xref: /openbsd/sys/uvm/uvm_fault.c (revision db3296cf)
1 /*	$OpenBSD: uvm_fault.c,v 1.31 2002/03/14 01:27:18 millert Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  *
6  * Copyright (c) 1997 Charles D. Cranor and Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Charles D. Cranor and
20  *      Washington University.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
36  */
37 
38 /*
39  * uvm_fault.c: fault handler
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/user.h>
49 
50 #include <uvm/uvm.h>
51 
52 /*
53  *
54  * a word on page faults:
55  *
56  * types of page faults we handle:
57  *
58  * CASE 1: upper layer faults                   CASE 2: lower layer faults
59  *
60  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
61  *    read/write1     write>1                  read/write   +-cow_write/zero
62  *         |             |                         |        |
63  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
64  * amap |  V  |       |  ----------->new|          |        | |  ^  |
65  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
66  *                                                 |        |    |
67  *      +-----+       +-----+                   +--|--+     | +--|--+
68  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
69  *      +-----+       +-----+                   +-----+       +-----+
70  *
71  * d/c = don't care
72  *
73  *   case [0]: layerless fault
74  *	no amap or uobj is present.   this is an error.
75  *
76  *   case [1]: upper layer fault [anon active]
77  *     1A: [read] or [write with anon->an_ref == 1]
78  *		I/O takes place in top level anon and uobj is not touched.
79  *     1B: [write with anon->an_ref > 1]
80  *		new anon is alloc'd and data is copied off ["COW"]
81  *
82  *   case [2]: lower layer fault [uobj]
83  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
84  *		I/O takes place directly in object.
85  *     2B: [write to copy_on_write] or [read on NULL uobj]
86  *		data is "promoted" from uobj to a new anon.
87  *		if uobj is null, then we zero fill.
88  *
89  * we follow the standard UVM locking protocol ordering:
90  *
91  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
92  * we hold a PG_BUSY page if we unlock for I/O
93  *
94  *
95  * the code is structured as follows:
96  *
97  *     - init the "IN" params in the ufi structure
98  *   ReFault:
99  *     - do lookups [locks maps], check protection, handle needs_copy
100  *     - check for case 0 fault (error)
101  *     - establish "range" of fault
102  *     - if we have an amap lock it and extract the anons
103  *     - if sequential advice deactivate pages behind us
104  *     - at the same time check pmap for unmapped areas and anon for pages
105  *	 that we could map in (and do map it if found)
106  *     - check object for resident pages that we could map in
107  *     - if (case 2) goto Case2
108  *     - >>> handle case 1
109  *           - ensure source anon is resident in RAM
110  *           - if case 1B alloc new anon and copy from source
111  *           - map the correct page in
112  *   Case2:
113  *     - >>> handle case 2
114  *           - ensure source page is resident (if uobj)
115  *           - if case 2B alloc new anon and copy from source (could be zero
116  *		fill if uobj == NULL)
117  *           - map the correct page in
118  *     - done!
119  *
120  * note on paging:
121  *   if we have to do I/O we place a PG_BUSY page in the correct object,
122  * unlock everything, and do the I/O.   when I/O is done we must reverify
123  * the state of the world before assuming that our data structures are
124  * valid.   [because mappings could change while the map is unlocked]
125  *
126  *  alternative 1: unbusy the page in question and restart the page fault
127  *    from the top (ReFault).   this is easy but does not take advantage
128  *    of the information that we already have from our previous lookup,
129  *    although it is possible that the "hints" in the vm_map will help here.
130  *
131  * alternative 2: the system already keeps track of a "version" number of
132  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
133  *    mapping) you bump the version number up by one...]   so, we can save
134  *    the version number of the map before we release the lock and start I/O.
135  *    then when I/O is done we can relock and check the version numbers
136  *    to see if anything changed.    this might save us some over 1 because
137  *    we don't have to unbusy the page and may be less compares(?).
138  *
139  * alternative 3: put in backpointers or a way to "hold" part of a map
140  *    in place while I/O is in progress.   this could be complex to
141  *    implement (especially with structures like amap that can be referenced
142  *    by multiple map entries, and figuring out what should wait could be
143  *    complex as well...).
144  *
145  * given that we are not currently multiprocessor or multithreaded we might
146  * as well choose alternative 2 now.   maybe alternative 3 would be useful
147  * in the future.    XXX keep in mind for future consideration//rechecking.
148  */
149 
150 /*
151  * local data structures
152  */
153 
154 struct uvm_advice {
155 	int advice;
156 	int nback;
157 	int nforw;
158 };
159 
160 /*
161  * page range array:
162  * note: index in array must match "advice" value
163  * XXX: borrowed numbers from freebsd.   do they work well for us?
164  */
165 
166 static struct uvm_advice uvmadvice[] = {
167 	{ MADV_NORMAL, 3, 4 },
168 	{ MADV_RANDOM, 0, 0 },
169 	{ MADV_SEQUENTIAL, 8, 7},
170 };
171 
172 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
173 
174 /*
175  * private prototypes
176  */
177 
178 static void uvmfault_amapcopy(struct uvm_faultinfo *);
179 static __inline void uvmfault_anonflush(struct vm_anon **, int);
180 
181 /*
182  * inline functions
183  */
184 
185 /*
186  * uvmfault_anonflush: try and deactivate pages in specified anons
187  *
188  * => does not have to deactivate page if it is busy
189  */
190 
191 static __inline void
192 uvmfault_anonflush(anons, n)
193 	struct vm_anon **anons;
194 	int n;
195 {
196 	int lcv;
197 	struct vm_page *pg;
198 
199 	for (lcv = 0 ; lcv < n ; lcv++) {
200 		if (anons[lcv] == NULL)
201 			continue;
202 		simple_lock(&anons[lcv]->an_lock);
203 		pg = anons[lcv]->u.an_page;
204 		if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
205 			uvm_lock_pageq();
206 			if (pg->wire_count == 0) {
207 #ifdef UBC
208 				pmap_clear_reference(pg);
209 #else
210 				pmap_page_protect(pg, VM_PROT_NONE);
211 #endif
212 				uvm_pagedeactivate(pg);
213 			}
214 			uvm_unlock_pageq();
215 		}
216 		simple_unlock(&anons[lcv]->an_lock);
217 	}
218 }
219 
220 /*
221  * normal functions
222  */
223 
224 /*
225  * uvmfault_amapcopy: clear "needs_copy" in a map.
226  *
227  * => called with VM data structures unlocked (usually, see below)
228  * => we get a write lock on the maps and clear needs_copy for a VA
229  * => if we are out of RAM we sleep (waiting for more)
230  */
231 
232 static void
233 uvmfault_amapcopy(ufi)
234 	struct uvm_faultinfo *ufi;
235 {
236 
237 	/*
238 	 * while we haven't done the job
239 	 */
240 
241 	while (1) {
242 
243 		/*
244 		 * no mapping?  give up.
245 		 */
246 
247 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
248 			return;
249 
250 		/*
251 		 * copy if needed.
252 		 */
253 
254 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
255 			amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
256 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
257 
258 		/*
259 		 * didn't work?  must be out of RAM.   unlock and sleep.
260 		 */
261 
262 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
263 			uvmfault_unlockmaps(ufi, TRUE);
264 			uvm_wait("fltamapcopy");
265 			continue;
266 		}
267 
268 		/*
269 		 * got it!   unlock and return.
270 		 */
271 
272 		uvmfault_unlockmaps(ufi, TRUE);
273 		return;
274 	}
275 	/*NOTREACHED*/
276 }
277 
278 /*
279  * uvmfault_anonget: get data in an anon into a non-busy, non-released
280  * page in that anon.
281  *
282  * => maps, amap, and anon locked by caller.
283  * => if we fail (result != VM_PAGER_OK) we unlock everything.
