xref: /openbsd/sys/uvm/uvm_km.c (revision 097a140d)
1 /*	$OpenBSD: uvm_km.c,v 1.143 2021/03/26 13:40:05 mpi Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
38  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  * uvm_km.c: handle kernel memory allocation and management
67  */
68 
69 /*
70  * overview of kernel memory management:
71  *
72  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
73  * starts at a machine-dependent address and is VM_KERNEL_SPACE_SIZE bytes
74  * large.
75  *
76  * the kernel_map has several "submaps."   submaps can only appear in
77  * the kernel_map (user processes can't use them).   submaps "take over"
78  * the management of a sub-range of the kernel's address space.  submaps
79  * are typically allocated at boot time and are never released.   kernel
80  * virtual address space that is mapped by a submap is locked by the
81  * submap's lock -- not the kernel_map's lock.
82  *
83  * thus, the useful feature of submaps is that they allow us to break
84  * up the locking and protection of the kernel address space into smaller
85  * chunks.
86  *
87  * The VM system has several standard kernel submaps:
88  *   kmem_map: Contains only wired kernel memory for malloc(9).
89  *	       Note: All access to this map must be protected by splvm as
90  *	       calls to malloc(9) are allowed in interrupt handlers.
91  *   exec_map: Memory to hold arguments to system calls are allocated from
92  *	       this map.
93  *	       XXX: This is primeraly used to artificially limit the number
94  *	       of concurrent processes doing an exec.
95  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
96  *
97  * the kernel allocates its private memory out of special uvm_objects whose
98  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
99  * are "special" and never die).   all kernel objects should be thought of
100  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
101  * object is equal to the size of kernel virtual address space (i.e.
102  * VM_KERNEL_SPACE_SIZE).
103  *
104  * most kernel private memory lives in kernel_object.   the only exception
105  * to this is for memory that belongs to submaps that must be protected
106  * by splvm(). each of these submaps manages their own pages.
107  *
108  * note that just because a kernel object spans the entire kernel virtual
109  * address space doesn't mean that it has to be mapped into the entire space.
110  * large chunks of a kernel object's space go unused either because
111  * that area of kernel VM is unmapped, or there is some other type of
112  * object mapped into that range (e.g. a vnode).    for submap's kernel
113  * objects, the only part of the object that can ever be populated is the
114  * offsets that are managed by the submap.
115  *
116  * note that the "offset" in a kernel object is always the kernel virtual
117  * address minus the vm_map_min(kernel_map).
118  * example:
119  *   suppose kernel_map starts at 0xf8000000 and the kernel does a
120  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122  *   then that means that the page at offset 0x235000 in kernel_object is
123  *   mapped at 0xf8235000.
124  *
125  * kernel objects have one other special property: when the kernel virtual
126  * memory mapping them is unmapped, the backing memory in the object is
127  * freed right away.   this is done with the uvm_km_pgremove() function.
128  * this has to be done because there is no backing store for kernel pages
129  * and no need to save them after they are no longer referenced.
130  */
131 
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/proc.h>
135 #include <sys/kthread.h>
136 #include <uvm/uvm.h>
137 
138 /*
139  * global data structures
140  */
141 
142 struct vm_map *kernel_map = NULL;
143 
144 /* Unconstraint range. */
145 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
146 
147 /*
148  * local data structures
149  */
150 static struct vm_map		kernel_map_store;
151 
152 /*
153  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
154  * KVM already allocated for text, data, bss, and static data structures).
155  *
156  * => KVM is defined by [base.. base + VM_KERNEL_SPACE_SIZE].
157  *    we assume that [base -> start] has already been allocated and that
158  *    "end" is the end of the kernel image span.
159  */
160 void
161 uvm_km_init(vaddr_t base, vaddr_t start, vaddr_t end)
162 {
163 	/* kernel_object: for pageable anonymous kernel memory */
164 	uao_init();
165 	uvm.kernel_object = uao_create(VM_KERNEL_SPACE_SIZE, UAO_FLAG_KERNOBJ);
166 
167 	/*
168 	 * init the map and reserve already allocated kernel space
169 	 * before installing.
