1 /* $OpenBSD: uvm_fault.c,v 1.31 2002/03/14 01:27:18 millert Exp $ */ 2 /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */ 3 4 /* 5 * 6 * Copyright (c) 1997 Charles D. Cranor and Washington University. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by Charles D. Cranor and 20 * Washington University. 21 * 4. The name of the author may not be used to endorse or promote products 22 * derived from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 36 */ 37 38 /* 39 * uvm_fault.c: fault handler 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/malloc.h> 47 #include <sys/mman.h> 48 #include <sys/user.h> 49 50 #include <uvm/uvm.h> 51 52 /* 53 * 54 * a word on page faults: 55 * 56 * types of page faults we handle: 57 * 58 * CASE 1: upper layer faults CASE 2: lower layer faults 59 * 60 * CASE 1A CASE 1B CASE 2A CASE 2B 61 * read/write1 write>1 read/write +-cow_write/zero 62 * | | | | 63 * +--|--+ +--|--+ +-----+ + | + | +-----+ 64 * amap | V | | ----------->new| | | | ^ | 65 * +-----+ +-----+ +-----+ + | + | +--|--+ 66 * | | | 67 * +-----+ +-----+ +--|--+ | +--|--+ 68 * uobj | d/c | | d/c | | V | +----| | 69 * +-----+ +-----+ +-----+ +-----+ 70 * 71 * d/c = don't care 72 * 73 * case [0]: layerless fault 74 * no amap or uobj is present. this is an error. 75 * 76 * case [1]: upper layer fault [anon active] 77 * 1A: [read] or [write with anon->an_ref == 1] 78 * I/O takes place in top level anon and uobj is not touched. 79 * 1B: [write with anon->an_ref > 1] 80 * new anon is alloc'd and data is copied off ["COW"] 81 * 82 * case [2]: lower layer fault [uobj] 83 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 84 * I/O takes place directly in object. 85 * 2B: [write to copy_on_write] or [read on NULL uobj] 86 * data is "promoted" from uobj to a new anon. 87 * if uobj is null, then we zero fill. 88 * 89 * we follow the standard UVM locking protocol ordering: 90 * 91 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 92 * we hold a PG_BUSY page if we unlock for I/O 93 * 94 * 95 * the code is structured as follows: 96 * 97 * - init the "IN" params in the ufi structure 98 * ReFault: 99 * - do lookups [locks maps], check protection, handle needs_copy 100 * - check for case 0 fault (error) 101 * - establish "range" of fault 102 * - if we have an amap lock it and extract the anons 103 * - if sequential advice deactivate pages behind us 104 * - at the same time check pmap for unmapped areas and anon for pages 105 * that we could map in (and do map it if found) 106 * - check object for resident pages that we could map in 107 * - if (case 2) goto Case2 108 * - >>> handle case 1 109 * - ensure source anon is resident in RAM 110 * - if case 1B alloc new anon and copy from source 111 * - map the correct page in 112 * Case2: 113 * - >>> handle case 2 114 * - ensure source page is resident (if uobj) 115 * - if case 2B alloc new anon and copy from source (could be zero 116 * fill if uobj == NULL) 117 * - map the correct page in 118 * - done! 119 * 120 * note on paging: 121 * if we have to do I/O we place a PG_BUSY page in the correct object, 122 * unlock everything, and do the I/O. when I/O is done we must reverify 123 * the state of the world before assuming that our data structures are 124 * valid. [because mappings could change while the map is unlocked] 125 * 126 * alternative 1: unbusy the page in question and restart the page fault 127 * from the top (ReFault). this is easy but does not take advantage 128 * of the information that we already have from our previous lookup, 129 * although it is possible that the "hints" in the vm_map will help here. 130 * 131 * alternative 2: the system already keeps track of a "version" number of 132 * a map. [i.e. every time you write-lock a map (e.g. to change a 133 * mapping) you bump the version number up by one...] so, we can save 134 * the version number of the map before we release the lock and start I/O. 135 * then when I/O is done we can relock and check the version numbers 136 * to see if anything changed. this might save us some over 1 because 137 * we don't have to unbusy the page and may be less compares(?). 138 * 139 * alternative 3: put in backpointers or a way to "hold" part of a map 140 * in place while I/O is in progress. this could be complex to 141 * implement (especially with structures like amap that can be referenced 142 * by multiple map entries, and figuring out what should wait could be 143 * complex as well...). 144 * 145 * given that we are not currently multiprocessor or multithreaded we might 146 * as well choose alternative 2 now. maybe alternative 3 would be useful 147 * in the future. XXX keep in mind for future consideration//rechecking. 148 */ 149 150 /* 151 * local data structures 152 */ 153 154 struct uvm_advice { 155 int advice; 156 int nback; 157 int nforw; 158 }; 159 160 /* 161 * page range array: 162 * note: index in array must match "advice" value 163 * XXX: borrowed numbers from freebsd. do they work well for us? 164 */ 165 166 static struct uvm_advice uvmadvice[] = { 167 { MADV_NORMAL, 3, 4 }, 168 { MADV_RANDOM, 0, 0 }, 169 { MADV_SEQUENTIAL, 8, 7}, 170 }; 171 172 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */ 173 174 /* 175 * private prototypes 176 */ 177 178 static void uvmfault_amapcopy(struct uvm_faultinfo *); 179 static __inline void uvmfault_anonflush(struct vm_anon **, int); 180 181 /* 182 * inline functions 183 */ 184 185 /* 186 * uvmfault_anonflush: try and deactivate pages in specified anons 187 * 188 * => does not have to deactivate page if it is busy 189 */ 190 191 static __inline void 192 uvmfault_anonflush(anons, n) 193 struct vm_anon **anons; 194 int n; 195 { 196 int lcv; 197 struct vm_page *pg; 198 199 for (lcv = 0 ; lcv < n ; lcv++) { 200 if (anons[lcv] == NULL) 201 continue; 202 simple_lock(&anons[lcv]->an_lock); 203 pg = anons[lcv]->u.an_page; 204 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) { 205 uvm_lock_pageq(); 206 if (pg->wire_count == 0) { 207 #ifdef UBC 208 pmap_clear_reference(pg); 209 #else 210 pmap_page_protect(pg, VM_PROT_NONE); 211 #endif 212 uvm_pagedeactivate(pg); 213 } 214 uvm_unlock_pageq(); 215 } 216 simple_unlock(&anons[lcv]->an_lock); 217 } 218 } 219 220 /* 221 * normal functions 222 */ 223 224 /* 225 * uvmfault_amapcopy: clear "needs_copy" in a map. 226 * 227 * => called with VM data structures unlocked (usually, see below) 228 * => we get a write lock on the maps and clear needs_copy for a VA 229 * => if we are out of RAM we sleep (waiting for more) 230 */ 231 232 static void 233 uvmfault_amapcopy(ufi) 234 struct uvm_faultinfo *ufi; 235 { 236 237 /* 238 * while we haven't done the job 239 */ 240 241 while (1) { 242 243 /* 244 * no mapping? give up. 245 */ 246 247 if (uvmfault_lookup(ufi, TRUE) == FALSE) 248 return; 249 250 /* 251 * copy if needed. 