284  * => if we are successful, we return with everything still locked.
285  * => we don't move the page on the queues [gets moved later]
286  * => if we allocate a new page [we_own], it gets put on the queues.
287  *    either way, the result is that the page is on the queues at return time
288  * => for pages which are on loan from a uvm_object (and thus are not
289  *    owned by the anon): if successful, we return with the owning object
290  *    locked.   the caller must unlock this object when it unlocks everything
291  *    else.
292  */
293 
294 int
295 uvmfault_anonget(ufi, amap, anon)
296 	struct uvm_faultinfo *ufi;
297 	struct vm_amap *amap;
298 	struct vm_anon *anon;
299 {
300 	boolean_t we_own;	/* we own anon's page? */
301 	boolean_t locked;	/* did we relock? */
302 	struct vm_page *pg;
303 	int result;
304 	UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
305 
306 	result = 0;		/* XXX shut up gcc */
307 	uvmexp.fltanget++;
308         /* bump rusage counters */
309 	if (anon->u.an_page)
310 		curproc->p_addr->u_stats.p_ru.ru_minflt++;
311 	else
312 		curproc->p_addr->u_stats.p_ru.ru_majflt++;
313 
314 	/*
315 	 * loop until we get it, or fail.
316 	 */
317 
318 	while (1) {
319 
320 		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
321 		pg = anon->u.an_page;
322 
323 		/*
324 		 * if there is a resident page and it is loaned, then anon
325 		 * may not own it.   call out to uvm_anon_lockpage() to ensure
326 		 * the real owner of the page has been identified and locked.
327 		 */
328 
329 		if (pg && pg->loan_count)
330 			pg = uvm_anon_lockloanpg(anon);
331 
332 		/*
333 		 * page there?   make sure it is not busy/released.
334 		 */
335 
336 		if (pg) {
337 
338 			/*
339 			 * at this point, if the page has a uobject [meaning
340 			 * we have it on loan], then that uobject is locked
341 			 * by us!   if the page is busy, we drop all the
342 			 * locks (including uobject) and try again.
343 			 */
344 
345 			if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
346 				UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
347 				return (VM_PAGER_OK);
348 			}
349 			pg->flags |= PG_WANTED;
350 			uvmexp.fltpgwait++;
351 
352 			/*
353 			 * the last unlock must be an atomic unlock+wait on
354 			 * the owner of page
355 			 */
356 			if (pg->uobject) {	/* owner is uobject ? */
357 				uvmfault_unlockall(ufi, amap, NULL, anon);
358 				UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
359 				    0,0,0);
360 				UVM_UNLOCK_AND_WAIT(pg,
361 				    &pg->uobject->vmobjlock,
362 				    FALSE, "anonget1",0);
363 			} else {
364 				/* anon owns page */
365 				uvmfault_unlockall(ufi, amap, NULL, NULL);
366 				UVMHIST_LOG(maphist, " unlock+wait on anon",0,
367 				    0,0,0);
368 				UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
369 				    "anonget2",0);
370 			}
371 			/* ready to relock and try again */
372 
373 		} else {
374 
375 			/*
376 			 * no page, we must try and bring it in.
377 			 */
378 			pg = uvm_pagealloc(NULL, 0, anon, 0);
379 
380 			if (pg == NULL) {		/* out of RAM.  */
381 
382 				uvmfault_unlockall(ufi, amap, NULL, anon);
383 				uvmexp.fltnoram++;
384 				UVMHIST_LOG(maphist, "  noram -- UVM_WAIT",0,
385 				    0,0,0);
386 				uvm_wait("flt_noram1");
387 				/* ready to relock and try again */
388 
389 			} else {
390 
391 				/* we set the PG_BUSY bit */
392 				we_own = TRUE;
393 				uvmfault_unlockall(ufi, amap, NULL, anon);
394 
395 				/*
396 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
397 				 * page into the uvm_swap_get function with
398 				 * all data structures unlocked.  note that
399 				 * it is ok to read an_swslot here because
400 				 * we hold PG_BUSY on the page.
401 				 */
402 				uvmexp.pageins++;
403 				result = uvm_swap_get(pg, anon->an_swslot,
404 				    PGO_SYNCIO);
405 
406 				/*
407 				 * we clean up after the i/o below in the
408 				 * "we_own" case
409 				 */
410 				/* ready to relock and try again */
411 			}
412 		}
413 
414 		/*
415 		 * now relock and try again
416 		 */
417 
418 		locked = uvmfault_relock(ufi);
419 		if (locked && amap != NULL) {
420 			amap_lock(amap);
421 		}
422 		if (locked || we_own)
423 			simple_lock(&anon->an_lock);
424 
425 		/*
426 		 * if we own the page (i.e. we set PG_BUSY), then we need
427 		 * to clean up after the I/O. there are three cases to
428 		 * consider:
429 		 *   [1] page released during I/O: free anon and ReFault.
430 		 *   [2] I/O not OK.   free the page and cause the fault
431 		 *       to fail.
432 		 *   [3] I/O OK!   activate the page and sync with the
433 		 *       non-we_own case (i.e. drop anon lock if not locked).
434 		 */
435 
436 		if (we_own) {
437 
438 			if (pg->flags & PG_WANTED) {
439 				/* still holding object lock */
440 				wakeup(pg);
441 			}
442 			/* un-busy! */
443 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
444 			UVM_PAGE_OWN(pg, NULL);
445 
446 			/*
447 			 * if we were RELEASED during I/O, then our anon is
448 			 * no longer part of an amap.   we need to free the
449 			 * anon and try again.
450 			 */
451 			if (pg->flags & PG_RELEASED) {
452 				pmap_page_protect(pg, VM_PROT_NONE);
453 				simple_unlock(&anon->an_lock);
454 				uvm_anfree(anon);	/* frees page for us */
455 				if (locked)
456 					uvmfault_unlockall(ufi, amap, NULL,
457 							   NULL);
458 				uvmexp.fltpgrele++;
459 				UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
460 				return (VM_PAGER_REFAULT);	/* refault! */
461 			}
462 
463 			if (result != VM_PAGER_OK) {
464 				KASSERT(result != VM_PAGER_PEND);
465 
466 				/* remove page from anon */
467 				anon->u.an_page = NULL;
468 
469 				/*
470 				 * remove the swap slot from the anon
471 				 * and mark the anon as having no real slot.
472 				 * don't free the swap slot, thus preventing
473 				 * it from being used again.
474 				 */
475 				uvm_swap_markbad(anon->an_swslot, 1);
476 				anon->an_swslot = SWSLOT_BAD;
477 
478 				/*
479 				 * note: page was never !PG_BUSY, so it
480 				 * can't be mapped and thus no need to
481 				 * pmap_page_protect it...
482 				 */
483 				uvm_lock_pageq();
484 				uvm_pagefree(pg);
485 				uvm_unlock_pageq();
486 
487 				if (locked)
488 					uvmfault_unlockall(ufi, amap, NULL,
489 					    anon);
490 				else
491 					simple_unlock(&anon->an_lock);
492 				UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
493 				return (VM_PAGER_ERROR);
494 			}
495 
496 			/*
497 			 * must be OK, clear modify (already PG_CLEAN)
498 			 * and activate
499 			 */
500 			pmap_clear_modify(pg);
501 			uvm_lock_pageq();
502 			uvm_pageactivate(pg);
503 			uvm_unlock_pageq();
504 			if (!locked)
505 				simple_unlock(&anon->an_lock);
506 		}
507 
508 		/*
509 		 * we were not able to relock.   restart fault.
510 		 */
511 
512 		if (!locked) {
513 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
514 			return (VM_PAGER_REFAULT);
515 		}
516 
517 		/*
518 		 * verify no one has touched the amap and moved the anon on us.