170 	 */
171 
172 	uvm_map_setup(&kernel_map_store, pmap_kernel(), base, end,
173 #ifdef KVA_GUARDPAGES
174 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
175 #else
176 	    VM_MAP_PAGEABLE
177 #endif
178 	    );
179 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
180 	    NULL, UVM_UNKNOWN_OFFSET, 0,
181 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
182 	    MAP_INHERIT_NONE, MADV_RANDOM, UVM_FLAG_FIXED)) != 0)
183 		panic("uvm_km_init: could not reserve space for kernel");
184 
185 	kernel_map = &kernel_map_store;
186 }
187 
188 /*
189  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
190  * is allocated all references to that area of VM must go through it.  this
191  * allows the locking of VAs in kernel_map to be broken up into regions.
192  *
193  * => if `fixed' is true, *min specifies where the region described
194  *      by the submap must start
195  * => if submap is non NULL we use that as the submap, otherwise we
196  *	alloc a new map
197  */
198 struct vm_map *
199 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
200     int flags, boolean_t fixed, struct vm_map *submap)
201 {
202 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
203 
204 	size = round_page(size);	/* round up to pagesize */
205 
206 	/* first allocate a blank spot in the parent map */
207 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
208 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
209 	    MAP_INHERIT_NONE, MADV_RANDOM, mapflags)) != 0) {
210 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
211 	}
212 
213 	/* set VM bounds (min is filled in by uvm_map) */
214 	*max = *min + size;
215 
216 	/* add references to pmap and create or init the submap */
217 	pmap_reference(vm_map_pmap(map));
218 	if (submap == NULL) {
219 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
220 		if (submap == NULL)
221 			panic("uvm_km_suballoc: unable to create submap");
222 	} else {
223 		uvm_map_setup(submap, vm_map_pmap(map), *min, *max, flags);
224 	}
225 
226 	/*
227 	 * now let uvm_map_submap plug in it...
228 	 */
229 	if (uvm_map_submap(map, *min, *max, submap) != 0)
230 		panic("uvm_km_suballoc: submap allocation failed");
231 
232 	return(submap);
233 }
234 
235 /*
236  * uvm_km_pgremove: remove pages from a kernel uvm_object.
237  *
238  * => when you unmap a part of anonymous kernel memory you want to toss
239  *    the pages right away.    (this gets called from uvm_unmap_...).
240  */
241 void
242 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t start, vaddr_t end)
243 {
244 	struct vm_page *pp;
245 	voff_t curoff;
246 	int slot;
247 	int swpgonlydelta = 0;
248 
249 	KASSERT(uobj->pgops == &aobj_pager);
250 
251 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
252 		pp = uvm_pagelookup(uobj, curoff);
253 		if (pp && pp->pg_flags & PG_BUSY) {
254 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
255 			tsleep_nsec(pp, PVM, "km_pgrm", INFSLP);
256 			curoff -= PAGE_SIZE; /* loop back to us */
257 			continue;
258 		}
259 
260 		/* free the swap slot, then the page */
261 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
262 
263 		if (pp != NULL) {
264 			uvm_lock_pageq();
265 			uvm_pagefree(pp);
266 			uvm_unlock_pageq();
267 		} else if (slot != 0) {
268 			swpgonlydelta++;
269 		}
270 	}
271 
272 	if (swpgonlydelta > 0) {
273 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
274 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
275 	}
276 }
277 
278 
279 /*
280  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
281  *    objects
282  *
283  * => when you unmap a part of anonymous kernel memory you want to toss
284  *    the pages right away.    (this gets called from uvm_unmap_...).
285  * => none of the pages will ever be busy, and none of them will ever
286  *    be on the active or inactive queues (because these objects are
287  *    never allowed to "page").
288  */
289 void
290 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
291 {
292 	struct vm_page *pg;
293 	vaddr_t va;
294 	paddr_t pa;
295 
296 	for (va = start; va < end; va += PAGE_SIZE) {
297 		if (!pmap_extract(pmap_kernel(), va, &pa))
298 			continue;
299 		pg = PHYS_TO_VM_PAGE(pa);
300 		if (pg == NULL)
301 			panic("uvm_km_pgremove_intrsafe: no page");
302 		uvm_pagefree(pg);
303 	}
304 }
305 
306 /*
307  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
308  *
309  * => we map wired memory into the specified map using the obj passed in
310  * => NOTE: we can return NULL even if we can wait if there is not enough
311  *	free VM space in the map... caller should be prepared to handle
312  *	this case.