252 */ 253 254 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 255 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE, 256 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 257 258 /* 259 * didn't work? must be out of RAM. unlock and sleep. 260 */ 261 262 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 263 uvmfault_unlockmaps(ufi, TRUE); 264 uvm_wait("fltamapcopy"); 265 continue; 266 } 267 268 /* 269 * got it! unlock and return. 270 */ 271 272 uvmfault_unlockmaps(ufi, TRUE); 273 return; 274 } 275 /*NOTREACHED*/ 276 } 277 278 /* 279 * uvmfault_anonget: get data in an anon into a non-busy, non-released 280 * page in that anon. 281 * 282 * => maps, amap, and anon locked by caller. 283 * => if we fail (result != VM_PAGER_OK) we unlock everything. 284 * => if we are successful, we return with everything still locked. 285 * => we don't move the page on the queues [gets moved later] 286 * => if we allocate a new page [we_own], it gets put on the queues. 287 * either way, the result is that the page is on the queues at return time 288 * => for pages which are on loan from a uvm_object (and thus are not 289 * owned by the anon): if successful, we return with the owning object 290 * locked. the caller must unlock this object when it unlocks everything 291 * else. 292 */ 293 294 int 295 uvmfault_anonget(ufi, amap, anon) 296 struct uvm_faultinfo *ufi; 297 struct vm_amap *amap; 298 struct vm_anon *anon; 299 { 300 boolean_t we_own; /* we own anon's page? */ 301 boolean_t locked; /* did we relock? */ 302 struct vm_page *pg; 303 int result; 304 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist); 305 306 result = 0; /* XXX shut up gcc */ 307 uvmexp.fltanget++; 308 /* bump rusage counters */ 309 if (anon->u.an_page) 310 curproc->p_addr->u_stats.p_ru.ru_minflt++; 311 else 312 curproc->p_addr->u_stats.p_ru.ru_majflt++; 313 314 /* 315 * loop until we get it, or fail. 316 */ 317 318 while (1) { 319 320 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */ 321 pg = anon->u.an_page; 322 323 /* 324 * if there is a resident page and it is loaned, then anon 325 * may not own it. call out to uvm_anon_lockpage() to ensure 326 * the real owner of the page has been identified and locked. 327 */ 328 329 if (pg && pg->loan_count) 330 pg = uvm_anon_lockloanpg(anon); 331 332 /* 333 * page there? make sure it is not busy/released. 334 */ 335 336 if (pg) { 337 338 /* 339 * at this point, if the page has a uobject [meaning 340 * we have it on loan], then that uobject is locked 341 * by us! if the page is busy, we drop all the 342 * locks (including uobject) and try again. 343 */ 344 345 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) { 346 UVMHIST_LOG(maphist, "<- OK",0,0,0,0); 347 return (VM_PAGER_OK); 348 } 349 pg->flags |= PG_WANTED; 350 uvmexp.fltpgwait++; 351 352 /* 353 * the last unlock must be an atomic unlock+wait on 354 * the owner of page 355 */ 356 if (pg->uobject) { /* owner is uobject ? */ 357 uvmfault_unlockall(ufi, amap, NULL, anon); 358 UVMHIST_LOG(maphist, " unlock+wait on uobj",0, 359 0,0,0); 360 UVM_UNLOCK_AND_WAIT(pg, 361 &pg->uobject->vmobjlock, 362 FALSE, "anonget1",0); 363 } else { 364 /* anon owns page */ 365 uvmfault_unlockall(ufi, amap, NULL, NULL); 366 UVMHIST_LOG(maphist, " unlock+wait on anon",0, 367 0,0,0); 368 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0, 369 "anonget2",0); 370 } 371 /* ready to relock and try again */ 372 373 } else { 374 375 /* 376 * no page, we must try and bring it in. 377 */ 378 pg = uvm_pagealloc(NULL, 0, anon, 0); 379 380 if (pg == NULL) { /* out of RAM. */ 381 382 uvmfault_unlockall(ufi, amap, NULL, anon); 383 uvmexp.fltnoram++; 384 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0, 385 0,0,0); 386 uvm_wait("flt_noram1"); 387 /* ready to relock and try again */ 388 389 } else { 390 391 /* we set the PG_BUSY bit */ 392 we_own = TRUE; 393 uvmfault_unlockall(ufi, amap, NULL, anon); 394 395 /* 396 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN 397 * page into the uvm_swap_get function with 398 * all data structures unlocked. note that 399 * it is ok to read an_swslot here because 400 * we hold PG_BUSY on the page. 401 */ 402 uvmexp.pageins++; 403 result = uvm_swap_get(pg, anon->an_swslot, 404 PGO_SYNCIO); 405 406 /* 407 * we clean up after the i/o below in the 408 * "we_own" case 409 */ 410 /* ready to relock and try again */ 411 } 412 } 413 414 /* 415 * now relock and try again 416 */ 417 418 locked = uvmfault_relock(ufi); 419 if (locked && amap != NULL) { 420 amap_lock(amap); 421 } 422 if (locked || we_own) 423 simple_lock(&anon->an_lock); 424 425 /* 426 * if we own the page (i.e. we set PG_BUSY), then we need 427 * to clean up after the I/O. there are three cases to 428 * consider: 429 * [1] page released during I/O: free anon and ReFault. 430 * [2] I/O not OK. free the page and cause the fault 431 * to fail. 432 * [3] I/O OK! activate the page and sync with the 433 * non-we_own case (i.e. drop anon lock if not locked). 434 */ 435 436 if (we_own) { 437 438 if (pg->flags & PG_WANTED) { 439 /* still holding object lock */ 440 wakeup(pg); 441 } 442 /* un-busy! */ 443 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE); 444 UVM_PAGE_OWN(pg, NULL); 445 446 /* 447 * if we were RELEASED during I/O, then our anon is 448 * no longer part of an amap. we need to free the 449 * anon and try again. 450 */ 451 if (pg->flags & PG_RELEASED) { 452 pmap_page_protect(pg, VM_PROT_NONE); 453 simple_unlock(&anon->an_lock); 454 uvm_anfree(anon); /* frees page for us */ 455 if (locked) 456 uvmfault_unlockall(ufi, amap, NULL, 457 NULL); 458 uvmexp.fltpgrele++; 459 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 460 return (VM_PAGER_REFAULT); /* refault! */ 461 } 462 463 if (result != VM_PAGER_OK) { 464 KASSERT(result != VM_PAGER_PEND); 465 466 /* remove page from anon */ 467 anon->u.an_page = NULL; 468 469 /* 470 * remove the swap slot from the anon 471 * and mark the anon as having no real slot. 472 * don't free the swap slot, thus preventing 473 * it from being used again. 