xref: /openbsd/sys/uvm/uvm_map.c (revision 3bef86f7)
1 /*	$OpenBSD: uvm_map.c,v 1.326 2024/01/21 17:21:55 deraadt Exp $	*/
2 /*	$NetBSD: uvm_map.c,v 1.86 2000/11/27 08:40:03 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 2011 Ariane van der Steldt <ariane@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  *
20  * Copyright (c) 1997 Charles D. Cranor and Washington University.
21  * Copyright (c) 1991, 1993, The Regents of the University of California.
22  *
23  * All rights reserved.
24  *
25  * This code is derived from software contributed to Berkeley by
26  * The Mach Operating System project at Carnegie-Mellon University.
27  *
28  * Redistribution and use in source and binary forms, with or without
29  * modification, are permitted provided that the following conditions
30  * are met:
31  * 1. Redistributions of source code must retain the above copyright
32  *    notice, this list of conditions and the following disclaimer.
33  * 2. Redistributions in binary form must reproduce the above copyright
34  *    notice, this list of conditions and the following disclaimer in the
35  *    documentation and/or other materials provided with the distribution.
36  * 3. Neither the name of the University nor the names of its contributors
37  *    may be used to endorse or promote products derived from this software
38  *    without specific prior written permission.
39  *
40  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  *	@(#)vm_map.c    8.3 (Berkeley) 1/12/94
53  * from: Id: uvm_map.c,v 1.1.2.27 1998/02/07 01:16:54 chs Exp
54  *
55  *
56  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
57  * All rights reserved.
58  *
59  * Permission to use, copy, modify and distribute this software and
60  * its documentation is hereby granted, provided that both the copyright
61  * notice and this permission notice appear in all copies of the
62  * software, derivative works or modified versions, and any portions
63  * thereof, and that both notices appear in supporting documentation.
64  *
65  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
66  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
67  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
68  *
69  * Carnegie Mellon requests users of this software to return to
70  *
71  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
72  *  School of Computer Science
73  *  Carnegie Mellon University
74  *  Pittsburgh PA 15213-3890
75  *
76  * any improvements or extensions that they make and grant Carnegie the
77  * rights to redistribute these changes.
78  */
79 
80 /*
81  * uvm_map.c: uvm map operations
82  */
83 
84 /* #define DEBUG */
85 /* #define VMMAP_DEBUG */
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/acct.h>
90 #include <sys/mman.h>
91 #include <sys/proc.h>
92 #include <sys/malloc.h>
93 #include <sys/pool.h>
94 #include <sys/sysctl.h>
95 #include <sys/signalvar.h>
96 #include <sys/syslog.h>
97 #include <sys/user.h>
98 #include <sys/tracepoint.h>
99 
100 #ifdef SYSVSHM
101 #include <sys/shm.h>
102 #endif
103 
104 #include <uvm/uvm.h>
105 
106 #ifdef DDB
107 #include <uvm/uvm_ddb.h>
108 #endif
109 
110 #include <uvm/uvm_addr.h>
111 
112 
113 vsize_t			 uvmspace_dused(struct vm_map*, vaddr_t, vaddr_t);
114 int			 uvm_mapent_isjoinable(struct vm_map*,
115 			    struct vm_map_entry*, struct vm_map_entry*);
116 struct vm_map_entry	*uvm_mapent_merge(struct vm_map*, struct vm_map_entry*,
117 			    struct vm_map_entry*, struct uvm_map_deadq*);
118 struct vm_map_entry	*uvm_mapent_tryjoin(struct vm_map*,
119 			    struct vm_map_entry*, struct uvm_map_deadq*);
120 struct vm_map_entry	*uvm_map_mkentry(struct vm_map*, struct vm_map_entry*,
121 			    struct vm_map_entry*, vaddr_t, vsize_t, int,
122 			    struct uvm_map_deadq*, struct vm_map_entry*);
123 struct vm_map_entry	*uvm_mapent_alloc(struct vm_map*, int);
124 void			 uvm_mapent_free(struct vm_map_entry*);
125 void			 uvm_unmap_kill_entry(struct vm_map*,
126 			    struct vm_map_entry*);
127 void			 uvm_unmap_kill_entry_withlock(struct vm_map *,
128 			    struct vm_map_entry *, int);
129 void			 uvm_unmap_detach_intrsafe(struct uvm_map_deadq *);