313  * => we return KVA of memory allocated
314  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
315  *	lock the map
316  * => low, high, alignment, boundary, nsegs are the corresponding parameters
317  *	to uvm_pglistalloc
318  * => flags: ZERO - correspond to uvm_pglistalloc flags
319  */
320 vaddr_t
321 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
322     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
323     paddr_t boundary, int nsegs)
324 {
325 	vaddr_t kva, loopva;
326 	voff_t offset;
327 	struct vm_page *pg;
328 	struct pglist pgl;
329 	int pla_flags;
330 
331 	KASSERT(vm_map_pmap(map) == pmap_kernel());
332 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
333 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
334 	    !(flags & UVM_KMF_ZERO));
335 
336 	/* setup for call */
337 	size = round_page(size);
338 	kva = vm_map_min(map);	/* hint */
339 	if (nsegs == 0)
340 		nsegs = atop(size);
341 
342 	/* allocate some virtual space */
343 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
344 	    valign, UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
345 	    MAP_INHERIT_NONE, MADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
346 		return 0;
347 	}
348 
349 	/* if all we wanted was VA, return now */
350 	if (flags & UVM_KMF_VALLOC) {
351 		return kva;
352 	}
353 
354 	/* recover object offset from virtual address */
355 	if (obj != NULL)
356 		offset = kva - vm_map_min(kernel_map);
357 	else
358 		offset = 0;
359 
360 	/*
361 	 * now allocate and map in the memory... note that we are the only ones
362 	 * whom should ever get a handle on this area of VM.
363 	 */
364 	TAILQ_INIT(&pgl);
365 	pla_flags = 0;
366 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
367 	if ((flags & UVM_KMF_NOWAIT) ||
368 	    ((flags & UVM_KMF_CANFAIL) &&
369 	    uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
370 		pla_flags |= UVM_PLA_NOWAIT;
371 	else
372 		pla_flags |= UVM_PLA_WAITOK;
373 	if (flags & UVM_KMF_ZERO)
374 		pla_flags |= UVM_PLA_ZERO;
375 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
376 	    pla_flags) != 0) {
377 		/* Failed. */
378 		uvm_unmap(map, kva, kva + size);
379 		return (0);
380 	}
381 
382 	loopva = kva;
383 	while (loopva != kva + size) {
384 		pg = TAILQ_FIRST(&pgl);
385 		TAILQ_REMOVE(&pgl, pg, pageq);
386 		uvm_pagealloc_pg(pg, obj, offset, NULL);
387 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
388 		UVM_PAGE_OWN(pg, NULL);
389 
390 		/*
391 		 * map it in: note that we call pmap_enter with the map and
392 		 * object unlocked in case we are kmem_map.
393 		 */
394 		if (obj == NULL) {
395 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
396 			    PROT_READ | PROT_WRITE);
397 		} else {
398 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
399 			    PROT_READ | PROT_WRITE,
400 			    PROT_READ | PROT_WRITE | PMAP_WIRED);
401 		}
402 		loopva += PAGE_SIZE;
403 		offset += PAGE_SIZE;
404 	}
405 	KASSERT(TAILQ_EMPTY(&pgl));
406 	pmap_update(pmap_kernel());
407 
408 	return kva;
409 }
410 
411 /*
412  * uvm_km_free: free an area of kernel memory
413  */
414 void
415 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
416 {
417 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
418 }
419 
420 /*
421  * uvm_km_free_wakeup: free an area of kernel memory and wake up
422  * anyone waiting for vm space.
423  *
424  * => XXX: "wanted" bit + unlock&wait on other end?