474 */ 475 uvm_swap_markbad(anon->an_swslot, 1); 476 anon->an_swslot = SWSLOT_BAD; 477 478 /* 479 * note: page was never !PG_BUSY, so it 480 * can't be mapped and thus no need to 481 * pmap_page_protect it... 482 */ 483 uvm_lock_pageq(); 484 uvm_pagefree(pg); 485 uvm_unlock_pageq(); 486 487 if (locked) 488 uvmfault_unlockall(ufi, amap, NULL, 489 anon); 490 else 491 simple_unlock(&anon->an_lock); 492 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0); 493 return (VM_PAGER_ERROR); 494 } 495 496 /* 497 * must be OK, clear modify (already PG_CLEAN) 498 * and activate 499 */ 500 pmap_clear_modify(pg); 501 uvm_lock_pageq(); 502 uvm_pageactivate(pg); 503 uvm_unlock_pageq(); 504 if (!locked) 505 simple_unlock(&anon->an_lock); 506 } 507 508 /* 509 * we were not able to relock. restart fault. 510 */ 511 512 if (!locked) { 513 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 514 return (VM_PAGER_REFAULT); 515 } 516 517 /* 518 * verify no one has touched the amap and moved the anon on us. 519 */ 520 521 if (ufi != NULL && 522 amap_lookup(&ufi->entry->aref, 523 ufi->orig_rvaddr - ufi->entry->start) != anon) { 524 525 uvmfault_unlockall(ufi, amap, NULL, anon); 526 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0); 527 return (VM_PAGER_REFAULT); 528 } 529 530 /* 531 * try it again! 532 */ 533 534 uvmexp.fltanretry++; 535 continue; 536 537 } /* while (1) */ 538 539 /*NOTREACHED*/ 540 } 541 542 /* 543 * F A U L T - m a i n e n t r y p o i n t 544 */ 545 546 /* 547 * uvm_fault: page fault handler 548 * 549 * => called from MD code to resolve a page fault 550 * => VM data structures usually should be unlocked. however, it is 551 * possible to call here with the main map locked if the caller 552 * gets a write lock, sets it recusive, and then calls us (c.f. 553 * uvm_map_pageable). this should be avoided because it keeps 554 * the map locked off during I/O. 555 */ 556 557 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 558 ~VM_PROT_WRITE : VM_PROT_ALL) 559 560 int 561 uvm_fault(orig_map, vaddr, fault_type, access_type) 562 vm_map_t orig_map; 563 vaddr_t vaddr; 564 vm_fault_t fault_type; 565 vm_prot_t access_type; 566 { 567 struct uvm_faultinfo ufi; 568 vm_prot_t enter_prot; 569 boolean_t wired, narrow, promote, locked, shadowed; 570 int npages, nback, nforw, centeridx, result, lcv, gotpages; 571 vaddr_t startva, objaddr, currva, offset, uoff; 572 paddr_t pa; 573 struct vm_amap *amap; 574 struct uvm_object *uobj; 575 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon; 576 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage; 577 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist); 578 579 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)", 580 orig_map, vaddr, fault_type, access_type); 581 582 anon = NULL; 583 pg = NULL; 584 585 uvmexp.faults++; /* XXX: locking? */ 586 587 /* 588 * init the IN parameters in the ufi 589 */ 590 591 ufi.orig_map = orig_map; 592 ufi.orig_rvaddr = trunc_page(vaddr); 593 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 594 if (fault_type == VM_FAULT_WIRE) 595 narrow = TRUE; /* don't look for neighborhood 596 * pages on wire */ 597 else 598 narrow = FALSE; /* normal fault */ 599 600 /* 601 * before we do anything else, if this is a fault on a kernel 602 * address, check to see if the address is managed by an 603 * interrupt-safe map. If it is, we fail immediately. Intrsafe 604 * maps are never pageable, and this approach avoids an evil 605 * locking mess. 606 */ 607 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) { 608 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p", 609 ufi.orig_rvaddr, ufi.map, 0, 0); 610 return (KERN_FAILURE); 611 } 612 613 /* 614 * "goto ReFault" means restart the page fault from ground zero. 615 */ 616 ReFault: 617 618 /* 619 * lookup and lock the maps 620 */ 621 622 if (uvmfault_lookup(&ufi, FALSE) == FALSE) { 623 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0); 624 return (KERN_INVALID_ADDRESS); 625 } 626 /* locked: maps(read) */ 627 628 /* 629 * check protection 630 */ 631 632 if ((ufi.entry->protection & access_type) != access_type) { 633 UVMHIST_LOG(maphist, 634 "<- protection failure (prot=0x%x, access=0x%x)", 635 ufi.entry->protection, access_type, 0, 0); 636 uvmfault_unlockmaps(&ufi, FALSE); 637 return (KERN_PROTECTION_FAILURE); 638 } 639 640 /* 641 * if the map is not a pageable map, a page fault always fails. 642 */ 643 644 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) { 645 UVMHIST_LOG(maphist, 646 "<- map %p not pageable", ufi.map, 0, 0, 0); 647 uvmfault_unlockmaps(&ufi, FALSE); 648 return (KERN_FAILURE); 649 } 650 651 /* 652 * "enter_prot" is the protection we want to enter the page in at. 653 * for certain pages (e.g. copy-on-write pages) this protection can 654 * be more strict than ufi.entry->protection. "wired" means either 655 * the entry is wired or we are fault-wiring the pg. 656 */ 657 658 enter_prot = ufi.entry->protection; 659 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE); 660 if (wired) 661 access_type = enter_prot; /* full access for wired */ 662 663 /* 664 * handle "needs_copy" case. if we need to copy the amap we will 665 * have to drop our readlock and relock it with a write lock. (we 666 * need a write lock to change anything in a map entry [e.g. 667 * needs_copy]). 668 */ 669 670 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) { 671 if ((access_type & VM_PROT_WRITE) || 672 (ufi.entry->object.uvm_obj == NULL)) { 673 /* need to clear */ 674 UVMHIST_LOG(maphist, 675 " need to clear needs_copy and refault",0,0,0,0); 676 uvmfault_unlockmaps(&ufi, FALSE); 677 uvmfault_amapcopy(&ufi); 678 uvmexp.fltamcopy++; 679 goto ReFault; 680 681 } else { 682 683 /* 684 * ensure that we pmap_enter page R/O since 685 * needs_copy is still true 686 */ 687 enter_prot &= ~VM_PROT_WRITE; 688 689 } 690 } 691 692 /* 693 * identify the players 694 */ 695 696 amap = ufi.entry->aref.ar_amap; /* top layer */ 697 uobj = ufi.entry->object.uvm_obj; /* bottom layer */ 698 699 /* 700 * check for a case 0 fault. if nothing backing the entry then 701 * error now. 702 */ 703 704 if (amap == NULL && uobj == NULL) { 705 uvmfault_unlockmaps(&ufi, FALSE); 706 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0); 707 return (KERN_INVALID_ADDRESS); 708 } 709 710 /* 711 * establish range of interest based on advice from mapper 712 * and then clip to fit map entry. note that we only want 713 * to do this the first time through the fault. if we 714 * ReFault we will disable this by setting "narrow" to true. 715 */ 716 717 if (narrow == FALSE) { 718 719 /* wide fault (!narrow) */ 720 KASSERT(uvmadvice[ufi.entry->advice].advice == 721 ufi.entry->advice); 722 nback = min(uvmadvice[ufi.entry->advice].nback, 723 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT); 724 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT); 725 nforw = min(uvmadvice[ufi.entry->advice].nforw, 726 ((ufi.entry->end - ufi.orig_rvaddr) >> 727 PAGE_SHIFT) - 1); 728 /* 729 * note: "-1" because we don't want to count the 730 * faulting page as forw 731 */ 732 npages = nback + nforw + 1; 733 centeridx = nback; 734 735 narrow = TRUE; /* ensure only once per-fault */ 736 737 } else { 738 739 /* narrow fault! */ 740 nback = nforw = 0; 741 startva = ufi.orig_rvaddr; 742 npages = 1; 743 centeridx = 0; 744 745 } 746 747 /* locked: maps(read) */ 748 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x", 749 narrow, nback, nforw, startva); 750 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry, 751 amap, uobj, 0); 752 753 /* 754 * if we've got an amap, lock it and extract current anons. 