130 void			 uvm_mapent_mkfree(struct vm_map*,
131 			    struct vm_map_entry*, struct vm_map_entry**,
132 			    struct uvm_map_deadq*, boolean_t);
133 void			 uvm_map_pageable_pgon(struct vm_map*,
134 			    struct vm_map_entry*, struct vm_map_entry*,
135 			    vaddr_t, vaddr_t);
136 int			 uvm_map_pageable_wire(struct vm_map*,
137 			    struct vm_map_entry*, struct vm_map_entry*,
138 			    vaddr_t, vaddr_t, int);
139 void			 uvm_map_setup_entries(struct vm_map*);
140 void			 uvm_map_setup_md(struct vm_map*);
141 void			 uvm_map_teardown(struct vm_map*);
142 void			 uvm_map_vmspace_update(struct vm_map*,
143 			    struct uvm_map_deadq*, int);
144 void			 uvm_map_kmem_grow(struct vm_map*,
145 			    struct uvm_map_deadq*, vsize_t, int);
146 void			 uvm_map_freelist_update_clear(struct vm_map*,
147 			    struct uvm_map_deadq*);
148 void			 uvm_map_freelist_update_refill(struct vm_map *, int);
149 void			 uvm_map_freelist_update(struct vm_map*,
150 			    struct uvm_map_deadq*, vaddr_t, vaddr_t,
151 			    vaddr_t, vaddr_t, int);
152 struct vm_map_entry	*uvm_map_fix_space(struct vm_map*, struct vm_map_entry*,
153 			    vaddr_t, vaddr_t, int);
154 int			 uvm_map_findspace(struct vm_map*,
155 			    struct vm_map_entry**, struct vm_map_entry**,
156 			    vaddr_t*, vsize_t, vaddr_t, vaddr_t, vm_prot_t,
157 			    vaddr_t);
158 vsize_t			 uvm_map_addr_augment_get(struct vm_map_entry*);
159 void			 uvm_map_addr_augment(struct vm_map_entry*);
160 
161 int			 uvm_map_inentry_recheck(u_long, vaddr_t,
162 			     struct p_inentry *);
163 boolean_t		 uvm_map_inentry_fix(struct proc *, struct p_inentry *,
164 			     vaddr_t, int (*)(vm_map_entry_t), u_long);
165 /*
166  * Tree management functions.
167  */
168 
169 static inline void	 uvm_mapent_copy(struct vm_map_entry*,
170 			    struct vm_map_entry*);
171 static inline int	 uvm_mapentry_addrcmp(const struct vm_map_entry*,
172 			    const struct vm_map_entry*);
173 void			 uvm_mapent_free_insert(struct vm_map*,
174 			    struct uvm_addr_state*, struct vm_map_entry*);
175 void			 uvm_mapent_free_remove(struct vm_map*,
176 			    struct uvm_addr_state*, struct vm_map_entry*);
177 void			 uvm_mapent_addr_insert(struct vm_map*,
178 			    struct vm_map_entry*);
179 void			 uvm_mapent_addr_remove(struct vm_map*,
180 			    struct vm_map_entry*);
181 void			 uvm_map_splitentry(struct vm_map*,
182 			    struct vm_map_entry*, struct vm_map_entry*,
183 			    vaddr_t);
184 vsize_t			 uvm_map_boundary(struct vm_map*, vaddr_t, vaddr_t);
185 
186 /*
187  * uvm_vmspace_fork helper functions.
188  */
189 struct vm_map_entry	*uvm_mapent_clone(struct vm_map*, vaddr_t, vsize_t,
190 			    vsize_t, vm_prot_t, vm_prot_t,
191 			    struct vm_map_entry*, struct uvm_map_deadq*, int,
192 			    int);
193 struct vm_map_entry	*uvm_mapent_share(struct vm_map*, vaddr_t, vsize_t,
194 			    vsize_t, vm_prot_t, vm_prot_t, struct vm_map*,
195 			    struct vm_map_entry*, struct uvm_map_deadq*);
196 struct vm_map_entry	*uvm_mapent_forkshared(struct vmspace*, struct vm_map*,
197 			    struct vm_map*, struct vm_map_entry*,
198 			    struct uvm_map_deadq*);
199 struct vm_map_entry	*uvm_mapent_forkcopy(struct vmspace*, struct vm_map*,
200 			    struct vm_map*, struct vm_map_entry*,
201 			    struct uvm_map_deadq*);
202 struct vm_map_entry	*uvm_mapent_forkzero(struct vmspace*, struct vm_map*,
203 			    struct vm_map*, struct vm_map_entry*,
204 			    struct uvm_map_deadq*);
205 
206 /*
207  * Tree validation.
208  */
209 #ifdef VMMAP_DEBUG
210 void			 uvm_tree_assert(struct vm_map*, int, char*,
211 			    char*, int);
212 #define UVM_ASSERT(map, cond, file, line)				\
213 	uvm_tree_assert((map), (cond), #cond, (file), (line))
214 void			 uvm_tree_sanity(struct vm_map*, char*, int);
215 void			 uvm_tree_size_chk(struct vm_map*, char*, int);
216 void			 vmspace_validate(struct vm_map*);
217 #else
218 #define uvm_tree_sanity(_map, _file, _line)		do {} while (0)
219 #define uvm_tree_size_chk(_map, _file, _line)		do {} while (0)
220 #define vmspace_validate(_map)				do {} while (0)
221 #endif
222 
223 /*
224  * The kernel map will initially be VM_MAP_KSIZE_INIT bytes.