425  */
426 void
427 uvm_km_free_wakeup(struct vm_map *map, vaddr_t addr, vsize_t size)
428 {
429 	struct uvm_map_deadq dead_entries;
430 
431 	vm_map_lock(map);
432 	TAILQ_INIT(&dead_entries);
433 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
434 	     &dead_entries, FALSE, TRUE);
435 	wakeup(map);
436 	vm_map_unlock(map);
437 
438 	uvm_unmap_detach(&dead_entries, 0);
439 }
440 
441 /*
442  * uvm_km_alloc1: allocate wired down memory in the kernel map.
443  *
444  * => we can sleep if needed
445  */
446 vaddr_t
447 uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
448 {
449 	vaddr_t kva, loopva;
450 	voff_t offset;
451 	struct vm_page *pg;
452 
453 	KASSERT(vm_map_pmap(map) == pmap_kernel());
454 
455 	size = round_page(size);
456 	kva = vm_map_min(map);		/* hint */
457 
458 	/* allocate some virtual space */
459 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
460 	    UVM_UNKNOWN_OFFSET, align,
461 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE,
462 	    PROT_READ | PROT_WRITE | PROT_EXEC,
463 	    MAP_INHERIT_NONE, MADV_RANDOM, 0)) != 0)) {
464 		return 0;
465 	}
466 
467 	/* recover object offset from virtual address */
468 	offset = kva - vm_map_min(kernel_map);
469 
470 	/* now allocate the memory.  we must be careful about released pages. */
471 	loopva = kva;
472 	while (size) {
473 		/* allocate ram */
474 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
475 		if (pg) {
476 			atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
477 			UVM_PAGE_OWN(pg, NULL);
478 		}
479 		if (__predict_false(pg == NULL)) {
480 			if (curproc == uvm.pagedaemon_proc) {
481 				/*
482 				 * It is unfeasible for the page daemon to
483 				 * sleep for memory, so free what we have
484 				 * allocated and fail.
485 				 */
486 				uvm_unmap(map, kva, loopva - kva);
487 				return (0);
488 			} else {
489 				uvm_wait("km_alloc1w");	/* wait for memory */
490 				continue;
491 			}
492 		}
493 
494 		/*
495 		 * map it in; note we're never called with an intrsafe
496 		 * object, so we always use regular old pmap_enter().
497 		 */
498 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
499 		    PROT_READ | PROT_WRITE,
500 		    PROT_READ | PROT_WRITE | PMAP_WIRED);
501 
502 		loopva += PAGE_SIZE;
503 		offset += PAGE_SIZE;
504 		size -= PAGE_SIZE;
505 	}
506 	pmap_update(map->pmap);
507 
508 	/*
509 	 * zero on request (note that "size" is now zero due to the above loop
510 	 * so we need to subtract kva from loopva to reconstruct the size).
511 	 */
512 	if (zeroit)
513 		memset((caddr_t)kva, 0, loopva - kva);
514 
515 	return kva;
516 }
517 
518 /*
519  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
520  *
521  * => memory is not allocated until fault time
522  */
523 
524 vaddr_t
525 uvm_km_valloc(struct vm_map *map, vsize_t size)
526 {
527 	return uvm_km_valloc_align(map, size, 0, 0);
528 }
529 
530 vaddr_t
531 uvm_km_valloc_try(struct vm_map *map, vsize_t size)
532 {
533 	return uvm_km_valloc_align(map, size, 0, UVM_FLAG_TRYLOCK);
534 }
535 
536 vaddr_t
537 uvm_km_valloc_align(struct vm_map *map, vsize_t size, vsize_t align, int flags)
538 {
539 	vaddr_t kva;
540 
541 	KASSERT(vm_map_pmap(map) == pmap_kernel());
542 
543 	size = round_page(size);
544 	kva = vm_map_min(map);		/* hint */
545 
546 	/*
547 	 * allocate some virtual space.  will be demand filled by kernel_object.