755 */ 756 757 if (amap) { 758 amap_lock(amap); 759 anons = anons_store; 760 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start, 761 anons, npages); 762 } else { 763 anons = NULL; /* to be safe */ 764 } 765 766 /* locked: maps(read), amap(if there) */ 767 768 /* 769 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 770 * now and then forget about them (for the rest of the fault). 771 */ 772 773 if (ufi.entry->advice == MADV_SEQUENTIAL) { 774 775 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages", 776 0,0,0,0); 777 /* flush back-page anons? */ 778 if (amap) 779 uvmfault_anonflush(anons, nback); 780 781 /* flush object? */ 782 if (uobj) { 783 objaddr = 784 (startva - ufi.entry->start) + ufi.entry->offset; 785 simple_lock(&uobj->vmobjlock); 786 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr + 787 (nback << PAGE_SHIFT), PGO_DEACTIVATE); 788 simple_unlock(&uobj->vmobjlock); 789 } 790 791 /* now forget about the backpages */ 792 if (amap) 793 anons += nback; 794 startva += (nback << PAGE_SHIFT); 795 npages -= nback; 796 nback = centeridx = 0; 797 } 798 799 /* locked: maps(read), amap(if there) */ 800 801 /* 802 * map in the backpages and frontpages we found in the amap in hopes 803 * of preventing future faults. we also init the pages[] array as 804 * we go. 805 */ 806 807 currva = startva; 808 shadowed = FALSE; 809 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) { 810 811 /* 812 * dont play with VAs that are already mapped 813 * except for center) 814 */ 815 if (lcv != centeridx && 816 pmap_extract(ufi.orig_map->pmap, currva, &pa)) { 817 pages[lcv] = PGO_DONTCARE; 818 continue; 819 } 820 821 /* 822 * unmapped or center page. check if any anon at this level. 823 */ 824 if (amap == NULL || anons[lcv] == NULL) { 825 pages[lcv] = NULL; 826 continue; 827 } 828 829 /* 830 * check for present page and map if possible. re-activate it. 831 */ 832 833 pages[lcv] = PGO_DONTCARE; 834 if (lcv == centeridx) { /* save center for later! */ 835 shadowed = TRUE; 836 continue; 837 } 838 anon = anons[lcv]; 839 simple_lock(&anon->an_lock); 840 /* ignore loaned pages */ 841 if (anon->u.an_page && anon->u.an_page->loan_count == 0 && 842 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) { 843 uvm_lock_pageq(); 844 uvm_pageactivate(anon->u.an_page); /* reactivate */ 845 uvm_unlock_pageq(); 846 UVMHIST_LOG(maphist, 847 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x", 848 ufi.orig_map->pmap, currva, anon->u.an_page, 0); 849 uvmexp.fltnamap++; 850 851 /* 852 * Since this isn't the page that's actually faulting, 853 * ignore pmap_enter() failures; it's not critical 854 * that we enter these right now. 855 */ 856 857 (void) pmap_enter(ufi.orig_map->pmap, currva, 858 VM_PAGE_TO_PHYS(anon->u.an_page), 859 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) : 860 enter_prot, 861 PMAP_CANFAIL | 862 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0)); 863 } 864 simple_unlock(&anon->an_lock); 865 } 866 867 /* locked: maps(read), amap(if there) */ 868 /* (shadowed == TRUE) if there is an anon at the faulting address */ 869 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed, 870 (uobj && shadowed == FALSE),0,0); 871 872 /* 873 * note that if we are really short of RAM we could sleep in the above 874 * call to pmap_enter with everything locked. bad? 875 * 876 * XXX Actually, that is bad; pmap_enter() should just fail in that 877 * XXX case. --thorpej 878 */ 879 880 /* 881 * if the desired page is not shadowed by the amap and we have a 882 * backing object, then we check to see if the backing object would 883 * prefer to handle the fault itself (rather than letting us do it 884 * with the usual pgo_get hook). the backing object signals this by 885 * providing a pgo_fault routine. 886 */ 887 888 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) { 889 simple_lock(&uobj->vmobjlock); 890 891 /* locked: maps(read), amap (if there), uobj */ 892 result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages, 893 centeridx, fault_type, access_type, 894 PGO_LOCKED); 895 896 /* locked: nothing, pgo_fault has unlocked everything */ 897 898 if (result == VM_PAGER_OK) 899 return (KERN_SUCCESS); /* pgo_fault did pmap enter */ 900 else if (result == VM_PAGER_REFAULT) 901 goto ReFault; /* try again! */ 902 else 903 return (KERN_PROTECTION_FAILURE); 904 } 905 906 /* 907 * now, if the desired page is not shadowed by the amap and we have 908 * a backing object that does not have a special fault routine, then 909 * we ask (with pgo_get) the object for resident pages that we care 910 * about and attempt to map them in. we do not let pgo_get block 911 * (PGO_LOCKED). 912 * 913 * ("get" has the option of doing a pmap_enter for us) 914 */ 915 916 if (uobj && shadowed == FALSE) { 917 simple_lock(&uobj->vmobjlock); 918 919 /* locked (!shadowed): maps(read), amap (if there), uobj */ 920 /* 921 * the following call to pgo_get does _not_ change locking state 922 */ 923 924 uvmexp.fltlget++; 925 gotpages = npages; 926 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset + 927 (startva - ufi.entry->start), 928 pages, &gotpages, centeridx, 929 access_type & MASK(ufi.entry), 930 ufi.entry->advice, PGO_LOCKED); 931 932 /* 933 * check for pages to map, if we got any 934 */ 935 936 uobjpage = NULL; 937 938 if (gotpages) { 939 currva = startva; 940 for (lcv = 0 ; lcv < npages ; 941 lcv++, currva += PAGE_SIZE) { 942 943 if (pages[lcv] == NULL || 944 pages[lcv] == PGO_DONTCARE) 945 continue; 946 947 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0); 948 949 /* 950 * if center page is resident and not 951 * PG_BUSY|PG_RELEASED then pgo_get 952 * made it PG_BUSY for us and gave 953 * us a handle to it. remember this 954 * page as "uobjpage." (for later use). 