225  * Every time that gets cramped, we grow by at least VM_MAP_KSIZE_DELTA bytes.
226  *
227  * We attempt to grow by UVM_MAP_KSIZE_ALLOCMUL times the allocation size
228  * each time.
229  */
230 #define VM_MAP_KSIZE_INIT	(512 * (vaddr_t)PAGE_SIZE)
231 #define VM_MAP_KSIZE_DELTA	(256 * (vaddr_t)PAGE_SIZE)
232 #define VM_MAP_KSIZE_ALLOCMUL	4
233 
234 /* auto-allocate address lower bound */
235 #define VMMAP_MIN_ADDR		PAGE_SIZE
236 
237 
238 #ifdef DEADBEEF0
239 #define UVMMAP_DEADBEEF		((unsigned long)DEADBEEF0)
240 #else
241 #define UVMMAP_DEADBEEF		((unsigned long)0xdeadd0d0)
242 #endif
243 
244 #ifdef DEBUG
245 int uvm_map_printlocks = 0;
246 
247 #define LPRINTF(_args)							\
248 	do {								\
249 		if (uvm_map_printlocks)					\
250 			printf _args;					\
251 	} while (0)
252 #else
253 #define LPRINTF(_args)	do {} while (0)
254 #endif
255 
256 static struct mutex uvm_kmapent_mtx;
257 static struct timeval uvm_kmapent_last_warn_time;
258 static struct timeval uvm_kmapent_warn_rate = { 10, 0 };
259 
260 const char vmmapbsy[] = "vmmapbsy";
261 
262 /*
263  * pool for vmspace structures.
264  */
265 struct pool uvm_vmspace_pool;
266 
267 /*
268  * pool for dynamically-allocated map entries.
269  */
270 struct pool uvm_map_entry_pool;
271 struct pool uvm_map_entry_kmem_pool;
272 
273 /*
274  * This global represents the end of the kernel virtual address
275  * space. If we want to exceed this, we must grow the kernel
276  * virtual address space dynamically.
277  *
278  * Note, this variable is locked by kernel_map's lock.
279  */
280 vaddr_t uvm_maxkaddr;
281 
282 /*
283  * Locking predicate.
284  */
285 #define UVM_MAP_REQ_WRITE(_map)						\
286 	do {								\
287 		if ((_map)->ref_count > 0) {				\
288 			if (((_map)->flags & VM_MAP_INTRSAFE) == 0)	\
289 				rw_assert_wrlock(&(_map)->lock);	\
290 			else						\
291 				MUTEX_ASSERT_LOCKED(&(_map)->mtx);	\
292 		}							\
293 	} while (0)
294 
295 #define	vm_map_modflags(map, set, clear)				\
296 	do {								\
297 		mtx_enter(&(map)->flags_lock);				\
298 		(map)->flags = ((map)->flags | (set)) & ~(clear);	\
299 		mtx_leave(&(map)->flags_lock);				\
300 	} while (0)
301 
302 
303 /*
304  * Tree describing entries by address.
305  *
306  * Addresses are unique.
307  * Entries with start == end may only exist if they are the first entry
308  * (sorted by address) within a free-memory tree.
309  */
310 
311 static inline int
312 uvm_mapentry_addrcmp(const struct vm_map_entry *e1,
313     const struct vm_map_entry *e2)
314 {
315 	return e1->start < e2->start ? -1 : e1->start > e2->start;
316 }
317 
318 /*
319  * Copy mapentry.
320  */
321 static inline void
322 uvm_mapent_copy(struct vm_map_entry *src, struct vm_map_entry *dst)
323 {
324 	caddr_t csrc, cdst;
325 	size_t sz;
326 
327 	csrc = (caddr_t)src;
328 	cdst = (caddr_t)dst;
329 	csrc += offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
330 	cdst += offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
331 
332 	sz = offsetof(struct vm_map_entry, uvm_map_entry_stop_copy) -
333 	    offsetof(struct vm_map_entry, uvm_map_entry_start_copy);
334 	memcpy(cdst, csrc, sz);
335 }
336 
337 /*
338  * Handle free-list insertion.
339  */
340 void
341 uvm_mapent_free_insert(struct vm_map *map, struct uvm_addr_state *uaddr,
342     struct vm_map_entry *entry)
343 {
344 	const struct uvm_addr_functions *fun;
345 #ifdef VMMAP_DEBUG
346 	vaddr_t min, max, bound;
347 #endif
348 
349 #ifdef VMMAP_DEBUG
350 	/*
351 	 * Boundary check.