519 		 */
520 
521 		if (ufi != NULL &&
522 		    amap_lookup(&ufi->entry->aref,
523 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
524 
525 			uvmfault_unlockall(ufi, amap, NULL, anon);
526 			UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
527 			return (VM_PAGER_REFAULT);
528 		}
529 
530 		/*
531 		 * try it again!
532 		 */
533 
534 		uvmexp.fltanretry++;
535 		continue;
536 
537 	} /* while (1) */
538 
539 	/*NOTREACHED*/
540 }
541 
542 /*
543  *   F A U L T   -   m a i n   e n t r y   p o i n t
544  */
545 
546 /*
547  * uvm_fault: page fault handler
548  *
549  * => called from MD code to resolve a page fault
550  * => VM data structures usually should be unlocked.   however, it is
551  *	possible to call here with the main map locked if the caller
552  *	gets a write lock, sets it recusive, and then calls us (c.f.
553  *	uvm_map_pageable).   this should be avoided because it keeps
554  *	the map locked off during I/O.
555  */
556 
557 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
558 			 ~VM_PROT_WRITE : VM_PROT_ALL)
559 
560 int
561 uvm_fault(orig_map, vaddr, fault_type, access_type)
562 	vm_map_t orig_map;
563 	vaddr_t vaddr;
564 	vm_fault_t fault_type;
565 	vm_prot_t access_type;
566 {
567 	struct uvm_faultinfo ufi;
568 	vm_prot_t enter_prot;
569 	boolean_t wired, narrow, promote, locked, shadowed;
570 	int npages, nback, nforw, centeridx, result, lcv, gotpages;
571 	vaddr_t startva, objaddr, currva, offset, uoff;
572 	paddr_t pa;
573 	struct vm_amap *amap;
574 	struct uvm_object *uobj;
575 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
576 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
577 	UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
578 
579 	UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
580 	      orig_map, vaddr, fault_type, access_type);
581 
582 	anon = NULL;
583 	pg = NULL;
584 
585 	uvmexp.faults++;	/* XXX: locking? */
586 
587 	/*
588 	 * init the IN parameters in the ufi
589 	 */
590 
591 	ufi.orig_map = orig_map;
592 	ufi.orig_rvaddr = trunc_page(vaddr);
593 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
594 	if (fault_type == VM_FAULT_WIRE)
595 		narrow = TRUE;		/* don't look for neighborhood
596 					 * pages on wire */
597 	else
598 		narrow = FALSE;		/* normal fault */
599 
600 	/*
601 	 * before we do anything else, if this is a fault on a kernel
602 	 * address, check to see if the address is managed by an
603 	 * interrupt-safe map.  If it is, we fail immediately.  Intrsafe
604 	 * maps are never pageable, and this approach avoids an evil
605 	 * locking mess.
606 	 */
607 	if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
608 		UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
609 		    ufi.orig_rvaddr, ufi.map, 0, 0);
610 		return (KERN_FAILURE);
611 	}
612 
613 	/*
614 	 * "goto ReFault" means restart the page fault from ground zero.
615 	 */
616 ReFault:
617 
618 	/*
619 	 * lookup and lock the maps
620 	 */
621 
622 	if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
623 		UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
624 		return (KERN_INVALID_ADDRESS);
625 	}
626 	/* locked: maps(read) */
627 
628 	/*
629 	 * check protection
630 	 */
631 
632 	if ((ufi.entry->protection & access_type) != access_type) {
633 		UVMHIST_LOG(maphist,
634 		    "<- protection failure (prot=0x%x, access=0x%x)",
635 		    ufi.entry->protection, access_type, 0, 0);
636 		uvmfault_unlockmaps(&ufi, FALSE);
637 		return (KERN_PROTECTION_FAILURE);
638 	}
639 
640 	/*
641 	 * if the map is not a pageable map, a page fault always fails.
642 	 */
643 
644 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
645 		UVMHIST_LOG(maphist,
646 		    "<- map %p not pageable", ufi.map, 0, 0, 0);
647 		uvmfault_unlockmaps(&ufi, FALSE);
648 		return (KERN_FAILURE);
649 	}
650 
651 	/*
652 	 * "enter_prot" is the protection we want to enter the page in at.
653 	 * for certain pages (e.g. copy-on-write pages) this protection can
654 	 * be more strict than ufi.entry->protection.  "wired" means either
655 	 * the entry is wired or we are fault-wiring the pg.
656 	 */
657 
658 	enter_prot = ufi.entry->protection;
659 	wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
660 	if (wired)
661 		access_type = enter_prot; /* full access for wired */
662 
663 	/*
664 	 * handle "needs_copy" case.   if we need to copy the amap we will
665 	 * have to drop our readlock and relock it with a write lock.  (we
666 	 * need a write lock to change anything in a map entry [e.g.
667 	 * needs_copy]).
668 	 */
669 
670 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
671 		if ((access_type & VM_PROT_WRITE) ||
672 		    (ufi.entry->object.uvm_obj == NULL)) {
673 			/* need to clear */
674 			UVMHIST_LOG(maphist,
675 			    "  need to clear needs_copy and refault",0,0,0,0);
676 			uvmfault_unlockmaps(&ufi, FALSE);
677 			uvmfault_amapcopy(&ufi);
678 			uvmexp.fltamcopy++;
679 			goto ReFault;
680 
681 		} else {
682 
683 			/*
684 			 * ensure that we pmap_enter page R/O since
685 			 * needs_copy is still true
686 			 */
687 			enter_prot &= ~VM_PROT_WRITE;
688 
689 		}
690 	}
691 
692 	/*
693 	 * identify the players
694 	 */
695 
696 	amap = ufi.entry->aref.ar_amap;		/* top layer */
697 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
698 
699 	/*
700 	 * check for a case 0 fault.  if nothing backing the entry then
701 	 * error now.
702 	 */
703 
704 	if (amap == NULL && uobj == NULL) {
705 		uvmfault_unlockmaps(&ufi, FALSE);
706 		UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
707 		return (KERN_INVALID_ADDRESS);
708 	}
709 
710 	/*
711 	 * establish range of interest based on advice from mapper
712 	 * and then clip to fit map entry.   note that we only want
713 	 * to do this the first time through the fault.   if we
714 	 * ReFault we will disable this by setting "narrow" to true.
715 	 */
716 
717 	if (narrow == FALSE) {
718 
719 		/* wide fault (!narrow) */
720 		KASSERT(uvmadvice[ufi.entry->advice].advice ==
721 			 ufi.entry->advice);
722 		nback = min(uvmadvice[ufi.entry->advice].nback,
723 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
724 		startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
725 		nforw = min(uvmadvice[ufi.entry->advice].nforw,
726 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
727 			     PAGE_SHIFT) - 1);
728 		/*
729 		 * note: "-1" because we don't want to count the
730 		 * faulting page as forw
731 		 */
732 		npages = nback + nforw + 1;
733 		centeridx = nback;
734 
735 		narrow = TRUE;	/* ensure only once per-fault */
736 
737 	} else {
738 
739 		/* narrow fault! */
740 		nback = nforw = 0;
741 		startva = ufi.orig_rvaddr;
742 		npages = 1;
743 		centeridx = 0;
744 
745 	}
746 
747 	/* locked: maps(read) */
748 	UVMHIST_LOG(maphist, "  narrow=%d, back=%d, forw=%d, startva=0x%x",
749 		    narrow, nback, nforw, startva);
750 	UVMHIST_LOG(maphist, "  entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
751 		    amap, uobj, 0);
752 
753 	/*
754 	 * if we've got an amap, lock it and extract current anons.
755 	 */
756 
757 	if (amap) {
758 		amap_lock(amap);
759 		anons = anons_store;
760 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
761 		    anons, npages);
762 	} else {
763 		anons = NULL;	/* to be safe */
764 	}
765 
766 	/* locked: maps(read), amap(if there) */
767 
768 	/*
769 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
770 	 * now and then forget about them (for the rest of the fault).