955 */ 956 957 if (lcv == centeridx) { 958 uobjpage = pages[lcv]; 959 UVMHIST_LOG(maphist, " got uobjpage " 960 "(0x%x) with locked get", 961 uobjpage, 0,0,0); 962 continue; 963 } 964 965 /* 966 * note: calling pgo_get with locked data 967 * structures returns us pages which are 968 * neither busy nor released, so we don't 969 * need to check for this. we can just 970 * directly enter the page (after moving it 971 * to the head of the active queue [useful?]). 972 */ 973 974 uvm_lock_pageq(); 975 uvm_pageactivate(pages[lcv]); /* reactivate */ 976 uvm_unlock_pageq(); 977 UVMHIST_LOG(maphist, 978 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x", 979 ufi.orig_map->pmap, currva, pages[lcv], 0); 980 uvmexp.fltnomap++; 981 982 /* 983 * Since this page isn't the page that's 984 * actually fauling, ignore pmap_enter() 985 * failures; it's not critical that we 986 * enter these right now. 987 */ 988 989 (void) pmap_enter(ufi.orig_map->pmap, currva, 990 VM_PAGE_TO_PHYS(pages[lcv]), 991 enter_prot & MASK(ufi.entry), 992 PMAP_CANFAIL | 993 (wired ? PMAP_WIRED : 0)); 994 995 /* 996 * NOTE: page can't be PG_WANTED or PG_RELEASED 997 * because we've held the lock the whole time 998 * we've had the handle. 999 */ 1000 1001 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */ 1002 UVM_PAGE_OWN(pages[lcv], NULL); 1003 } /* for "lcv" loop */ 1004 } /* "gotpages" != 0 */ 1005 /* note: object still _locked_ */ 1006 } else { 1007 uobjpage = NULL; 1008 } 1009 1010 /* locked (shadowed): maps(read), amap */ 1011 /* locked (!shadowed): maps(read), amap(if there), 1012 uobj(if !null), uobjpage(if !null) */ 1013 1014 /* 1015 * note that at this point we are done with any front or back pages. 1016 * we are now going to focus on the center page (i.e. the one we've 1017 * faulted on). if we have faulted on the top (anon) layer 1018 * [i.e. case 1], then the anon we want is anons[centeridx] (we have 1019 * not touched it yet). if we have faulted on the bottom (uobj) 1020 * layer [i.e. case 2] and the page was both present and available, 1021 * then we've got a pointer to it as "uobjpage" and we've already 1022 * made it BUSY. 1023 */ 1024 1025 /* 1026 * there are four possible cases we must address: 1A, 1B, 2A, and 2B 1027 */ 1028 1029 /* 1030 * redirect case 2: if we are not shadowed, go to case 2. 1031 */ 1032 1033 if (shadowed == FALSE) 1034 goto Case2; 1035 1036 /* locked: maps(read), amap */ 1037 1038 /* 1039 * handle case 1: fault on an anon in our amap 1040 */ 1041 1042 anon = anons[centeridx]; 1043 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0); 1044 simple_lock(&anon->an_lock); 1045 1046 /* locked: maps(read), amap, anon */ 1047 1048 /* 1049 * no matter if we have case 1A or case 1B we are going to need to 1050 * have the anon's memory resident. ensure that now. 1051 */ 1052 1053 /* 1054 * let uvmfault_anonget do the dirty work. 1055 * if it fails (!OK) it will unlock everything for us. 1056 * if it succeeds, locks are still valid and locked. 1057 * also, if it is OK, then the anon's page is on the queues. 1058 * if the page is on loan from a uvm_object, then anonget will 1059 * lock that object for us if it does not fail. 1060 */ 1061 1062 result = uvmfault_anonget(&ufi, amap, anon); 1063 switch (result) { 1064 case VM_PAGER_OK: 1065 break; 1066 1067 case VM_PAGER_REFAULT: 1068 goto ReFault; 1069 1070 case VM_PAGER_ERROR: 1071 /* 1072 * An error occured while trying to bring in the 1073 * page -- this is the only error we return right 1074 * now. 1075 */ 1076 return (KERN_PROTECTION_FAILURE); /* XXX */ 1077 1078 default: 1079 #ifdef DIAGNOSTIC 1080 panic("uvm_fault: uvmfault_anonget -> %d", result); 1081 #else 1082 return (KERN_PROTECTION_FAILURE); 1083 #endif 1084 } 1085 1086 /* 1087 * uobj is non null if the page is on loan from an object (i.e. uobj) 1088 */ 1089 1090 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */ 1091 1092 /* locked: maps(read), amap, anon, uobj(if one) */ 1093 1094 /* 1095 * special handling for loaned pages 1096 */ 1097 1098 if (anon->u.an_page->loan_count) { 1099 1100 if ((access_type & VM_PROT_WRITE) == 0) { 1101 1102 /* 1103 * for read faults on loaned pages we just cap the 1104 * protection at read-only. 1105 */ 1106 1107 enter_prot = enter_prot & ~VM_PROT_WRITE; 1108 1109 } else { 1110 /* 1111 * note that we can't allow writes into a loaned page! 1112 * 1113 * if we have a write fault on a loaned page in an 1114 * anon then we need to look at the anon's ref count. 1115 * if it is greater than one then we are going to do 1116 * a normal copy-on-write fault into a new anon (this 1117 * is not a problem). however, if the reference count 1118 * is one (a case where we would normally allow a 1119 * write directly to the page) then we need to kill 1120 * the loan before we continue. 1121 */ 1122 1123 /* >1 case is already ok */ 1124 if (anon->an_ref == 1) { 1125 1126 /* get new un-owned replacement page */ 1127 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1128 if (pg == NULL) { 1129 uvmfault_unlockall(&ufi, amap, uobj, 1130 anon); 1131 uvm_wait("flt_noram2"); 1132 goto ReFault; 1133 } 1134 1135 /* 1136 * copy data, kill loan, and drop uobj lock 1137 * (if any) 1138 */ 1139 /* copy old -> new */ 1140 uvm_pagecopy(anon->u.an_page, pg); 1141 1142 /* force reload */ 1143 pmap_page_protect(anon->u.an_page, 1144 VM_PROT_NONE); 1145 uvm_lock_pageq(); /* KILL loan */ 1146 if (uobj) 1147 /* if we were loaning */ 1148 anon->u.an_page->loan_count--; 1149 anon->u.an_page->uanon = NULL; 1150 /* in case we owned */ 1151 anon->u.an_page->pqflags &= ~PQ_ANON; 1152 uvm_unlock_pageq(); 1153 if (uobj) { 1154 simple_unlock(&uobj->vmobjlock); 1155 uobj = NULL; 1156 } 1157 1158 /* install new page in anon */ 1159 anon->u.an_page = pg; 1160 pg->uanon = anon; 1161 pg->pqflags |= PQ_ANON; 1162 pg->flags &= ~(PG_BUSY|PG_FAKE); 1163 UVM_PAGE_OWN(pg, NULL); 1164 1165 /* done! */ 1166 } /* ref == 1 */ 1167 } /* write fault */ 1168 } /* loan count */ 1169 1170 /* 1171 * if we are case 1B then we will need to allocate a new blank 1172 * anon to transfer the data into. note that we have a lock 1173 * on anon, so no one can busy or release the page until we are done. 1174 * also note that the ref count can't drop to zero here because 1175 * it is > 1 and we are only dropping one ref. 1176 * 1177 * in the (hopefully very rare) case that we are out of RAM we 1178 * will unlock, wait for more RAM, and refault. 