548 	 */
549 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
550 	    UVM_UNKNOWN_OFFSET, align,
551 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
552 	    MAP_INHERIT_NONE, MADV_RANDOM, flags)) != 0)) {
553 		return 0;
554 	}
555 
556 	return kva;
557 }
558 
559 /*
560  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
561  *
562  * => memory is not allocated until fault time
563  * => if no room in map, wait for space to free, unless requested size
564  *    is larger than map (in which case we return 0)
565  */
566 vaddr_t
567 uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t size, voff_t prefer)
568 {
569 	vaddr_t kva;
570 
571 	KASSERT(vm_map_pmap(map) == pmap_kernel());
572 
573 	size = round_page(size);
574 	if (size > vm_map_max(map) - vm_map_min(map))
575 		return 0;
576 
577 	while (1) {
578 		kva = vm_map_min(map);		/* hint */
579 
580 		/*
581 		 * allocate some virtual space.   will be demand filled
582 		 * by kernel_object.
583 		 */
584 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
585 		    prefer, 0,
586 		    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
587 		    MAP_INHERIT_NONE, MADV_RANDOM, 0)) == 0)) {
588 			return kva;
589 		}
590 
591 		/* failed.  sleep for a while (on map) */
592 		tsleep_nsec(map, PVM, "vallocwait", INFSLP);
593 	}
594 	/*NOTREACHED*/
595 }
596 
597 vaddr_t
598 uvm_km_valloc_wait(struct vm_map *map, vsize_t size)
599 {
600 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
601 }
602 
603 #if defined(__HAVE_PMAP_DIRECT)
604 /*
605  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
606  * On architectures with machine memory direct mapped into a portion
607  * of KVM, we have very little work to do.  Just get a physical page,
608  * and find and return its VA.
609  */
610 void
611 uvm_km_page_init(void)
612 {
613 	/* nothing */
614 }
615 
616 void
617 uvm_km_page_lateinit(void)
618 {
619 	/* nothing */
620 }
621 
622 #else
623 /*
624  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
625  * This is a special allocator that uses a reserve of free pages
626  * to fulfill requests.  It is fast and interrupt safe, but can only
627  * return page sized regions.  Its primary use is as a backend for pool.
628  *
629  * The memory returned is allocated from the larger kernel_map, sparing
630  * pressure on the small interrupt-safe kmem_map.  It is wired, but
631  * not zero filled.
632  */
633 
634 struct uvm_km_pages uvm_km_pages;
635 
636 void uvm_km_createthread(void *);
637 void uvm_km_thread(void *);
638 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
639 
640 /*
641  * Allocate the initial reserve, and create the thread which will
642  * keep the reserve full.  For bootstrapping, we allocate more than
643  * the lowat amount, because it may be a while before the thread is
644  * running.
645  */
646 void
647 uvm_km_page_init(void)
648 {
649 	int	lowat_min;
650 	int	i;
651 	int	len, bulk;
652 	vaddr_t	addr;
653 
654 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
655 	if (!uvm_km_pages.lowat) {
656 		/* based on physmem, calculate a good value here */
657 		uvm_km_pages.lowat = physmem / 256;
658 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
659 		if (uvm_km_pages.lowat < lowat_min)
660 			uvm_km_pages.lowat = lowat_min;
661 	}
662 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
663 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
664 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
665 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
666 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
667 
668 	/* Allocate all pages in as few allocations as possible. */
669 	len = 0;
670 	bulk = uvm_km_pages.hiwat;
671 	while (len < uvm_km_pages.hiwat && bulk > 0) {
672 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
673 		addr = vm_map_min(kernel_map);
674 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
675 		    NULL, UVM_UNKNOWN_OFFSET, 0,
676 		    UVM_MAPFLAG(PROT_READ | PROT_WRITE,
677 		    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
678 		    MADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
679 			bulk /= 2;
680 			continue;
681 		}
682 
683 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
684 			uvm_km_pages.page[i] = addr;
685 		len += bulk;
686 	}
687 
688 	uvm_km_pages.free = len;
689 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
690 		uvm_km_pages.page[i] = 0;
691 
692 	/* tone down if really high */
693 	if (uvm_km_pages.lowat > 512)
694 		uvm_km_pages.lowat = 512;
695 }
696 
697 void
698 uvm_km_page_lateinit(void)
699 {
700 	kthread_create_deferred(uvm_km_createthread, NULL);
701 }
702 
703 void
704 uvm_km_createthread(void *arg)
705 {
706 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
707 }
708 
709 /*
710  * Endless loop.  We grab pages in increments of 16 pages, then
711  * quickly swap them into the list.