771 	 */
772 
773 	if (ufi.entry->advice == MADV_SEQUENTIAL) {
774 
775 		UVMHIST_LOG(maphist, "  MADV_SEQUENTIAL: flushing backpages",
776 		    0,0,0,0);
777 		/* flush back-page anons? */
778 		if (amap)
779 			uvmfault_anonflush(anons, nback);
780 
781 		/* flush object? */
782 		if (uobj) {
783 			objaddr =
784 			    (startva - ufi.entry->start) + ufi.entry->offset;
785 			simple_lock(&uobj->vmobjlock);
786 			(void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
787 				    (nback << PAGE_SHIFT), PGO_DEACTIVATE);
788 			simple_unlock(&uobj->vmobjlock);
789 		}
790 
791 		/* now forget about the backpages */
792 		if (amap)
793 			anons += nback;
794 		startva += (nback << PAGE_SHIFT);
795 		npages -= nback;
796 		nback = centeridx = 0;
797 	}
798 
799 	/* locked: maps(read), amap(if there) */
800 
801 	/*
802 	 * map in the backpages and frontpages we found in the amap in hopes
803 	 * of preventing future faults.    we also init the pages[] array as
804 	 * we go.
805 	 */
806 
807 	currva = startva;
808 	shadowed = FALSE;
809 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
810 
811 		/*
812 		 * dont play with VAs that are already mapped
813 		 * except for center)
814 		 */
815 		if (lcv != centeridx &&
816 		    pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
817 			pages[lcv] = PGO_DONTCARE;
818 			continue;
819 		}
820 
821 		/*
822 		 * unmapped or center page.   check if any anon at this level.
823 		 */
824 		if (amap == NULL || anons[lcv] == NULL) {
825 			pages[lcv] = NULL;
826 			continue;
827 		}
828 
829 		/*
830 		 * check for present page and map if possible.   re-activate it.
831 		 */
832 
833 		pages[lcv] = PGO_DONTCARE;
834 		if (lcv == centeridx) {		/* save center for later! */
835 			shadowed = TRUE;
836 			continue;
837 		}
838 		anon = anons[lcv];
839 		simple_lock(&anon->an_lock);
840 		/* ignore loaned pages */
841 		if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
842 			(anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
843 			uvm_lock_pageq();
844 			uvm_pageactivate(anon->u.an_page);	/* reactivate */
845 			uvm_unlock_pageq();
846 			UVMHIST_LOG(maphist,
847 			    "  MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
848 			    ufi.orig_map->pmap, currva, anon->u.an_page, 0);
849 			uvmexp.fltnamap++;
850 
851 			/*
852 			 * Since this isn't the page that's actually faulting,
853 			 * ignore pmap_enter() failures; it's not critical
854 			 * that we enter these right now.
855 			 */
856 
857 			(void) pmap_enter(ufi.orig_map->pmap, currva,
858 			    VM_PAGE_TO_PHYS(anon->u.an_page),
859 			    (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
860 			    enter_prot,
861 			    PMAP_CANFAIL |
862 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
863 		}
864 		simple_unlock(&anon->an_lock);
865 	}
866 
867 	/* locked: maps(read), amap(if there) */
868 	/* (shadowed == TRUE) if there is an anon at the faulting address */
869 	UVMHIST_LOG(maphist, "  shadowed=%d, will_get=%d", shadowed,
870 	    (uobj && shadowed == FALSE),0,0);
871 
872 	/*
873 	 * note that if we are really short of RAM we could sleep in the above
874 	 * call to pmap_enter with everything locked.   bad?
875 	 *
876 	 * XXX Actually, that is bad; pmap_enter() should just fail in that
877 	 * XXX case.  --thorpej
878 	 */
879 
880 	/*
881 	 * if the desired page is not shadowed by the amap and we have a
882 	 * backing object, then we check to see if the backing object would
883 	 * prefer to handle the fault itself (rather than letting us do it
884 	 * with the usual pgo_get hook).  the backing object signals this by
885 	 * providing a pgo_fault routine.
886 	 */
887 
888 	if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
889 		simple_lock(&uobj->vmobjlock);
890 
891 		/* locked: maps(read), amap (if there), uobj */
892 		result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
893 				    centeridx, fault_type, access_type,
894 				    PGO_LOCKED);
895 
896 		/* locked: nothing, pgo_fault has unlocked everything */
897 
898 		if (result == VM_PAGER_OK)
899 			return (KERN_SUCCESS);	/* pgo_fault did pmap enter */
900 		else if (result == VM_PAGER_REFAULT)
901 			goto ReFault;		/* try again! */
902 		else
903 			return (KERN_PROTECTION_FAILURE);
904 	}
905 
906 	/*
907 	 * now, if the desired page is not shadowed by the amap and we have
908 	 * a backing object that does not have a special fault routine, then
909 	 * we ask (with pgo_get) the object for resident pages that we care
910 	 * about and attempt to map them in.  we do not let pgo_get block
911 	 * (PGO_LOCKED).
912 	 *
913 	 * ("get" has the option of doing a pmap_enter for us)
914 	 */
915 
916 	if (uobj && shadowed == FALSE) {
917 		simple_lock(&uobj->vmobjlock);
918 
919 		/* locked (!shadowed): maps(read), amap (if there), uobj */
920 		/*
921 		 * the following call to pgo_get does _not_ change locking state
922 		 */
923 
924 		uvmexp.fltlget++;
925 		gotpages = npages;
926 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
927 				(startva - ufi.entry->start),
928 				pages, &gotpages, centeridx,
929 				access_type & MASK(ufi.entry),
930 				ufi.entry->advice, PGO_LOCKED);
931 
932 		/*
933 		 * check for pages to map, if we got any
934 		 */
935 
936 		uobjpage = NULL;
937 
938 		if (gotpages) {
939 			currva = startva;
940 			for (lcv = 0 ; lcv < npages ;
941 			    lcv++, currva += PAGE_SIZE) {
942 
943 				if (pages[lcv] == NULL ||
944 				    pages[lcv] == PGO_DONTCARE)
945 					continue;
946 
947 				KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
948 
949 				/*
950 				 * if center page is resident and not
951 				 * PG_BUSY|PG_RELEASED then pgo_get
952 				 * made it PG_BUSY for us and gave
953 				 * us a handle to it.   remember this
954 				 * page as "uobjpage." (for later use).
955 				 */
956 
957 				if (lcv == centeridx) {
958 					uobjpage = pages[lcv];
959 					UVMHIST_LOG(maphist, "  got uobjpage "
960 					    "(0x%x) with locked get",
961 					    uobjpage, 0,0,0);
962 					continue;
963 				}
964 
965 				/*
966 				 * note: calling pgo_get with locked data
967 				 * structures returns us pages which are
968 				 * neither busy nor released, so we don't
969 				 * need to check for this.   we can just
970 				 * directly enter the page (after moving it
971 				 * to the head of the active queue [useful?]).
972 				 */
973 
974 				uvm_lock_pageq();
975 				uvm_pageactivate(pages[lcv]);	/* reactivate */
976 				uvm_unlock_pageq();
977 				UVMHIST_LOG(maphist,
978 				  "  MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
979 				  ufi.orig_map->pmap, currva, pages[lcv], 0);
980 				uvmexp.fltnomap++;
981 
982 				/*
983 				 * Since this page isn't the page that's
984 				 * actually fauling, ignore pmap_enter()
985 				 * failures; it's not critical that we
986 				 * enter these right now.
