atomic_clearbits_int(&pg->pg_flags, 1438 PG_FAKE|PG_CLEAN); 1439 pmap_page_protect(uobjpage, VM_PROT_NONE); 1440 if (uobjpage->pg_flags & PG_WANTED) 1441 wakeup(uobjpage); 1442 /* uobj still locked */ 1443 atomic_clearbits_int(&uobjpage->pg_flags, 1444 PG_BUSY|PG_WANTED); 1445 UVM_PAGE_OWN(uobjpage, NULL); 1446 1447 uvm_lock_pageq(); 1448 uoff = uobjpage->offset; 1449 /* remove old page */ 1450 uvm_pagerealloc(uobjpage, NULL, 0); 1451 1452 /* 1453 * at this point we have absolutely no 1454 * control over uobjpage 1455 */ 1456 /* install new page */ 1457 uvm_pagerealloc(pg, uobj, uoff); 1458 uvm_unlock_pageq(); 1459 1460 /* 1461 * done! loan is broken and "pg" is 1462 * PG_BUSY. it can now replace uobjpage. 1463 */ 1464 1465 uobjpage = pg; 1466 1467 } /* write fault case */ 1468 } /* if loan_count */ 1469 1470 } else { 1471 1472 /* 1473 * if we are going to promote the data to an anon we 1474 * allocate a blank anon here and plug it into our amap. 1475 */ 1476 #ifdef DIAGNOSTIC 1477 if (amap == NULL) 1478 panic("uvm_fault: want to promote data, but no anon"); 1479 #endif 1480 1481 anon = uvm_analloc(); 1482 if (anon) { 1483 /* 1484 * In `Fill in data...' below, if 1485 * uobjpage == PGO_DONTCARE, we want 1486 * a zero'd, dirty page, so have 1487 * uvm_pagealloc() do that for us. 1488 */ 1489 pg = uvm_pagealloc(NULL, 0, anon, 1490 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0); 1491 } 1492 1493 /* 1494 * out of memory resources? 1495 */ 1496 if (anon == NULL || pg == NULL) { 1497 1498 /* 1499 * arg! must unbusy our page and fail or sleep. 1500 */ 1501 if (uobjpage != PGO_DONTCARE) { 1502 if (uobjpage->pg_flags & PG_WANTED) 1503 /* still holding object lock */ 1504 wakeup(uobjpage); 1505 1506 uvm_lock_pageq(); 1507 uvm_pageactivate(uobjpage); 1508 uvm_unlock_pageq(); 1509 atomic_clearbits_int(&uobjpage->pg_flags, 1510 PG_BUSY|PG_WANTED); 1511 UVM_PAGE_OWN(uobjpage, NULL); 1512 } 1513 1514 /* unlock and fail ... */ 1515 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1516 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1517 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) { 1518 uvmexp.fltnoanon++; 1519 return (ENOMEM); 1520 } 1521 1522 uvm_anfree(anon); 1523 uvmexp.fltnoram++; 1524 uvm_wait("flt_noram5"); 1525 goto ReFault; 1526 } 1527 1528 /* 1529 * fill in the data 1530 */ 1531 1532 if (uobjpage != PGO_DONTCARE) { 1533 uvmexp.flt_prcopy++; 1534 /* copy page [pg now dirty] */ 1535 uvm_pagecopy(uobjpage, pg); 1536 1537 /* 1538 * promote to shared amap? make sure all sharing 1539 * procs see it 1540 */ 1541 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 1542 pmap_page_protect(uobjpage, VM_PROT_NONE); 1543 } 1544 1545 /* 1546 * dispose of uobjpage. drop handle to uobj as well. 1547 */ 1548 1549 if (uobjpage->pg_flags & PG_WANTED) 1550 /* still have the obj lock */ 1551 wakeup(uobjpage); 1552 atomic_clearbits_int(&uobjpage->pg_flags, 1553 PG_BUSY|PG_WANTED); 1554 UVM_PAGE_OWN(uobjpage, NULL); 1555 uvm_lock_pageq(); 1556 uvm_pageactivate(uobjpage); 1557 uvm_unlock_pageq(); 1558 simple_unlock(&uobj->vmobjlock); 1559 uobj = NULL; 1560 } else { 1561 uvmexp.flt_przero++; 1562 /* 1563 * Page is zero'd and marked dirty by uvm_pagealloc() 1564 * above. 1565 */ 1566 } 1567 1568 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1569 anon, 0); 1570 } 1571 1572 /* 1573 * locked: 1574 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1575 * 1576 * note: pg is either the uobjpage or the new page in the new anon 1577 */ 1578 1579 /* 1580 * all resources are present. we can now map it in and free our 1581 * resources. 1582 */ 1583 1584 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1585 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1586 != 0) { 1587 1588 /* 1589 * No need to undo what we did; we can simply think of 1590 * this as the pmap throwing away the mapping information. 1591 * 1592 * We do, however, have to go through the ReFault path, 1593 * as the map may change while we're asleep. 