352 	 * Boundaries are folded if they go on the same free list.
353 	 */
354 	min = VMMAP_FREE_START(entry);
355 	max = VMMAP_FREE_END(entry);
356 
357 	while (min < max) {
358 		bound = uvm_map_boundary(map, min, max);
359 		KASSERT(uvm_map_uaddr(map, min) == uaddr);
360 		min = bound;
361 	}
362 #endif
363 	KDASSERT((entry->fspace & (vaddr_t)PAGE_MASK) == 0);
364 	KASSERT((entry->etype & UVM_ET_FREEMAPPED) == 0);
365 
366 	UVM_MAP_REQ_WRITE(map);
367 
368 	/* Actual insert: forward to uaddr pointer. */
369 	if (uaddr != NULL) {
370 		fun = uaddr->uaddr_functions;
371 		KDASSERT(fun != NULL);
372 		if (fun->uaddr_free_insert != NULL)
373 			(*fun->uaddr_free_insert)(map, uaddr, entry);
374 		entry->etype |= UVM_ET_FREEMAPPED;
375 	}
376 
377 	/* Update fspace augmentation. */
378 	uvm_map_addr_augment(entry);
379 }
380 
381 /*
382  * Handle free-list removal.
383  */
384 void
385 uvm_mapent_free_remove(struct vm_map *map, struct uvm_addr_state *uaddr,
386     struct vm_map_entry *entry)
387 {
388 	const struct uvm_addr_functions *fun;
389 
390 	KASSERT((entry->etype & UVM_ET_FREEMAPPED) != 0 || uaddr == NULL);
391 	KASSERT(uvm_map_uaddr_e(map, entry) == uaddr);
392 	UVM_MAP_REQ_WRITE(map);
393 
394 	if (uaddr != NULL) {
395 		fun = uaddr->uaddr_functions;
396 		if (fun->uaddr_free_remove != NULL)
397 			(*fun->uaddr_free_remove)(map, uaddr, entry);
398 		entry->etype &= ~UVM_ET_FREEMAPPED;
399 	}
400 }
401 
402 /*
403  * Handle address tree insertion.
404  */
405 void
406 uvm_mapent_addr_insert(struct vm_map *map, struct vm_map_entry *entry)
407 {
408 	struct vm_map_entry *res;
409 
410 	if (!RBT_CHECK(uvm_map_addr, entry, UVMMAP_DEADBEEF))
411 		panic("uvm_mapent_addr_insert: entry still in addr list");
412 	KDASSERT(entry->start <= entry->end);
413 	KDASSERT((entry->start & (vaddr_t)PAGE_MASK) == 0 &&
414 	    (entry->end & (vaddr_t)PAGE_MASK) == 0);
415 
416 	TRACEPOINT(uvm, map_insert,
417 	    entry->start, entry->end, entry->protection, NULL);
418 
419 	UVM_MAP_REQ_WRITE(map);
420 	res = RBT_INSERT(uvm_map_addr, &map->addr, entry);
421 	if (res != NULL) {
422 		panic("uvm_mapent_addr_insert: map %p entry %p "
423 		    "(0x%lx-0x%lx G=0x%lx F=0x%lx) insert collision "
424 		    "with entry %p (0x%lx-0x%lx G=0x%lx F=0x%lx)",
425 		    map, entry,
426 		    entry->start, entry->end, entry->guard, entry->fspace,
427 		    res, res->start, res->end, res->guard, res->fspace);
428 	}
429 }
430 
431 /*
432  * Handle address tree removal.
433  */
434 void
435 uvm_mapent_addr_remove(struct vm_map *map, struct vm_map_entry *entry)
436 {
437 	struct vm_map_entry *res;
438 
439 	TRACEPOINT(uvm, map_remove,
440 	    entry->start, entry->end, entry->protection, NULL);
441 
442 	UVM_MAP_REQ_WRITE(map);
443 	res = RBT_REMOVE(uvm_map_addr, &map->addr, entry);
444 	if (res != entry)
445 		panic("uvm_mapent_addr_remove");
446 	RBT_POISON(uvm_map_addr, entry, UVMMAP_DEADBEEF);
447 }
448 
449 /*
450  * uvm_map_reference: add reference to a map
451  *
452  * => map need not be locked
453  */
454 void
455 uvm_map_reference(struct vm_map *map)
456 {
457 	atomic_inc_int(&map->ref_count);
458 }
459 
460 void
461 uvm_map_lock_entry(struct vm_map_entry *entry)
462 {
463 	if (entry->aref.ar_amap != NULL) {
464 		amap_lock(entry->aref.ar_amap);
465 	}
466 	if (UVM_ET_ISOBJ(entry)) {
467 		rw_enter(entry->object.uvm_obj->vmobjlock, RW_WRITE);
468 	}
469 }
470 
471 void
472 uvm_map_unlock_entry(struct vm_map_entry *entry)
473 {
474 	if (UVM_ET_ISOBJ(entry)) {
475 		rw_exit(entry->object.uvm_obj->vmobjlock);
476 	}
477 	if (entry->aref.ar_amap != NULL) {
478 		amap_unlock(entry->aref.ar_amap);
479 	}
480 }
481 
482 /*
483  * Calculate the dused delta.