987 				 */
988 
989 				(void) pmap_enter(ufi.orig_map->pmap, currva,
990 				    VM_PAGE_TO_PHYS(pages[lcv]),
991 				    enter_prot & MASK(ufi.entry),
992 				    PMAP_CANFAIL |
993 				     (wired ? PMAP_WIRED : 0));
994 
995 				/*
996 				 * NOTE: page can't be PG_WANTED or PG_RELEASED
997 				 * because we've held the lock the whole time
998 				 * we've had the handle.
999 				 */
1000 
1001 				pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1002 				UVM_PAGE_OWN(pages[lcv], NULL);
1003 			}	/* for "lcv" loop */
1004 		}   /* "gotpages" != 0 */
1005 		/* note: object still _locked_ */
1006 	} else {
1007 		uobjpage = NULL;
1008 	}
1009 
1010 	/* locked (shadowed): maps(read), amap */
1011 	/* locked (!shadowed): maps(read), amap(if there),
1012 		 uobj(if !null), uobjpage(if !null) */
1013 
1014 	/*
1015 	 * note that at this point we are done with any front or back pages.
1016 	 * we are now going to focus on the center page (i.e. the one we've
1017 	 * faulted on).  if we have faulted on the top (anon) layer
1018 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1019 	 * not touched it yet).  if we have faulted on the bottom (uobj)
1020 	 * layer [i.e. case 2] and the page was both present and available,
1021 	 * then we've got a pointer to it as "uobjpage" and we've already
1022 	 * made it BUSY.
1023 	 */
1024 
1025 	/*
1026 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1027 	 */
1028 
1029 	/*
1030 	 * redirect case 2: if we are not shadowed, go to case 2.
1031 	 */
1032 
1033 	if (shadowed == FALSE)
1034 		goto Case2;
1035 
1036 	/* locked: maps(read), amap */
1037 
1038 	/*
1039 	 * handle case 1: fault on an anon in our amap
1040 	 */
1041 
1042 	anon = anons[centeridx];
1043 	UVMHIST_LOG(maphist, "  case 1 fault: anon=0x%x", anon, 0,0,0);
1044 	simple_lock(&anon->an_lock);
1045 
1046 	/* locked: maps(read), amap, anon */
1047 
1048 	/*
1049 	 * no matter if we have case 1A or case 1B we are going to need to
1050 	 * have the anon's memory resident.   ensure that now.
1051 	 */
1052 
1053 	/*
1054 	 * let uvmfault_anonget do the dirty work.
1055 	 * if it fails (!OK) it will unlock everything for us.
1056 	 * if it succeeds, locks are still valid and locked.
1057 	 * also, if it is OK, then the anon's page is on the queues.
1058 	 * if the page is on loan from a uvm_object, then anonget will
1059 	 * lock that object for us if it does not fail.
1060 	 */
1061 
1062 	result = uvmfault_anonget(&ufi, amap, anon);
1063 	switch (result) {
1064 	case VM_PAGER_OK:
1065 		break;
1066 
1067 	case VM_PAGER_REFAULT:
1068 		goto ReFault;
1069 
1070 	case VM_PAGER_ERROR:
1071 		/*
1072 		 * An error occured while trying to bring in the
1073 		 * page -- this is the only error we return right
1074 		 * now.
1075 		 */
1076 		return (KERN_PROTECTION_FAILURE);	/* XXX */
1077 
1078 	default:
1079 #ifdef DIAGNOSTIC
1080 		panic("uvm_fault: uvmfault_anonget -> %d", result);
1081 #else
1082 		return (KERN_PROTECTION_FAILURE);
1083 #endif
1084 	}
1085 
1086 	/*
1087 	 * uobj is non null if the page is on loan from an object (i.e. uobj)
1088 	 */
1089 
1090 	uobj = anon->u.an_page->uobject;	/* locked by anonget if !NULL */
1091 
1092 	/* locked: maps(read), amap, anon, uobj(if one) */
1093 
1094 	/*
1095 	 * special handling for loaned pages
1096 	 */
1097 
1098 	if (anon->u.an_page->loan_count) {
1099 
1100 		if ((access_type & VM_PROT_WRITE) == 0) {
1101 
1102 			/*
1103 			 * for read faults on loaned pages we just cap the
1104 			 * protection at read-only.
1105 			 */
1106 
1107 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1108 
1109 		} else {
1110 			/*
1111 			 * note that we can't allow writes into a loaned page!
1112 			 *
1113 			 * if we have a write fault on a loaned page in an
1114 			 * anon then we need to look at the anon's ref count.
1115 			 * if it is greater than one then we are going to do
1116 			 * a normal copy-on-write fault into a new anon (this
1117 			 * is not a problem).  however, if the reference count
1118 			 * is one (a case where we would normally allow a
1119 			 * write directly to the page) then we need to kill
1120 			 * the loan before we continue.
1121 			 */
1122 
1123 			/* >1 case is already ok */
1124 			if (anon->an_ref == 1) {
1125 
1126 				/* get new un-owned replacement page */
1127 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1128 				if (pg == NULL) {
1129 					uvmfault_unlockall(&ufi, amap, uobj,
1130 					    anon);
1131 					uvm_wait("flt_noram2");
1132 					goto ReFault;
1133 				}
1134 
1135 				/*
1136 				 * copy data, kill loan, and drop uobj lock
1137 				 * (if any)
1138 				 */
1139 				/* copy old -> new */
1140 				uvm_pagecopy(anon->u.an_page, pg);
1141 
1142 				/* force reload */
1143 				pmap_page_protect(anon->u.an_page,
1144 						  VM_PROT_NONE);
1145 				uvm_lock_pageq();	  /* KILL loan */
1146 				if (uobj)
1147 					/* if we were loaning */
1148 					anon->u.an_page->loan_count--;
1149 				anon->u.an_page->uanon = NULL;
1150 				/* in case we owned */
1151 				anon->u.an_page->pqflags &= ~PQ_ANON;
1152 				uvm_unlock_pageq();
1153 				if (uobj) {
1154 					simple_unlock(&uobj->vmobjlock);
1155 					uobj = NULL;
1156 				}
1157 
1158 				/* install new page in anon */
1159 				anon->u.an_page = pg;
1160 				pg->uanon = anon;
1161 				pg->pqflags |= PQ_ANON;
1162 				pg->flags &= ~(PG_BUSY|PG_FAKE);
1163 				UVM_PAGE_OWN(pg, NULL);
1164 
1165 				/* done! */
1166 			}     /* ref == 1 */
1167 		}       /* write fault */
1168 	}         /* loan count */
1169 
1170 	/*
1171 	 * if we are case 1B then we will need to allocate a new blank
1172 	 * anon to transfer the data into.   note that we have a lock
1173 	 * on anon, so no one can busy or release the page until we are done.
1174 	 * also note that the ref count can't drop to zero here because
1175 	 * it is > 1 and we are only dropping one ref.
1176 	 *
1177 	 * in the (hopefully very rare) case that we are out of RAM we
1178 	 * will unlock, wait for more RAM, and refault.
1179 	 *
1180 	 * if we are out of anon VM we kill the process (XXX: could wait?).