1179 * 1180 * if we are out of anon VM we kill the process (XXX: could wait?). 1181 */ 1182 1183 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) { 1184 1185 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0); 1186 uvmexp.flt_acow++; 1187 oanon = anon; /* oanon = old, locked anon */ 1188 anon = uvm_analloc(); 1189 if (anon) { 1190 pg = uvm_pagealloc(NULL, 0, anon, 0); 1191 } 1192 1193 /* check for out of RAM */ 1194 if (anon == NULL || pg == NULL) { 1195 if (anon) 1196 uvm_anfree(anon); 1197 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1198 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1199 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) { 1200 UVMHIST_LOG(maphist, 1201 "<- failed. out of VM",0,0,0,0); 1202 uvmexp.fltnoanon++; 1203 return (KERN_RESOURCE_SHORTAGE); 1204 } 1205 1206 uvmexp.fltnoram++; 1207 uvm_wait("flt_noram3"); /* out of RAM, wait for more */ 1208 goto ReFault; 1209 } 1210 1211 /* got all resources, replace anon with nanon */ 1212 1213 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */ 1214 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */ 1215 UVM_PAGE_OWN(pg, NULL); 1216 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1217 anon, 1); 1218 1219 /* deref: can not drop to zero here by defn! */ 1220 oanon->an_ref--; 1221 1222 /* 1223 * note: oanon still locked. anon is _not_ locked, but we 1224 * have the sole references to in from amap which _is_ locked. 1225 * thus, no one can get at it until we are done with it. 1226 */ 1227 1228 } else { 1229 1230 uvmexp.flt_anon++; 1231 oanon = anon; /* old, locked anon is same as anon */ 1232 pg = anon->u.an_page; 1233 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1234 enter_prot = enter_prot & ~VM_PROT_WRITE; 1235 1236 } 1237 1238 /* locked: maps(read), amap, oanon */ 1239 1240 /* 1241 * now map the page in ... 1242 * XXX: old fault unlocks object before pmap_enter. this seems 1243 * suspect since some other thread could blast the page out from 1244 * under us between the unlock and the pmap_enter. 1245 */ 1246 1247 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x", 1248 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0); 1249 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1250 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1251 != KERN_SUCCESS) { 1252 /* 1253 * No need to undo what we did; we can simply think of 1254 * this as the pmap throwing away the mapping information. 1255 * 1256 * We do, however, have to go through the ReFault path, 1257 * as the map may change while we're asleep. 1258 */ 1259 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1260 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1261 if (uvmexp.swpgonly == uvmexp.swpages) { 1262 UVMHIST_LOG(maphist, 1263 "<- failed. out of VM",0,0,0,0); 1264 /* XXX instrumentation */ 1265 return (KERN_RESOURCE_SHORTAGE); 1266 } 1267 /* XXX instrumentation */ 1268 uvm_wait("flt_pmfail1"); 1269 goto ReFault; 1270 } 1271 1272 /* 1273 * ... update the page queues. 1274 */ 1275 1276 uvm_lock_pageq(); 1277 1278 if (fault_type == VM_FAULT_WIRE) { 1279 uvm_pagewire(pg); 1280 1281 /* 1282 * since the now-wired page cannot be paged out, 1283 * release its swap resources for others to use. 1284 * since an anon with no swap cannot be PG_CLEAN, 1285 * clear its clean flag now. 1286 */ 1287 1288 pg->flags &= ~(PG_CLEAN); 1289 uvm_anon_dropswap(anon); 1290 } else { 1291 /* activate it */ 1292 uvm_pageactivate(pg); 1293 } 1294 1295 uvm_unlock_pageq(); 1296 1297 /* 1298 * done case 1! finish up by unlocking everything and returning success 1299 */ 1300 1301 uvmfault_unlockall(&ufi, amap, uobj, oanon); 1302 return (KERN_SUCCESS); 1303 1304 1305 Case2: 1306 /* 1307 * handle case 2: faulting on backing object or zero fill 1308 */ 1309 1310 /* 1311 * locked: 1312 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null) 1313 */ 1314 1315 /* 1316 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1317 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1318 * have a backing object, check and see if we are going to promote 1319 * the data up to an anon during the fault. 1320 */ 1321 1322 if (uobj == NULL) { 1323 uobjpage = PGO_DONTCARE; 1324 promote = TRUE; /* always need anon here */ 1325 } else { 1326 KASSERT(uobjpage != PGO_DONTCARE); 1327 promote = (access_type & VM_PROT_WRITE) && 1328 UVM_ET_ISCOPYONWRITE(ufi.entry); 1329 } 1330 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d", 1331 promote, (uobj == NULL), 0,0); 1332 1333 /* 1334 * if uobjpage is not null then we do not need to do I/O to get the 1335 * uobjpage. 1336 * 1337 * if uobjpage is null, then we need to unlock and ask the pager to 1338 * get the data for us. once we have the data, we need to reverify 1339 * the state the world. we are currently not holding any resources. 1340 */ 1341 1342 if (uobjpage) { 1343 /* update rusage counters */ 1344 curproc->p_addr->u_stats.p_ru.ru_minflt++; 1345 } else { 1346 /* update rusage counters */ 1347 curproc->p_addr->u_stats.p_ru.ru_majflt++; 1348 1349 /* locked: maps(read), amap(if there), uobj */ 1350 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1351 /* locked: uobj */ 1352 1353 uvmexp.fltget++; 1354 gotpages = 1; 1355 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset; 1356 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, 1357 0, access_type & MASK(ufi.entry), ufi.entry->advice, 1358 PGO_SYNCIO); 1359 1360 /* locked: uobjpage(if result OK) */ 1361 1362 /* 1363 * recover from I/O 1364 */ 1365 1366 if (result != VM_PAGER_OK) { 1367 KASSERT(result != VM_PAGER_PEND); 1368 1369 if (result == VM_PAGER_AGAIN) { 1370 UVMHIST_LOG(maphist, 1371 " pgo_get says TRY AGAIN!",0,0,0,0); 1372 tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0); 1373 goto ReFault; 1374 } 1375 1376 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)", 1377 result, 0,0,0); 1378 return (KERN_PROTECTION_FAILURE); /* XXX i/o error */ 1379 } 1380 1381 /* locked: uobjpage */ 1382 1383 /* 1384 * re-verify the state of the world by first trying to relock 1385 * the maps. always relock the object. 1386 */ 1387 1388 locked = uvmfault_relock(&ufi); 1389 if (locked && amap) 1390 amap_lock(amap); 1391 simple_lock(&uobj->vmobjlock); 1392 1393 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */ 1394 /* locked(!locked): uobj, uobjpage */ 1395 1396 /* 1397 * verify that the page has not be released and re-verify 1398 * that amap slot is still free. if there is a problem, 1399 * we unlock and clean up. 1400 */ 1401 1402 if ((uobjpage->flags & PG_RELEASED) != 0 || 1403 (locked && amap && 1404 amap_lookup(&ufi.entry->aref, 1405 ufi.orig_rvaddr - ufi.entry->start))) { 1406 if (locked) 1407 uvmfault_unlockall(&ufi, amap, NULL, NULL); 1408 locked = FALSE; 1409 } 1410 1411 /* 1412 * didn't get the lock? release the page and retry. 