484  */
485 vsize_t
486 uvmspace_dused(struct vm_map *map, vaddr_t min, vaddr_t max)
487 {
488 	struct vmspace *vm;
489 	vsize_t sz;
490 	vaddr_t lmax;
491 	vaddr_t stack_begin, stack_end; /* Position of stack. */
492 
493 	KASSERT(map->flags & VM_MAP_ISVMSPACE);
494 	vm_map_assert_anylock(map);
495 
496 	vm = (struct vmspace *)map;
497 	stack_begin = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
498 	stack_end = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
499 
500 	sz = 0;
501 	while (min != max) {
502 		lmax = max;
503 		if (min < stack_begin && lmax > stack_begin)
504 			lmax = stack_begin;
505 		else if (min < stack_end && lmax > stack_end)
506 			lmax = stack_end;
507 
508 		if (min >= stack_begin && min < stack_end) {
509 			/* nothing */
510 		} else
511 			sz += lmax - min;
512 		min = lmax;
513 	}
514 
515 	return sz >> PAGE_SHIFT;
516 }
517 
518 /*
519  * Find the entry describing the given address.
520  */
521 struct vm_map_entry*
522 uvm_map_entrybyaddr(struct uvm_map_addr *atree, vaddr_t addr)
523 {
524 	struct vm_map_entry *iter;
525 
526 	iter = RBT_ROOT(uvm_map_addr, atree);
527 	while (iter != NULL) {
528 		if (iter->start > addr)
529 			iter = RBT_LEFT(uvm_map_addr, iter);
530 		else if (VMMAP_FREE_END(iter) <= addr)
531 			iter = RBT_RIGHT(uvm_map_addr, iter);
532 		else
533 			return iter;
534 	}
535 	return NULL;
536 }
537 
538 /*
539  * DEAD_ENTRY_PUSH(struct vm_map_deadq *deadq, struct vm_map_entry *entry)
540  *
541  * Push dead entries into a linked list.
542  * Since the linked list abuses the address tree for storage, the entry
543  * may not be linked in a map.
544  *
545  * *head must be initialized to NULL before the first call to this macro.
546  * uvm_unmap_detach(*head, 0) will remove dead entries.
547  */
548 static inline void
549 dead_entry_push(struct uvm_map_deadq *deadq, struct vm_map_entry *entry)
550 {
551 	TAILQ_INSERT_TAIL(deadq, entry, dfree.deadq);
552 }
553 #define DEAD_ENTRY_PUSH(_headptr, _entry)				\
554 	dead_entry_push((_headptr), (_entry))
555 
556 /*
557  * Test if memory starting at addr with sz bytes is free.
558  *
559  * Fills in *start_ptr and *end_ptr to be the first and last entry describing
560  * the space.
561  * If called with prefilled *start_ptr and *end_ptr, they are to be correct.
562  */
563 int
564 uvm_map_isavail(struct vm_map *map, struct uvm_addr_state *uaddr,
565     struct vm_map_entry **start_ptr, struct vm_map_entry **end_ptr,
566     vaddr_t addr, vsize_t sz)
567 {
568 	struct uvm_addr_state *free;
569 	struct uvm_map_addr *atree;
570 	struct vm_map_entry *i, *i_end;
571 
572 	if (addr + sz < addr)
573 		return 0;
574 
575 	vm_map_assert_anylock(map);
576 
577 	/*
578 	 * Kernel memory above uvm_maxkaddr is considered unavailable.
579 	 */
580 	if ((map->flags & VM_MAP_ISVMSPACE) == 0) {
581 		if (addr + sz > uvm_maxkaddr)
582 			return 0;
583 	}
584 
585 	atree = &map->addr;
586 
587 	/*
588 	 * Fill in first, last, so they point at the entries containing the
589 	 * first and last address of the range.
590 	 * Note that if they are not NULL, we don't perform the lookup.