1181 	 */
1182 
1183 	if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1184 
1185 		UVMHIST_LOG(maphist, "  case 1B: COW fault",0,0,0,0);
1186 		uvmexp.flt_acow++;
1187 		oanon = anon;		/* oanon = old, locked anon */
1188 		anon = uvm_analloc();
1189 		if (anon) {
1190 			pg = uvm_pagealloc(NULL, 0, anon, 0);
1191 		}
1192 
1193 		/* check for out of RAM */
1194 		if (anon == NULL || pg == NULL) {
1195 			if (anon)
1196 				uvm_anfree(anon);
1197 			uvmfault_unlockall(&ufi, amap, uobj, oanon);
1198 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1199 			if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1200 				UVMHIST_LOG(maphist,
1201 				    "<- failed.  out of VM",0,0,0,0);
1202 				uvmexp.fltnoanon++;
1203 				return (KERN_RESOURCE_SHORTAGE);
1204 			}
1205 
1206 			uvmexp.fltnoram++;
1207 			uvm_wait("flt_noram3");	/* out of RAM, wait for more */
1208 			goto ReFault;
1209 		}
1210 
1211 		/* got all resources, replace anon with nanon */
1212 
1213 		uvm_pagecopy(oanon->u.an_page, pg);	/* pg now !PG_CLEAN */
1214 		pg->flags &= ~(PG_BUSY|PG_FAKE);	/* un-busy! new page */
1215 		UVM_PAGE_OWN(pg, NULL);
1216 		amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1217 		    anon, 1);
1218 
1219 		/* deref: can not drop to zero here by defn! */
1220 		oanon->an_ref--;
1221 
1222 		/*
1223 		 * note: oanon still locked.   anon is _not_ locked, but we
1224 		 * have the sole references to in from amap which _is_ locked.
1225 		 * thus, no one can get at it until we are done with it.
1226 		 */
1227 
1228 	} else {
1229 
1230 		uvmexp.flt_anon++;
1231 		oanon = anon;		/* old, locked anon is same as anon */
1232 		pg = anon->u.an_page;
1233 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1234 			enter_prot = enter_prot & ~VM_PROT_WRITE;
1235 
1236 	}
1237 
1238 	/* locked: maps(read), amap, oanon */
1239 
1240 	/*
1241 	 * now map the page in ...
1242 	 * XXX: old fault unlocks object before pmap_enter.  this seems
1243 	 * suspect since some other thread could blast the page out from
1244 	 * under us between the unlock and the pmap_enter.
1245 	 */
1246 
1247 	UVMHIST_LOG(maphist, "  MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1248 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1249 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1250 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1251 	    != KERN_SUCCESS) {
1252 		/*
1253 		 * No need to undo what we did; we can simply think of
1254 		 * this as the pmap throwing away the mapping information.
1255 		 *
1256 		 * We do, however, have to go through the ReFault path,
1257 		 * as the map may change while we're asleep.
1258 		 */
1259 		uvmfault_unlockall(&ufi, amap, uobj, oanon);
1260 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1261 		if (uvmexp.swpgonly == uvmexp.swpages) {
1262 			UVMHIST_LOG(maphist,
1263 			    "<- failed.  out of VM",0,0,0,0);
1264 			/* XXX instrumentation */
1265 			return (KERN_RESOURCE_SHORTAGE);
1266 		}
1267 		/* XXX instrumentation */
1268 		uvm_wait("flt_pmfail1");
1269 		goto ReFault;
1270 	}
1271 
1272 	/*
1273 	 * ... update the page queues.
1274 	 */
1275 
1276 	uvm_lock_pageq();
1277 
1278 	if (fault_type == VM_FAULT_WIRE) {
1279 		uvm_pagewire(pg);
1280 
1281 		/*
1282 		 * since the now-wired page cannot be paged out,
1283 		 * release its swap resources for others to use.
1284 		 * since an anon with no swap cannot be PG_CLEAN,
1285 		 * clear its clean flag now.
1286 		 */
1287 
1288 		pg->flags &= ~(PG_CLEAN);
1289 		uvm_anon_dropswap(anon);
1290 	} else {
1291 		/* activate it */
1292 		uvm_pageactivate(pg);
1293 	}
1294 
1295 	uvm_unlock_pageq();
1296 
1297 	/*
1298 	 * done case 1!  finish up by unlocking everything and returning success
1299 	 */
1300 
1301 	uvmfault_unlockall(&ufi, amap, uobj, oanon);
1302 	return (KERN_SUCCESS);
1303 
1304 
1305 Case2:
1306 	/*
1307 	 * handle case 2: faulting on backing object or zero fill
1308 	 */
1309 
1310 	/*
1311 	 * locked:
1312 	 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1313 	 */
1314 
1315 	/*
1316 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1317 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1318 	 * have a backing object, check and see if we are going to promote
1319 	 * the data up to an anon during the fault.
1320 	 */
1321 
1322 	if (uobj == NULL) {
1323 		uobjpage = PGO_DONTCARE;
1324 		promote = TRUE;		/* always need anon here */
1325 	} else {
1326 		KASSERT(uobjpage != PGO_DONTCARE);
1327 		promote = (access_type & VM_PROT_WRITE) &&
1328 		     UVM_ET_ISCOPYONWRITE(ufi.entry);
1329 	}
1330 	UVMHIST_LOG(maphist, "  case 2 fault: promote=%d, zfill=%d",
1331 	    promote, (uobj == NULL), 0,0);
1332 
1333 	/*
1334 	 * if uobjpage is not null then we do not need to do I/O to get the
1335 	 * uobjpage.
1336 	 *
1337 	 * if uobjpage is null, then we need to unlock and ask the pager to
1338 	 * get the data for us.   once we have the data, we need to reverify
1339 	 * the state the world.   we are currently not holding any resources.
1340 	 */
1341 
1342 	if (uobjpage) {
1343 		/* update rusage counters */
1344 		curproc->p_addr->u_stats.p_ru.ru_minflt++;
1345 	} else {
1346 		/* update rusage counters */
1347 		curproc->p_addr->u_stats.p_ru.ru_majflt++;
1348 
1349 		/* locked: maps(read), amap(if there), uobj */
1350 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1351 		/* locked: uobj */
1352 
1353 		uvmexp.fltget++;
1354 		gotpages = 1;
1355 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1356 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1357 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1358 		    PGO_SYNCIO);
1359 
1360 		/* locked: uobjpage(if result OK) */
1361 
1362 		/*
1363 		 * recover from I/O
1364 		 */
1365 
1366 		if (result != VM_PAGER_OK) {
1367 			KASSERT(result != VM_PAGER_PEND);
1368 
1369 			if (result == VM_PAGER_AGAIN) {
1370 				UVMHIST_LOG(maphist,
1371 				    "  pgo_get says TRY AGAIN!",0,0,0,0);
1372 				tsleep((caddr_t)&lbolt, PVM, "fltagain2", 0);
1373 				goto ReFault;
1374 			}
1375 
1376 			UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1377 			    result, 0,0,0);
1378 			return (KERN_PROTECTION_FAILURE); /* XXX i/o error */
1379 		}
1380 
1381 		/* locked: uobjpage */
1382 
1383 		/*
1384 		 * re-verify the state of the world by first trying to relock
1385 		 * the maps.  always relock the object.
1386 		 */
1387 
1388 		locked = uvmfault_relock(&ufi);
1389 		if (locked && amap)
1390 			amap_lock(amap);
1391 		simple_lock(&uobj->vmobjlock);
1392 
1393 		/* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1394 		/* locked(!locked): uobj, uobjpage */
1395 
1396 		/*
1397 		 * verify that the page has not be released and re-verify
1398 		 * that amap slot is still free.   if there is a problem,
1399 		 * we unlock and clean up.
1400 		 */
1401 
1402 		if ((uobjpage->flags & PG_RELEASED) != 0 ||
1403 		    (locked && amap &&
1404 		    amap_lookup(&ufi.entry->aref,
1405 		      ufi.orig_rvaddr - ufi.entry->start))) {
1406 			if (locked)
1407 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1408 			locked = FALSE;
1409 		}
1410 
1411 		/*
1412 		 * didn't get the lock?   release the page and retry.