1594 */ 1595 1596 if (pg->pg_flags & PG_WANTED) 1597 wakeup(pg); /* lock still held */ 1598 1599 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1600 UVM_PAGE_OWN(pg, NULL); 1601 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1602 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1603 if (uvmexp.swpgonly == uvmexp.swpages) { 1604 /* XXX instrumentation */ 1605 return (ENOMEM); 1606 } 1607 /* XXX instrumentation */ 1608 uvm_wait("flt_pmfail2"); 1609 goto ReFault; 1610 } 1611 1612 uvm_lock_pageq(); 1613 1614 if (fault_type == VM_FAULT_WIRE) { 1615 uvm_pagewire(pg); 1616 if (pg->pg_flags & PQ_AOBJ) { 1617 1618 /* 1619 * since the now-wired page cannot be paged out, 1620 * release its swap resources for others to use. 1621 * since an aobj page with no swap cannot be PG_CLEAN, 1622 * clear its clean flag now. 1623 */ 1624 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1625 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 1626 } 1627 } else { 1628 /* activate it */ 1629 uvm_pageactivate(pg); 1630 } 1631 uvm_unlock_pageq(); 1632 1633 if (pg->pg_flags & PG_WANTED) 1634 wakeup(pg); /* lock still held */ 1635 1636 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1637 UVM_PAGE_OWN(pg, NULL); 1638 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1639 pmap_update(ufi.orig_map->pmap); 1640 1641 return (0); 1642 } 1643 1644 1645 /* 1646 * uvm_fault_wire: wire down a range of virtual addresses in a map. 1647 * 1648 * => map may be read-locked by caller, but MUST NOT be write-locked. 1649 * => if map is read-locked, any operations which may cause map to 1650 * be write-locked in uvm_fault() must be taken care of by 1651 * the caller. See uvm_map_pageable(). 1652 */ 1653 1654 int 1655 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type) 1656 { 1657 vaddr_t va; 1658 pmap_t pmap; 1659 int rv; 1660 1661 pmap = vm_map_pmap(map); 1662 1663 /* 1664 * now fault it in a page at a time. if the fault fails then we have 1665 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 1666 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 1667 */ 1668 1669 for (va = start ; va < end ; va += PAGE_SIZE) { 1670 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type); 1671 if (rv) { 1672 if (va != start) { 1673 uvm_fault_unwire(map, start, va); 1674 } 1675 return (rv); 1676 } 1677 } 1678 1679 return (0); 1680 } 1681 1682 /* 1683 * uvm_fault_unwire(): unwire range of virtual space. 1684 */ 1685 1686 void 1687 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end) 1688 { 1689 1690 vm_map_lock_read(map); 1691 uvm_fault_unwire_locked(map, start, end); 1692 vm_map_unlock_read(map); 1693 } 1694 1695 /* 1696 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 1697 * 1698 * => map must be at least read-locked. 1699 */ 1700 1701 void 1702 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end) 1703 { 1704 vm_map_entry_t entry; 1705 pmap_t pmap = vm_map_pmap(map); 1706 vaddr_t va; 1707 paddr_t pa; 1708 struct vm_page *pg; 1709 1710 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 1711 1712 /* 1713 * we assume that the area we are unwiring has actually been wired 1714 * in the first place. this means that we should be able to extract 1715 * the PAs from the pmap. we also lock out the page daemon so that 1716 * we can call uvm_pageunwire. 1717 */ 1718 1719 uvm_lock_pageq(); 1720 1721 /* 1722 * find the beginning map entry for the region. 1723 */ 1724 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 1725 if (uvm_map_lookup_entry(map, start, &entry) == FALSE) 1726 panic("uvm_fault_unwire_locked: address not in map"); 1727 1728 for (va = start; va < end ; va += PAGE_SIZE) { 1729 if (pmap_extract(pmap, va, &pa) == FALSE) 1730 continue; 1731 1732 /* 1733 * find the map entry for the current address. 