712  */
713 void
714 uvm_km_thread(void *arg)
715 {
716 	vaddr_t pg[16];
717 	int i;
718 	int allocmore = 0;
719 	int flags;
720 	struct uvm_km_free_page *fp = NULL;
721 
722 	KERNEL_UNLOCK();
723 
724 	for (;;) {
725 		mtx_enter(&uvm_km_pages.mtx);
726 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
727 		    uvm_km_pages.freelist == NULL) {
728 			msleep_nsec(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
729 			    PVM, "kmalloc", INFSLP);
730 		}
731 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
732 		fp = uvm_km_pages.freelist;
733 		uvm_km_pages.freelist = NULL;
734 		uvm_km_pages.freelistlen = 0;
735 		mtx_leave(&uvm_km_pages.mtx);
736 
737 		if (allocmore) {
738 			/*
739 			 * If there was nothing on the freelist, then we
740 			 * must obtain at least one page to make progress.
741 			 * So, only use UVM_KMF_TRYLOCK for the first page
742 			 * if fp != NULL
743 			 */
744 			flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
745 			    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
746 			    MADV_RANDOM, fp != NULL ? UVM_KMF_TRYLOCK : 0);
747 			memset(pg, 0, sizeof(pg));
748 			for (i = 0; i < nitems(pg); i++) {
749 				pg[i] = vm_map_min(kernel_map);
750 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
751 				    NULL, UVM_UNKNOWN_OFFSET, 0, flags) != 0) {
752 					pg[i] = 0;
753 					break;
754 				}
755 
756 				/* made progress, so don't sleep for more */
757 				flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
758 				    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
759 				    MADV_RANDOM, UVM_KMF_TRYLOCK);
760 			}
761 
762 			mtx_enter(&uvm_km_pages.mtx);
763 			for (i = 0; i < nitems(pg); i++) {
764 				if (uvm_km_pages.free ==
765 				    nitems(uvm_km_pages.page))
766 					break;
767 				else if (pg[i] != 0)
768 					uvm_km_pages.page[uvm_km_pages.free++]
769 					    = pg[i];
770 			}
771 			wakeup(&uvm_km_pages.free);
772 			mtx_leave(&uvm_km_pages.mtx);
773 
774 			/* Cleanup left-over pages (if any). */
775 			for (; i < nitems(pg); i++) {
776 				if (pg[i] != 0) {
777 					uvm_unmap(kernel_map,
778 					    pg[i], pg[i] + PAGE_SIZE);
779 				}
780 			}
781 		}
782 		while (fp) {
783 			fp = uvm_km_doputpage(fp);
784 		}
785 	}
786 }
787 
788 struct uvm_km_free_page *
789 uvm_km_doputpage(struct uvm_km_free_page *fp)
790 {
791 	vaddr_t va = (vaddr_t)fp;
792 	struct vm_page *pg;
793 	int	freeva = 1;
794 	struct uvm_km_free_page *nextfp = fp->next;
795 
796 	pg = uvm_atopg(va);
797 
798 	pmap_kremove(va, PAGE_SIZE);
799 	pmap_update(kernel_map->pmap);
800 
801 	mtx_enter(&uvm_km_pages.mtx);
802 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
803 		uvm_km_pages.page[uvm_km_pages.free++] = va;
804 		freeva = 0;
805 	}
806 	mtx_leave(&uvm_km_pages.mtx);
807 
808 	if (freeva)
809 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
810 
811 	uvm_pagefree(pg);
812 	return (nextfp);
813 }
814 #endif	/* !__HAVE_PMAP_DIRECT */
815 
816 void *
817 km_alloc(size_t sz, const struct kmem_va_mode *kv,
818     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
819 {
820 	struct vm_map *map;
821 	struct vm_page *pg;
822 	struct pglist pgl;
823 	int mapflags = 0;
824 	vm_prot_t prot;
825 	paddr_t pla_align;
826 	int pla_flags;
827 	int pla_maxseg;
828 	vaddr_t va, sva = 0;
829 
830 	KASSERT(sz == round_page(sz));
831 
832 	TAILQ_INIT(&pgl);
833 
834 	if (kp->kp_nomem || kp->kp_pageable)
835 		goto alloc_va;
836 
837 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
838 	pla_flags |= UVM_PLA_TRYCONTIG;
839 	if (kp->kp_zero)
840 		pla_flags |= UVM_PLA_ZERO;
841 
842 	pla_align = kp->kp_align;
843 #ifdef __HAVE_PMAP_DIRECT
844 	if (pla_align < kv->kv_align)
845 		pla_align = kv->kv_align;
846 #endif
847 	pla_maxseg = kp->kp_maxseg;
848 	if (pla_maxseg == 0)
849 		pla_maxseg = sz / PAGE_SIZE;
850 
851 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
852 	    kp->kp_constraint->ucr_high, pla_align, kp->kp_boundary,
853 	    &pgl, pla_maxseg, pla_flags)) {
854 		return (NULL);
855 	}
856 
857 #ifdef __HAVE_PMAP_DIRECT
858 	/*
859 	 * Only use direct mappings for single page or single segment
860 	 * allocations.