1413 		 */
1414 
1415 		if (locked == FALSE) {
1416 
1417 			UVMHIST_LOG(maphist,
1418 			    "  wasn't able to relock after fault: retry",
1419 			    0,0,0,0);
1420 			if (uobjpage->flags & PG_WANTED)
1421 				/* still holding object lock */
1422 				wakeup(uobjpage);
1423 
1424 			if (uobjpage->flags & PG_RELEASED) {
1425 				uvmexp.fltpgrele++;
1426 				KASSERT(uobj->pgops->pgo_releasepg != NULL);
1427 
1428 				/* frees page */
1429 				if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1430 					/* unlock if still alive */
1431 					simple_unlock(&uobj->vmobjlock);
1432 				goto ReFault;
1433 			}
1434 
1435 			uvm_lock_pageq();
1436 			/* make sure it is in queues */
1437 			uvm_pageactivate(uobjpage);
1438 
1439 			uvm_unlock_pageq();
1440 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1441 			UVM_PAGE_OWN(uobjpage, NULL);
1442 			simple_unlock(&uobj->vmobjlock);
1443 			goto ReFault;
1444 
1445 		}
1446 
1447 		/*
1448 		 * we have the data in uobjpage which is PG_BUSY and
1449 		 * !PG_RELEASED.  we are holding object lock (so the page
1450 		 * can't be released on us).
1451 		 */
1452 
1453 		/* locked: maps(read), amap(if !null), uobj, uobjpage */
1454 	}
1455 
1456 	/*
1457 	 * locked:
1458 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1459 	 */
1460 
1461 	/*
1462 	 * notes:
1463 	 *  - at this point uobjpage can not be NULL
1464 	 *  - at this point uobjpage can not be PG_RELEASED (since we checked
1465 	 *  for it above)
1466 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1467 	 */
1468 
1469 	if (promote == FALSE) {
1470 
1471 		/*
1472 		 * we are not promoting.   if the mapping is COW ensure that we
1473 		 * don't give more access than we should (e.g. when doing a read
1474 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1475 		 * R/O even though the entry protection could be R/W).
1476 		 *
1477 		 * set "pg" to the page we want to map in (uobjpage, usually)
1478 		 */
1479 
1480 		uvmexp.flt_obj++;
1481 		if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1482 			enter_prot &= ~VM_PROT_WRITE;
1483 		pg = uobjpage;		/* map in the actual object */
1484 
1485 		/* assert(uobjpage != PGO_DONTCARE) */
1486 
1487 		/*
1488 		 * we are faulting directly on the page.   be careful
1489 		 * about writing to loaned pages...
1490 		 */
1491 		if (uobjpage->loan_count) {
1492 
1493 			if ((access_type & VM_PROT_WRITE) == 0) {
1494 				/* read fault: cap the protection at readonly */
1495 				/* cap! */
1496 				enter_prot = enter_prot & ~VM_PROT_WRITE;
1497 			} else {
1498 				/* write fault: must break the loan here */
1499 
1500 				/* alloc new un-owned page */
1501 				pg = uvm_pagealloc(NULL, 0, NULL, 0);
1502 
1503 				if (pg == NULL) {
1504 					/*
1505 					 * drop ownership of page, it can't
1506 					 * be released
1507 					 */
1508 					if (uobjpage->flags & PG_WANTED)
1509 						wakeup(uobjpage);
1510 					uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1511 					UVM_PAGE_OWN(uobjpage, NULL);
1512 
1513 					uvm_lock_pageq();
1514 					/* activate: we will need it later */
1515 					uvm_pageactivate(uobjpage);
1516 
1517 					uvm_unlock_pageq();
1518 					uvmfault_unlockall(&ufi, amap, uobj,
1519 					  NULL);
1520 					UVMHIST_LOG(maphist,
1521 					  "  out of RAM breaking loan, waiting",
1522 					  0,0,0,0);
1523 					uvmexp.fltnoram++;
1524 					uvm_wait("flt_noram4");
1525 					goto ReFault;
1526 				}
1527 
1528 				/*
1529 				 * copy the data from the old page to the new
1530 				 * one and clear the fake/clean flags on the
1531 				 * new page (keep it busy).  force a reload
1532 				 * of the old page by clearing it from all
1533 				 * pmaps.  then lock the page queues to
1534 				 * rename the pages.
1535 				 */
1536 				uvm_pagecopy(uobjpage, pg);	/* old -> new */
1537 				pg->flags &= ~(PG_FAKE|PG_CLEAN);
1538 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1539 				if (uobjpage->flags & PG_WANTED)
1540 					wakeup(uobjpage);
1541 				/* uobj still locked */
1542 				uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1543 				UVM_PAGE_OWN(uobjpage, NULL);
1544 
1545 				uvm_lock_pageq();
1546 				offset = uobjpage->offset;
1547 				/* remove old page */
1548 				uvm_pagerealloc(uobjpage, NULL, 0);
1549 
1550 				/*
1551 				 * at this point we have absolutely no
1552 				 * control over uobjpage
1553 				 */
1554 				/* install new page */
1555 				uvm_pagerealloc(pg, uobj, offset);
1556 				uvm_unlock_pageq();
1557 
1558 				/*
1559 				 * done!  loan is broken and "pg" is
1560 				 * PG_BUSY.   it can now replace uobjpage.
1561 				 */
1562 
1563 				uobjpage = pg;
1564 
1565 			}		/* write fault case */
1566 		}		/* if loan_count */
1567 
1568 	} else {
1569 
1570 		/*
1571 		 * if we are going to promote the data to an anon we
1572 		 * allocate a blank anon here and plug it into our amap.
1573 		 */
1574 #if DIAGNOSTIC
1575 		if (amap == NULL)
1576 			panic("uvm_fault: want to promote data, but no anon");
1577 #endif
1578 
1579 		anon = uvm_analloc();
1580 		if (anon) {
1581 			/*
1582 			 * In `Fill in data...' below, if
1583 			 * uobjpage == PGO_DONTCARE, we want
1584 			 * a zero'd, dirty page, so have
1585 			 * uvm_pagealloc() do that for us.
1586 			 */
1587 			pg = uvm_pagealloc(NULL, 0, anon,
1588 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1589 		}
1590 
1591 		/*
1592 		 * out of memory resources?
1593 		 */
1594 		if (anon == NULL || pg == NULL) {
1595 
1596 			/*
1597 			 * arg!  must unbusy our page and fail or sleep.
1598 			 */
1599 			if (uobjpage != PGO_DONTCARE) {
1600 				if (uobjpage->flags & PG_WANTED)
1601 					/* still holding object lock */
1602 					wakeup(uobjpage);
1603 
1604 				uvm_lock_pageq();
1605 				uvm_pageactivate(uobjpage);
1606 				uvm_unlock_pageq();
1607 				uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1608 				UVM_PAGE_OWN(uobjpage, NULL);
1609 			}
1610 
1611 			/* unlock and fail ... */
1612 			uvmfault_unlockall(&ufi, amap, uobj, NULL);
1613 			KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1614 			if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1615 				UVMHIST_LOG(maphist, "  promote: out of VM",
1616 				    0,0,0,0);
1617 				uvmexp.fltnoanon++;
1618 				return (KERN_RESOURCE_SHORTAGE);
1619 			}
1620 
1621 			UVMHIST_LOG(maphist, "  out of RAM, waiting for more",
1622 			    0,0,0,0);
1623 			uvm_anfree(anon);
1624 			uvmexp.fltnoram++;
1625 			uvm_wait("flt_noram5");
1626 			goto ReFault;
1627 		}
1628 
1629 		/*
1630 		 * fill in the data
1631 		 */
1632 
1633 		if (uobjpage != PGO_DONTCARE) {
1634 			uvmexp.flt_prcopy++;
1635 			/* copy page [pg now dirty] */
1636 			uvm_pagecopy(uobjpage, pg);
1637 
1638 			/*
1639 			 * promote to shared amap?  make sure all sharing
1640 			 * procs see it
1641 			 */
1642 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1643 				pmap_page_protect(uobjpage, VM_PROT_NONE);
1644 			}
1645 
1646 			/*
1647 			 * dispose of uobjpage.  it can't be PG_RELEASED
1648 			 * since we still hold the object lock.