591 	 */
592 	KDASSERT(atree != NULL && start_ptr != NULL && end_ptr != NULL);
593 	if (*start_ptr == NULL) {
594 		*start_ptr = uvm_map_entrybyaddr(atree, addr);
595 		if (*start_ptr == NULL)
596 			return 0;
597 	} else
598 		KASSERT(*start_ptr == uvm_map_entrybyaddr(atree, addr));
599 	if (*end_ptr == NULL) {
600 		if (VMMAP_FREE_END(*start_ptr) >= addr + sz)
601 			*end_ptr = *start_ptr;
602 		else {
603 			*end_ptr = uvm_map_entrybyaddr(atree, addr + sz - 1);
604 			if (*end_ptr == NULL)
605 				return 0;
606 		}
607 	} else
608 		KASSERT(*end_ptr == uvm_map_entrybyaddr(atree, addr + sz - 1));
609 
610 	/* Validation. */
611 	KDASSERT(*start_ptr != NULL && *end_ptr != NULL);
612 	KDASSERT((*start_ptr)->start <= addr &&
613 	    VMMAP_FREE_END(*start_ptr) > addr &&
614 	    (*end_ptr)->start < addr + sz &&
615 	    VMMAP_FREE_END(*end_ptr) >= addr + sz);
616 
617 	/*
618 	 * Check the none of the entries intersects with <addr, addr+sz>.
619 	 * Also, if the entry belong to uaddr_exe or uaddr_brk_stack, it is
620 	 * considered unavailable unless called by those allocators.
621 	 */
622 	i = *start_ptr;
623 	i_end = RBT_NEXT(uvm_map_addr, *end_ptr);
624 	for (; i != i_end;
625 	    i = RBT_NEXT(uvm_map_addr, i)) {
626 		if (i->start != i->end && i->end > addr)
627 			return 0;
628 
629 		/*
630 		 * uaddr_exe and uaddr_brk_stack may only be used
631 		 * by these allocators and the NULL uaddr (i.e. no
632 		 * uaddr).
633 		 * Reject if this requirement is not met.
634 		 */
635 		if (uaddr != NULL) {
636 			free = uvm_map_uaddr_e(map, i);
637 
638 			if (uaddr != free && free != NULL &&
639 			    (free == map->uaddr_exe ||
640 			     free == map->uaddr_brk_stack))
641 				return 0;
642 		}
643 	}
644 
645 	return -1;
646 }
647 
648 /*
649  * Invoke each address selector until an address is found.
650  * Will not invoke uaddr_exe.
651  */
652 int
653 uvm_map_findspace(struct vm_map *map, struct vm_map_entry**first,
654     struct vm_map_entry**last, vaddr_t *addr, vsize_t sz,
655     vaddr_t pmap_align, vaddr_t pmap_offset, vm_prot_t prot, vaddr_t hint)
656 {
657 	struct uvm_addr_state *uaddr;
658 	int i;
659 
660 	/*
661 	 * Allocation for sz bytes at any address,
662 	 * using the addr selectors in order.
663 	 */
664 	for (i = 0; i < nitems(map->uaddr_any); i++) {
665 		uaddr = map->uaddr_any[i];
666 
667 		if (uvm_addr_invoke(map, uaddr, first, last,
668 		    addr, sz, pmap_align, pmap_offset, prot, hint) == 0)
669 			return 0;
670 	}
671 
672 	/* Fall back to brk() and stack() address selectors. */
673 	uaddr = map->uaddr_brk_stack;
674 	if (uvm_addr_invoke(map, uaddr, first, last,
675 	    addr, sz, pmap_align, pmap_offset, prot, hint) == 0)
676 		return 0;
677 
678 	return ENOMEM;
679 }
680 
681 /* Calculate entry augmentation value. */
682 vsize_t
683 uvm_map_addr_augment_get(struct vm_map_entry *entry)
684 {
685 	vsize_t			 augment;
686 	struct vm_map_entry	*left, *right;
687 
688 	augment = entry->fspace;
689 	if ((left = RBT_LEFT(uvm_map_addr, entry)) != NULL)
690 		augment = MAX(augment, left->fspace_augment);
691 	if ((right = RBT_RIGHT(uvm_map_addr, entry)) != NULL)
692 		augment = MAX(augment, right->fspace_augment);
693 	return augment;
694 }
695 
696 /*
697  * Update augmentation data in entry.
698  */
699 void
700 uvm_map_addr_augment(struct vm_map_entry *entry)
701 {
702 	vsize_t			 augment;
703 
704 	while (entry != NULL) {
705 		/* Calculate value for augmentation. */
706 		augment = uvm_map_addr_augment_get(entry);
707 
708 		/*
709 		 * Descend update.
710 		 * Once we find an entry that already has the correct value,
711 		 * stop, since it means all its parents will use the correct
712 		 * value too.