1734 */ 1735 KASSERT(va >= entry->start); 1736 while (va >= entry->end) { 1737 KASSERT(entry->next != &map->header && 1738 entry->next->start <= entry->end); 1739 entry = entry->next; 1740 } 1741 1742 /* 1743 * if the entry is no longer wired, tell the pmap. 1744 */ 1745 if (VM_MAPENT_ISWIRED(entry) == 0) 1746 pmap_unwire(pmap, va); 1747 1748 pg = PHYS_TO_VM_PAGE(pa); 1749 if (pg) 1750 uvm_pageunwire(pg); 1751 } 1752 1753 uvm_unlock_pageq(); 1754 } 1755 1756 /* 1757 * uvmfault_unlockmaps: unlock the maps 1758 */ 1759 void 1760 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked) 1761 { 1762 /* 1763 * ufi can be NULL when this isn't really a fault, 1764 * but merely paging in anon data. 1765 */ 1766 1767 if (ufi == NULL) { 1768 return; 1769 } 1770 1771 if (write_locked) { 1772 vm_map_unlock(ufi->map); 1773 } else { 1774 vm_map_unlock_read(ufi->map); 1775 } 1776 } 1777 1778 /* 1779 * uvmfault_unlockall: unlock everything passed in. 1780 * 1781 * => maps must be read-locked (not write-locked). 1782 */ 1783 void 1784 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap, 1785 struct uvm_object *uobj, struct vm_anon *anon) 1786 { 1787 1788 if (anon) 1789 simple_unlock(&anon->an_lock); 1790 if (uobj) 1791 simple_unlock(&uobj->vmobjlock); 1792 uvmfault_unlockmaps(ufi, FALSE); 1793 } 1794 1795 /* 1796 * uvmfault_lookup: lookup a virtual address in a map 1797 * 1798 * => caller must provide a uvm_faultinfo structure with the IN 1799 * params properly filled in 1800 * => we will lookup the map entry (handling submaps) as we go 1801 * => if the lookup is a success we will return with the maps locked 1802 * => if "write_lock" is TRUE, we write_lock the map, otherwise we only 1803 * get a read lock. 1804 * => note that submaps can only appear in the kernel and they are 1805 * required to use the same virtual addresses as the map they 1806 * are referenced by (thus address translation between the main 1807 * map and the submap is unnecessary). 1808 */ 1809 1810 boolean_t 1811 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock) 1812 { 1813 vm_map_t tmpmap; 1814 1815 /* 1816 * init ufi values for lookup. 1817 */ 1818 1819 ufi->map = ufi->orig_map; 1820 ufi->size = ufi->orig_size; 1821 1822 /* 1823 * keep going down levels until we are done. note that there can 1824 * only be two levels so we won't loop very long. 1825 */ 1826 1827 while (1) { 1828 1829 /* 1830 * lock map 1831 */ 1832 if (write_lock) { 1833 vm_map_lock(ufi->map); 1834 } else { 1835 vm_map_lock_read(ufi->map); 1836 } 1837 1838 /* 1839 * lookup 1840 */ 1841 if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr, 1842 &ufi->entry)) { 1843 uvmfault_unlockmaps(ufi, write_lock); 1844 return(FALSE); 1845 } 1846 1847 /* 1848 * reduce size if necessary 1849 */ 1850 if (ufi->entry->end - ufi->orig_rvaddr < ufi->size) 1851 ufi->size = ufi->entry->end - ufi->orig_rvaddr; 1852 1853 /* 1854 * submap? replace map with the submap and lookup again. 1855 * note: VAs in submaps must match VAs in main map. 1856 */ 1857 if (UVM_ET_ISSUBMAP(ufi->entry)) { 1858 tmpmap = ufi->entry->object.sub_map; 1859 uvmfault_unlockmaps(ufi, write_lock); 1860 ufi->map = tmpmap; 1861 continue; 1862 } 1863 1864 /* 1865 * got it! 1866 */ 1867 1868 ufi->mapv = ufi->map->timestamp; 1869 return(TRUE); 1870 1871 } /* while loop */ 1872 1873 /*NOTREACHED*/ 1874 } 1875 1876 /* 1877 * uvmfault_relock: attempt to relock the same version of the map 1878 * 1879 * => fault data structures should be unlocked before calling. 1880 * => if a success (TRUE) maps will be locked after call. 1881 */ 1882 boolean_t 1883 uvmfault_relock(struct uvm_faultinfo *ufi) 1884 { 1885 /* 1886 * ufi can be NULL when this isn't really a fault, 1887 * but merely paging in anon data. 1888 */ 1889 1890 if (ufi == NULL) { 1891 return TRUE; 1892 } 1893 1894 uvmexp.fltrelck++; 1895 1896 /* 1897 * relock map. fail if version mismatch (in which case nothing 1898 * gets locked). 1899 */ 1900 1901 vm_map_lock_read(ufi->map); 1902 if (ufi->mapv != ufi->map->timestamp) { 1903 vm_map_unlock_read(ufi->map); 1904 return(FALSE); 1905 } 1906 1907 uvmexp.fltrelckok++; 1908 return(TRUE); /* got it! */ 1909 } 1910