1649 			 * drop handle to uobj as well.
1650 			 */
1651 
1652 			if (uobjpage->flags & PG_WANTED)
1653 				/* still have the obj lock */
1654 				wakeup(uobjpage);
1655 			uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1656 			UVM_PAGE_OWN(uobjpage, NULL);
1657 			uvm_lock_pageq();
1658 			uvm_pageactivate(uobjpage);
1659 			uvm_unlock_pageq();
1660 			simple_unlock(&uobj->vmobjlock);
1661 			uobj = NULL;
1662 
1663 			UVMHIST_LOG(maphist,
1664 			    "  promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1665 			    uobjpage, anon, pg, 0);
1666 
1667 		} else {
1668 			uvmexp.flt_przero++;
1669 			/*
1670 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1671 			 * above.
1672 			 */
1673 			UVMHIST_LOG(maphist,"  zero fill anon/page 0x%x/0%x",
1674 			    anon, pg, 0, 0);
1675 		}
1676 
1677 		amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1678 		    anon, 0);
1679 	}
1680 
1681 	/*
1682 	 * locked:
1683 	 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1684 	 *
1685 	 * note: pg is either the uobjpage or the new page in the new anon
1686 	 */
1687 
1688 	/*
1689 	 * all resources are present.   we can now map it in and free our
1690 	 * resources.
1691 	 */
1692 
1693 	UVMHIST_LOG(maphist,
1694 	    "  MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1695 	    ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1696 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1697 	    enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1698 	    != KERN_SUCCESS) {
1699 
1700 		/*
1701 		 * No need to undo what we did; we can simply think of
1702 		 * this as the pmap throwing away the mapping information.
1703 		 *
1704 		 * We do, however, have to go through the ReFault path,
1705 		 * as the map may change while we're asleep.
1706 		 */
1707 
1708 		if (pg->flags & PG_WANTED)
1709 			wakeup(pg);		/* lock still held */
1710 
1711 		/*
1712 		 * note that pg can't be PG_RELEASED since we did not drop
1713 		 * the object lock since the last time we checked.
1714 		 */
1715 
1716 		pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1717 		UVM_PAGE_OWN(pg, NULL);
1718 		uvmfault_unlockall(&ufi, amap, uobj, NULL);
1719 		KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1720 		if (uvmexp.swpgonly == uvmexp.swpages) {
1721 			UVMHIST_LOG(maphist,
1722 			    "<- failed.  out of VM",0,0,0,0);
1723 			/* XXX instrumentation */
1724 			return (KERN_RESOURCE_SHORTAGE);
1725 		}
1726 		/* XXX instrumentation */
1727 		uvm_wait("flt_pmfail2");
1728 		goto ReFault;
1729 	}
1730 
1731 	uvm_lock_pageq();
1732 
1733 	if (fault_type == VM_FAULT_WIRE) {
1734 		uvm_pagewire(pg);
1735 		if (pg->pqflags & PQ_AOBJ) {
1736 
1737 			/*
1738 			 * since the now-wired page cannot be paged out,
1739 			 * release its swap resources for others to use.
1740 			 * since an aobj page with no swap cannot be PG_CLEAN,
1741 			 * clear its clean flag now.
1742 			 */
1743 
1744 			pg->flags &= ~(PG_CLEAN);
1745 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1746 		}
1747 	} else {
1748 		/* activate it */
1749 		uvm_pageactivate(pg);
1750 	}
1751 	uvm_unlock_pageq();
1752 
1753 	if (pg->flags & PG_WANTED)
1754 		wakeup(pg);		/* lock still held */
1755 
1756 	/*
1757 	 * note that pg can't be PG_RELEASED since we did not drop the object
1758 	 * lock since the last time we checked.
1759 	 */
1760 
1761 	pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1762 	UVM_PAGE_OWN(pg, NULL);
1763 	uvmfault_unlockall(&ufi, amap, uobj, NULL);
1764 
1765 	UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1766 	return (KERN_SUCCESS);
1767 }
1768 
1769 
1770 /*
1771  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1772  *
1773  * => map may be read-locked by caller, but MUST NOT be write-locked.
1774  * => if map is read-locked, any operations which may cause map to
1775  *	be write-locked in uvm_fault() must be taken care of by
1776  *	the caller.  See uvm_map_pageable().
1777  */
1778 
1779 int
1780 uvm_fault_wire(map, start, end, access_type)
1781 	vm_map_t map;
1782 	vaddr_t start, end;
1783 	vm_prot_t access_type;
1784 {
1785 	vaddr_t va;
1786 	pmap_t  pmap;
1787 	int rv;
1788 
1789 	pmap = vm_map_pmap(map);
1790 
1791 	/*
1792 	 * now fault it in a page at a time.   if the fault fails then we have
1793 	 * to undo what we have done.   note that in uvm_fault VM_PROT_NONE
1794 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1795 	 */
1796 
1797 	for (va = start ; va < end ; va += PAGE_SIZE) {
1798 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1799 		if (rv) {
1800 			if (va != start) {
1801 				uvm_fault_unwire(map, start, va);
1802 			}
1803 			return (rv);
1804 		}
1805 	}
1806 
1807 	return (KERN_SUCCESS);
1808 }
1809 
1810 /*
1811  * uvm_fault_unwire(): unwire range of virtual space.
1812  */
1813 
1814 void
1815 uvm_fault_unwire(map, start, end)
1816 	vm_map_t map;
1817 	vaddr_t start, end;
1818 {
1819 
1820 	vm_map_lock_read(map);
1821 	uvm_fault_unwire_locked(map, start, end);
1822 	vm_map_unlock_read(map);
1823 }
1824 
1825 /*
1826  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1827  *
1828  * => map must be at least read-locked.
1829  */
1830 
1831 void
1832 uvm_fault_unwire_locked(map, start, end)
1833 	vm_map_t map;
1834 	vaddr_t start, end;
1835 {
1836 	vm_map_entry_t entry;
1837 	pmap_t pmap = vm_map_pmap(map);
1838 	vaddr_t va;
1839 	paddr_t pa;
1840 	struct vm_page *pg;
1841 
1842 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1843 
1844 	/*
1845 	 * we assume that the area we are unwiring has actually been wired
1846 	 * in the first place.   this means that we should be able to extract
1847 	 * the PAs from the pmap.   we also lock out the page daemon so that
1848 	 * we can call uvm_pageunwire.
1849 	 */
1850 
1851 	uvm_lock_pageq();
1852 
1853 	/*
1854 	 * find the beginning map entry for the region.
1855 	 */
1856 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1857 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1858 		panic("uvm_fault_unwire_locked: address not in map");
1859 
1860 	for (va = start; va < end ; va += PAGE_SIZE) {
1861 		if (pmap_extract(pmap, va, &pa) == FALSE)
1862 			panic("uvm_fault_unwire_locked: unwiring "
1863 			    "non-wired memory");
1864 
1865 		/*
1866 		 * make sure the current entry is for the address we're
1867 		 * dealing with.  if not, grab the next entry.
1868 		 */
1869 
1870 		KASSERT(va >= entry->start);
1871 		if (va >= entry->end) {
1872 			KASSERT(entry->next != &map->header &&
1873 				entry->next->start <= entry->end);
1874 			entry = entry->next;
1875 		}
1876 
1877 		/*
1878 		 * if the entry is no longer wired, tell the pmap.
1879 		 */
1880 		if (VM_MAPENT_ISWIRED(entry) == 0)
1881 			pmap_unwire(pmap, va);
1882 
1883 		pg = PHYS_TO_VM_PAGE(pa);
1884 		if (pg)
1885 			uvm_pageunwire(pg);
1886 	}
1887 
1888 	uvm_unlock_pageq();
1889 }
1890