861 	 */
862 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
863 		TAILQ_FOREACH(pg, &pgl, pageq) {
864 			va = pmap_map_direct(pg);
865 			if (pg == TAILQ_FIRST(&pgl))
866 				sva = va;
867 		}
868 		return ((void *)sva);
869 	}
870 #endif
871 alloc_va:
872 	prot = PROT_READ | PROT_WRITE;
873 
874 	if (kp->kp_pageable) {
875 		KASSERT(kp->kp_object);
876 		KASSERT(!kv->kv_singlepage);
877 	} else {
878 		KASSERT(kp->kp_object == NULL);
879 	}
880 
881 	if (kv->kv_singlepage) {
882 		KASSERT(sz == PAGE_SIZE);
883 #ifdef __HAVE_PMAP_DIRECT
884 		panic("km_alloc: DIRECT single page");
885 #else
886 		mtx_enter(&uvm_km_pages.mtx);
887 		while (uvm_km_pages.free == 0) {
888 			if (kd->kd_waitok == 0) {
889 				mtx_leave(&uvm_km_pages.mtx);
890 				uvm_pglistfree(&pgl);
891 				return NULL;
892 			}
893 			msleep_nsec(&uvm_km_pages.free, &uvm_km_pages.mtx,
894 			    PVM, "getpage", INFSLP);
895 		}
896 		va = uvm_km_pages.page[--uvm_km_pages.free];
897 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
898 		    curproc != uvm_km_pages.km_proc) {
899 			if (kd->kd_slowdown)
900 				*kd->kd_slowdown = 1;
901 			wakeup(&uvm_km_pages.km_proc);
902 		}
903 		mtx_leave(&uvm_km_pages.mtx);
904 #endif
905 	} else {
906 		struct uvm_object *uobj = NULL;
907 
908 		if (kd->kd_trylock)
909 			mapflags |= UVM_KMF_TRYLOCK;
910 
911 		if (kp->kp_object)
912 			uobj = *kp->kp_object;
913 try_map:
914 		map = *kv->kv_map;
915 		va = vm_map_min(map);
916 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
917 		    kv->kv_align, UVM_MAPFLAG(prot, prot, MAP_INHERIT_NONE,
918 		    MADV_RANDOM, mapflags))) {
919 			if (kv->kv_wait && kd->kd_waitok) {
920 				tsleep_nsec(map, PVM, "km_allocva", INFSLP);
921 				goto try_map;
922 			}
923 			uvm_pglistfree(&pgl);
924 			return (NULL);
925 		}
926 	}
927 	sva = va;
928 	TAILQ_FOREACH(pg, &pgl, pageq) {
929 		if (kp->kp_pageable)
930 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
931 			    prot, prot | PMAP_WIRED);
932 		else
933 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
934 		va += PAGE_SIZE;
935 	}
936 	pmap_update(pmap_kernel());
937 	return ((void *)sva);
938 }
939 
940 void
941 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
942     const struct kmem_pa_mode *kp)
943 {
944 	vaddr_t sva, eva, va;
945 	struct vm_page *pg;
946 	struct pglist pgl;
947 
948 	sva = (vaddr_t)v;
949 	eva = sva + sz;
950 
951 	if (kp->kp_nomem)
952 		goto free_va;
953 
954 #ifdef __HAVE_PMAP_DIRECT
955 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
956 		TAILQ_INIT(&pgl);
957 		for (va = sva; va < eva; va += PAGE_SIZE) {