713 		 */
714 		if (entry->fspace_augment == augment)
715 			return;
716 		entry->fspace_augment = augment;
717 		entry = RBT_PARENT(uvm_map_addr, entry);
718 	}
719 }
720 
721 /*
722  * uvm_mapanon: establish a valid mapping in map for an anon
723  *
724  * => *addr and sz must be a multiple of PAGE_SIZE.
725  * => *addr is ignored, except if flags contains UVM_FLAG_FIXED.
726  * => map must be unlocked.
727  *
728  * => align: align vaddr, must be a power-of-2.
729  *    Align is only a hint and will be ignored if the alignment fails.
730  */
731 int
732 uvm_mapanon(struct vm_map *map, vaddr_t *addr, vsize_t sz,
733     vsize_t align, unsigned int flags)
734 {
735 	struct vm_map_entry	*first, *last, *entry, *new;
736 	struct uvm_map_deadq	 dead;
737 	vm_prot_t		 prot;
738 	vm_prot_t		 maxprot;
739 	vm_inherit_t		 inherit;
740 	int			 advice;
741 	int			 error;
742 	vaddr_t			 pmap_align, pmap_offset;
743 	vaddr_t			 hint;
744 
745 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE);
746 	KASSERT(map != kernel_map);
747 	KASSERT((map->flags & UVM_FLAG_HOLE) == 0);
748 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
749 	splassert(IPL_NONE);
750 	KASSERT((flags & UVM_FLAG_TRYLOCK) == 0);
751 
752 	/*
753 	 * We use pmap_align and pmap_offset as alignment and offset variables.
754 	 *
755 	 * Because the align parameter takes precedence over pmap prefer,
756 	 * the pmap_align will need to be set to align, with pmap_offset = 0,
757 	 * if pmap_prefer will not align.
758 	 */
759 	pmap_align = MAX(align, PAGE_SIZE);
760 	pmap_offset = 0;
761 
762 	/* Decode parameters. */
763 	prot = UVM_PROTECTION(flags);
764 	maxprot = UVM_MAXPROTECTION(flags);
765 	advice = UVM_ADVICE(flags);
766 	inherit = UVM_INHERIT(flags);
767 	error = 0;
768 	hint = trunc_page(*addr);
769 	TAILQ_INIT(&dead);
770 	KASSERT((sz & (vaddr_t)PAGE_MASK) == 0);
771 	KASSERT((align & (align - 1)) == 0);
772 
773 	/* Check protection. */
774 	if ((prot & maxprot) != prot)
775 		return EACCES;
776 
777 	/*
778 	 * Before grabbing the lock, allocate a map entry for later
779 	 * use to ensure we don't wait for memory while holding the
780 	 * vm_map_lock.
781 	 */
782 	new = uvm_mapent_alloc(map, flags);
783 	if (new == NULL)
784 		return ENOMEM;
785 
786 	vm_map_lock(map);
787 	first = last = NULL;
788 	if (flags & UVM_FLAG_FIXED) {
789 		/*
790 		 * Fixed location.
791 		 *
792 		 * Note: we ignore align, pmap_prefer.
793 		 * Fill in first, last and *addr.
794 		 */
795 		KASSERT((*addr & PAGE_MASK) == 0);
796 
797 		/* Check that the space is available. */
798 		if (flags & UVM_FLAG_UNMAP) {
799 			if ((flags & UVM_FLAG_STACK) &&
800 			    !uvm_map_is_stack_remappable(map, *addr, sz,
801 				(flags & UVM_FLAG_SIGALTSTACK))) {
802 				error = EINVAL;
803 				goto unlock;
804 			}
805 			if (uvm_unmap_remove(map, *addr, *addr + sz, &dead,
806 			    FALSE, TRUE,
807 			    (flags & UVM_FLAG_SIGALTSTACK) ? FALSE : TRUE) != 0) {
808 				error = EPERM;	/* immutable entries found */
809 				goto unlock;
810 			}
811 		}
812 		if (!uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
813 			error = ENOMEM;
814 			goto unlock;
815 		}
816 	} else if (*addr != 0 && (*addr & PAGE_MASK) == 0 &&
817 	    (align == 0 || (*addr & (align - 1)) == 0) &&
818 	    uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
819 		/*
820 		 * Address used as hint.
821 		 *
822 		 * Note: we enforce the alignment restriction,
823 		 * but ignore pmap_prefer.