1413 */ 1414 1415 if (locked == FALSE) { 1416 1417 UVMHIST_LOG(maphist, 1418 " wasn't able to relock after fault: retry", 1419 0,0,0,0); 1420 if (uobjpage->flags & PG_WANTED) 1421 /* still holding object lock */ 1422 wakeup(uobjpage); 1423 1424 if (uobjpage->flags & PG_RELEASED) { 1425 uvmexp.fltpgrele++; 1426 KASSERT(uobj->pgops->pgo_releasepg != NULL); 1427 1428 /* frees page */ 1429 if (uobj->pgops->pgo_releasepg(uobjpage,NULL)) 1430 /* unlock if still alive */ 1431 simple_unlock(&uobj->vmobjlock); 1432 goto ReFault; 1433 } 1434 1435 uvm_lock_pageq(); 1436 /* make sure it is in queues */ 1437 uvm_pageactivate(uobjpage); 1438 1439 uvm_unlock_pageq(); 1440 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1441 UVM_PAGE_OWN(uobjpage, NULL); 1442 simple_unlock(&uobj->vmobjlock); 1443 goto ReFault; 1444 1445 } 1446 1447 /* 1448 * we have the data in uobjpage which is PG_BUSY and 1449 * !PG_RELEASED. we are holding object lock (so the page 1450 * can't be released on us). 1451 */ 1452 1453 /* locked: maps(read), amap(if !null), uobj, uobjpage */ 1454 } 1455 1456 /* 1457 * locked: 1458 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1459 */ 1460 1461 /* 1462 * notes: 1463 * - at this point uobjpage can not be NULL 1464 * - at this point uobjpage can not be PG_RELEASED (since we checked 1465 * for it above) 1466 * - at this point uobjpage could be PG_WANTED (handle later) 1467 */ 1468 1469 if (promote == FALSE) { 1470 1471 /* 1472 * we are not promoting. if the mapping is COW ensure that we 1473 * don't give more access than we should (e.g. when doing a read 1474 * fault on a COPYONWRITE mapping we want to map the COW page in 1475 * R/O even though the entry protection could be R/W). 1476 * 1477 * set "pg" to the page we want to map in (uobjpage, usually) 1478 */ 1479 1480 uvmexp.flt_obj++; 1481 if (UVM_ET_ISCOPYONWRITE(ufi.entry)) 1482 enter_prot &= ~VM_PROT_WRITE; 1483 pg = uobjpage; /* map in the actual object */ 1484 1485 /* assert(uobjpage != PGO_DONTCARE) */ 1486 1487 /* 1488 * we are faulting directly on the page. be careful 1489 * about writing to loaned pages... 1490 */ 1491 if (uobjpage->loan_count) { 1492 1493 if ((access_type & VM_PROT_WRITE) == 0) { 1494 /* read fault: cap the protection at readonly */ 1495 /* cap! */ 1496 enter_prot = enter_prot & ~VM_PROT_WRITE; 1497 } else { 1498 /* write fault: must break the loan here */ 1499 1500 /* alloc new un-owned page */ 1501 pg = uvm_pagealloc(NULL, 0, NULL, 0); 1502 1503 if (pg == NULL) { 1504 /* 1505 * drop ownership of page, it can't 1506 * be released 1507 */ 1508 if (uobjpage->flags & PG_WANTED) 1509 wakeup(uobjpage); 1510 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1511 UVM_PAGE_OWN(uobjpage, NULL); 1512 1513 uvm_lock_pageq(); 1514 /* activate: we will need it later */ 1515 uvm_pageactivate(uobjpage); 1516 1517 uvm_unlock_pageq(); 1518 uvmfault_unlockall(&ufi, amap, uobj, 1519 NULL); 1520 UVMHIST_LOG(maphist, 1521 " out of RAM breaking loan, waiting", 1522 0,0,0,0); 1523 uvmexp.fltnoram++; 1524 uvm_wait("flt_noram4"); 1525 goto ReFault; 1526 } 1527 1528 /* 1529 * copy the data from the old page to the new 1530 * one and clear the fake/clean flags on the 1531 * new page (keep it busy). force a reload 1532 * of the old page by clearing it from all 1533 * pmaps. then lock the page queues to 1534 * rename the pages. 1535 */ 1536 uvm_pagecopy(uobjpage, pg); /* old -> new */ 1537 pg->flags &= ~(PG_FAKE|PG_CLEAN); 1538 pmap_page_protect(uobjpage, VM_PROT_NONE); 1539 if (uobjpage->flags & PG_WANTED) 1540 wakeup(uobjpage); 1541 /* uobj still locked */ 1542 uobjpage->flags &= ~(PG_WANTED|PG_BUSY); 1543 UVM_PAGE_OWN(uobjpage, NULL); 1544 1545 uvm_lock_pageq(); 1546 offset = uobjpage->offset; 1547 /* remove old page */ 1548 uvm_pagerealloc(uobjpage, NULL, 0); 1549 1550 /* 1551 * at this point we have absolutely no 1552 * control over uobjpage 1553 */ 1554 /* install new page */ 1555 uvm_pagerealloc(pg, uobj, offset); 1556 uvm_unlock_pageq(); 1557 1558 /* 1559 * done! loan is broken and "pg" is 1560 * PG_BUSY. it can now replace uobjpage. 1561 */ 1562 1563 uobjpage = pg; 1564 1565 } /* write fault case */ 1566 } /* if loan_count */ 1567 1568 } else { 1569 1570 /* 1571 * if we are going to promote the data to an anon we 1572 * allocate a blank anon here and plug it into our amap. 1573 */ 1574 #if DIAGNOSTIC 1575 if (amap == NULL) 1576 panic("uvm_fault: want to promote data, but no anon"); 1577 #endif 1578 1579 anon = uvm_analloc(); 1580 if (anon) { 1581 /* 1582 * In `Fill in data...' below, if 1583 * uobjpage == PGO_DONTCARE, we want 1584 * a zero'd, dirty page, so have 1585 * uvm_pagealloc() do that for us. 1586 */ 1587 pg = uvm_pagealloc(NULL, 0, anon, 1588 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0); 1589 } 1590 1591 /* 1592 * out of memory resources? 1593 */ 1594 if (anon == NULL || pg == NULL) { 1595 1596 /* 1597 * arg! must unbusy our page and fail or sleep. 1598 */ 1599 if (uobjpage != PGO_DONTCARE) { 1600 if (uobjpage->flags & PG_WANTED) 1601 /* still holding object lock */ 1602 wakeup(uobjpage); 1603 1604 uvm_lock_pageq(); 1605 uvm_pageactivate(uobjpage); 1606 uvm_unlock_pageq(); 1607 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1608 UVM_PAGE_OWN(uobjpage, NULL); 1609 } 1610 1611 /* unlock and fail ... */ 1612 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1613 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1614 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) { 1615 UVMHIST_LOG(maphist, " promote: out of VM", 1616 0,0,0,0); 1617 uvmexp.fltnoanon++; 1618 return (KERN_RESOURCE_SHORTAGE); 1619 } 1620 1621 UVMHIST_LOG(maphist, " out of RAM, waiting for more", 1622 0,0,0,0); 1623 uvm_anfree(anon); 1624 uvmexp.fltnoram++; 1625 uvm_wait("flt_noram5"); 1626 goto ReFault; 1627 } 1628 1629 /* 1630 * fill in the data 1631 */ 1632 1633 if (uobjpage != PGO_DONTCARE) { 1634 uvmexp.flt_prcopy++; 1635 /* copy page [pg now dirty] */ 1636 uvm_pagecopy(uobjpage, pg); 1637 1638 /* 1639 * promote to shared amap? make sure all sharing 1640 * procs see it 1641 */ 1642 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 1643 pmap_page_protect(uobjpage, VM_PROT_NONE); 1644 } 1645 1646 /* 1647 * dispose of uobjpage. it can't be PG_RELEASED 1648 * since we still hold the object lock. 1649 * drop handle to uobj as well. 1650 */ 1651 1652 if (uobjpage->flags & PG_WANTED) 1653 /* still have the obj lock */ 1654 wakeup(uobjpage); 1655 uobjpage->flags &= ~(PG_BUSY|PG_WANTED); 1656 UVM_PAGE_OWN(uobjpage, NULL); 1657 uvm_lock_pageq(); 1658 uvm_pageactivate(uobjpage); 1659 uvm_unlock_pageq(); 1660 simple_unlock(&uobj->vmobjlock); 1661 uobj = NULL; 1662 1663 UVMHIST_LOG(maphist, 1664 " promote uobjpage 0x%x to anon/page 0x%x/0x%x", 1665 uobjpage, anon, pg, 0); 1666 1667 } else { 1668 uvmexp.flt_przero++; 1669 /* 1670 * Page is zero'd and marked dirty by uvm_pagealloc() 1671 * above. 