958 			pg = pmap_unmap_direct(va);
959 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
960 		}
961 		uvm_pglistfree(&pgl);
962 		return;
963 	}
964 #else
965 	if (kv->kv_singlepage) {
966 		struct uvm_km_free_page *fp = v;
967 
968 		mtx_enter(&uvm_km_pages.mtx);
969 		fp->next = uvm_km_pages.freelist;
970 		uvm_km_pages.freelist = fp;
971 		if (uvm_km_pages.freelistlen++ > 16)
972 			wakeup(&uvm_km_pages.km_proc);
973 		mtx_leave(&uvm_km_pages.mtx);
974 		return;
975 	}
976 #endif
977 
978 	if (kp->kp_pageable) {
979 		pmap_remove(pmap_kernel(), sva, eva);
980 		pmap_update(pmap_kernel());
981 	} else {
982 		TAILQ_INIT(&pgl);
983 		for (va = sva; va < eva; va += PAGE_SIZE) {
984 			paddr_t pa;
985 
986 			if (!pmap_extract(pmap_kernel(), va, &pa))
987 				continue;
988 
989 			pg = PHYS_TO_VM_PAGE(pa);
990 			if (pg == NULL) {
991 				panic("km_free: unmanaged page 0x%lx\n", pa);
992 			}
993 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
994 		}
995 		pmap_kremove(sva, sz);
996 		pmap_update(pmap_kernel());
997 		uvm_pglistfree(&pgl);
998 	}
999 free_va:
1000 	uvm_unmap(*kv->kv_map, sva, eva);
1001 	if (kv->kv_wait)
1002 		wakeup(*kv->kv_map);
1003 }
1004 
1005 const struct kmem_va_mode kv_any = {
1006 	.kv_map = &kernel_map,
1007 };
1008 
1009 const struct kmem_va_mode kv_intrsafe = {
1010 	.kv_map = &kmem_map,
1011 };
1012 
1013 const struct kmem_va_mode kv_page = {
1014 	.kv_singlepage = 1
1015 };
1016 
1017 const struct kmem_pa_mode kp_dirty = {
1018 	.kp_constraint = &no_constraint
1019 };
1020 
1021 const struct kmem_pa_mode kp_dma = {
1022 	.kp_constraint = &dma_constraint
1023 };
1024 
1025 const struct kmem_pa_mode kp_dma_contig = {
1026 	.kp_constraint = &dma_constraint,
1027 	.kp_maxseg = 1
1028 };
1029 
1030 const struct kmem_pa_mode kp_dma_zero = {
1031 	.kp_constraint = &dma_constraint,
1032 	.kp_zero = 1
1033 };
1034 
1035 const struct kmem_pa_mode kp_zero = {
1036 	.kp_constraint = &no_constraint,
1037 	.kp_zero = 1
1038 };
1039 
1040 const struct kmem_pa_mode kp_pageable = {
1041 	.kp_object = &uvm.kernel_object,
1042 	.kp_pageable = 1
1043 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
1044 };
1045 
1046 const struct kmem_pa_mode kp_none = {
1047 	.kp_nomem = 1
1048 };
1049 
1050 const struct kmem_dyn_mode kd_waitok = {
1051 	.kd_waitok = 1,
1052 	.kd_prefer = UVM_UNKNOWN_OFFSET
1053 };
1054 
1055 const struct kmem_dyn_mode kd_nowait = {
1056 	.kd_prefer = UVM_UNKNOWN_OFFSET
1057 };
1058 
1059 const struct kmem_dyn_mode kd_trylock = {
1060 	.kd_trylock = 1,
1061 	.kd_prefer = UVM_UNKNOWN_OFFSET
1062 };
1063