1672 */ 1673 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x", 1674 anon, pg, 0, 0); 1675 } 1676 1677 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start, 1678 anon, 0); 1679 } 1680 1681 /* 1682 * locked: 1683 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj) 1684 * 1685 * note: pg is either the uobjpage or the new page in the new anon 1686 */ 1687 1688 /* 1689 * all resources are present. we can now map it in and free our 1690 * resources. 1691 */ 1692 1693 UVMHIST_LOG(maphist, 1694 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d", 1695 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote); 1696 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg), 1697 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) 1698 != KERN_SUCCESS) { 1699 1700 /* 1701 * No need to undo what we did; we can simply think of 1702 * this as the pmap throwing away the mapping information. 1703 * 1704 * We do, however, have to go through the ReFault path, 1705 * as the map may change while we're asleep. 1706 */ 1707 1708 if (pg->flags & PG_WANTED) 1709 wakeup(pg); /* lock still held */ 1710 1711 /* 1712 * note that pg can't be PG_RELEASED since we did not drop 1713 * the object lock since the last time we checked. 1714 */ 1715 1716 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 1717 UVM_PAGE_OWN(pg, NULL); 1718 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1719 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1720 if (uvmexp.swpgonly == uvmexp.swpages) { 1721 UVMHIST_LOG(maphist, 1722 "<- failed. out of VM",0,0,0,0); 1723 /* XXX instrumentation */ 1724 return (KERN_RESOURCE_SHORTAGE); 1725 } 1726 /* XXX instrumentation */ 1727 uvm_wait("flt_pmfail2"); 1728 goto ReFault; 1729 } 1730 1731 uvm_lock_pageq(); 1732 1733 if (fault_type == VM_FAULT_WIRE) { 1734 uvm_pagewire(pg); 1735 if (pg->pqflags & PQ_AOBJ) { 1736 1737 /* 1738 * since the now-wired page cannot be paged out, 1739 * release its swap resources for others to use. 1740 * since an aobj page with no swap cannot be PG_CLEAN, 1741 * clear its clean flag now. 1742 */ 1743 1744 pg->flags &= ~(PG_CLEAN); 1745 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 1746 } 1747 } else { 1748 /* activate it */ 1749 uvm_pageactivate(pg); 1750 } 1751 uvm_unlock_pageq(); 1752 1753 if (pg->flags & PG_WANTED) 1754 wakeup(pg); /* lock still held */ 1755 1756 /* 1757 * note that pg can't be PG_RELEASED since we did not drop the object 1758 * lock since the last time we checked. 1759 */ 1760 1761 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED); 1762 UVM_PAGE_OWN(pg, NULL); 1763 uvmfault_unlockall(&ufi, amap, uobj, NULL); 1764 1765 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0); 1766 return (KERN_SUCCESS); 1767 } 1768 1769 1770 /* 1771 * uvm_fault_wire: wire down a range of virtual addresses in a map. 1772 * 1773 * => map may be read-locked by caller, but MUST NOT be write-locked. 1774 * => if map is read-locked, any operations which may cause map to 1775 * be write-locked in uvm_fault() must be taken care of by 1776 * the caller. See uvm_map_pageable(). 1777 */ 1778 1779 int 1780 uvm_fault_wire(map, start, end, access_type) 1781 vm_map_t map; 1782 vaddr_t start, end; 1783 vm_prot_t access_type; 1784 { 1785 vaddr_t va; 1786 pmap_t pmap; 1787 int rv; 1788 1789 pmap = vm_map_pmap(map); 1790 1791 /* 1792 * now fault it in a page at a time. if the fault fails then we have 1793 * to undo what we have done. note that in uvm_fault VM_PROT_NONE 1794 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 1795 */ 1796 1797 for (va = start ; va < end ; va += PAGE_SIZE) { 1798 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type); 1799 if (rv) { 1800 if (va != start) { 1801 uvm_fault_unwire(map, start, va); 1802 } 1803 return (rv); 1804 } 1805 } 1806 1807 return (KERN_SUCCESS); 1808 } 1809 1810 /* 1811 * uvm_fault_unwire(): unwire range of virtual space. 1812 */ 1813 1814 void 1815 uvm_fault_unwire(map, start, end) 1816 vm_map_t map; 1817 vaddr_t start, end; 1818 { 1819 1820 vm_map_lock_read(map); 1821 uvm_fault_unwire_locked(map, start, end); 1822 vm_map_unlock_read(map); 1823 } 1824 1825 /* 1826 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 1827 * 1828 * => map must be at least read-locked. 1829 */ 1830 1831 void 1832 uvm_fault_unwire_locked(map, start, end) 1833 vm_map_t map; 1834 vaddr_t start, end; 1835 { 1836 vm_map_entry_t entry; 1837 pmap_t pmap = vm_map_pmap(map); 1838 vaddr_t va; 1839 paddr_t pa; 1840 struct vm_page *pg; 1841 1842 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 1843 1844 /* 1845 * we assume that the area we are unwiring has actually been wired 1846 * in the first place. this means that we should be able to extract 1847 * the PAs from the pmap. we also lock out the page daemon so that 1848 * we can call uvm_pageunwire. 1849 */ 1850 1851 uvm_lock_pageq(); 1852 1853 /* 1854 * find the beginning map entry for the region. 1855 */ 1856 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 1857 if (uvm_map_lookup_entry(map, start, &entry) == FALSE) 1858 panic("uvm_fault_unwire_locked: address not in map"); 1859 1860 for (va = start; va < end ; va += PAGE_SIZE) { 1861 if (pmap_extract(pmap, va, &pa) == FALSE) 1862 panic("uvm_fault_unwire_locked: unwiring " 1863 "non-wired memory"); 1864 1865 /* 1866 * make sure the current entry is for the address we're 1867 * dealing with. if not, grab the next entry. 1868 */ 1869 1870 KASSERT(va >= entry->start); 1871 if (va >= entry->end) { 1872 KASSERT(entry->next != &map->header && 1873 entry->next->start <= entry->end); 1874 entry = entry->next; 1875 } 1876 1877 /* 1878 * if the entry is no longer wired, tell the pmap. 1879 */ 1880 if (VM_MAPENT_ISWIRED(entry) == 0) 1881 pmap_unwire(pmap, va); 1882 1883 pg = PHYS_TO_VM_PAGE(pa); 1884 if (pg) 1885 uvm_pageunwire(pg); 1886 } 1887 1888 uvm_unlock_pageq(); 1889 } 1890