824 		 */
825 	} else if ((prot & PROT_EXEC) != 0 && map->uaddr_exe != NULL) {
826 		/* Run selection algorithm for executables. */
827 		error = uvm_addr_invoke(map, map->uaddr_exe, &first, &last,
828 		    addr, sz, pmap_align, pmap_offset, prot, hint);
829 
830 		if (error != 0)
831 			goto unlock;
832 	} else {
833 		/* Update freelists from vmspace. */
834 		uvm_map_vmspace_update(map, &dead, flags);
835 
836 		error = uvm_map_findspace(map, &first, &last, addr, sz,
837 		    pmap_align, pmap_offset, prot, hint);
838 
839 		if (error != 0)
840 			goto unlock;
841 	}
842 
843 	/* Double-check if selected address doesn't cause overflow. */
844 	if (*addr + sz < *addr) {
845 		error = ENOMEM;
846 		goto unlock;
847 	}
848 
849 	/* If we only want a query, return now. */
850 	if (flags & UVM_FLAG_QUERY) {
851 		error = 0;
852 		goto unlock;
853 	}
854 
855 	/*
856 	 * Create new entry.
857 	 * first and last may be invalidated after this call.
858 	 */
859 	entry = uvm_map_mkentry(map, first, last, *addr, sz, flags, &dead,
860 	    new);
861 	if (entry == NULL) {
862 		error = ENOMEM;
863 		goto unlock;
864 	}
865 	new = NULL;
866 	KDASSERT(entry->start == *addr && entry->end == *addr + sz);
867 	entry->object.uvm_obj = NULL;
868 	entry->offset = 0;
869 	entry->protection = prot;
870 	entry->max_protection = maxprot;
871 	entry->inheritance = inherit;
872 	entry->wired_count = 0;
873 	entry->advice = advice;
874 	if (prot & PROT_WRITE)
875 		map->wserial++;
876 	if (flags & UVM_FLAG_SYSCALL) {
877 		entry->etype |= UVM_ET_SYSCALL;
878 		map->wserial++;
879 	}
880 	if (flags & UVM_FLAG_STACK) {
881 		entry->etype |= UVM_ET_STACK;
882 		if (flags & (UVM_FLAG_FIXED | UVM_FLAG_UNMAP))
883 			map->sserial++;
884 	}
885 	if (flags & UVM_FLAG_COPYONW) {
886 		entry->etype |= UVM_ET_COPYONWRITE;
887 		if ((flags & UVM_FLAG_OVERLAY) == 0)
888 			entry->etype |= UVM_ET_NEEDSCOPY;
889 	}
890 	if (flags & UVM_FLAG_CONCEAL)
891 		entry->etype |= UVM_ET_CONCEAL;
892 	if (flags & UVM_FLAG_OVERLAY) {
893 		entry->aref.ar_pageoff = 0;
894 		entry->aref.ar_amap = amap_alloc(sz, M_WAITOK, 0);
895 	}
896 
897 	/* Update map and process statistics. */
898 	map->size += sz;
899 	if (prot != PROT_NONE) {
900 		((struct vmspace *)map)->vm_dused +=
901 		    uvmspace_dused(map, *addr, *addr + sz);
902 	}
903 
904 unlock:
905 	vm_map_unlock(map);
906 
907 	/*
908 	 * Remove dead entries.
909 	 *
910 	 * Dead entries may be the result of merging.
911 	 * uvm_map_mkentry may also create dead entries, when it attempts to
912 	 * destroy free-space entries.
913 	 */
914 	uvm_unmap_detach(&dead, 0);
915 
916 	if (new)
917 		uvm_mapent_free(new);
918 	return error;
919 }
920 
921 /*
922  * uvm_map: establish a valid mapping in map
923  *
924  * => *addr and sz must be a multiple of PAGE_SIZE.
925  * => map must be unlocked.
926  * => <uobj,uoffset> value meanings (4 cases):
927  *	[1] <NULL,uoffset>		== uoffset is a hint for PMAP_PREFER
928  *	[2] <NULL,UVM_UNKNOWN_OFFSET>	== don't PMAP_PREFER
929  *	[3] <uobj,uoffset>		== normal mapping
930  *	[4] <uobj,UVM_UNKNOWN_OFFSET>	== uvm_map finds offset based on VA
931  *
932  *   case [4] is for kernel mappings where we don't know the offset until
933  *   we've found a virtual address.   note that kernel object offsets are
934  *   always relative to vm_map_min(kernel_map).
935  *
936  * => align: align vaddr, must be a power-of-2.
937  *    Align is only a hint and will be ignored if the alignment fails.
938  */
939 int
940 uvm_map(struct vm_map *map, vaddr_t *addr, vsize_t sz,
941     struct uvm_object *uobj, voff_t uoffset,
942     vsize_t align, unsigned int flags)
943 {
944 	struct vm_map_entry	*first, *last, *entry, *new;
945 	struct uvm_map_deadq	 dead;
946 	vm_prot_t		 prot;
947 	vm_prot_t		 maxprot;
948 	vm_inherit_t		 inherit;
949 	int			 advice;
950 	int			 error;
951 	vaddr_t			 pmap_align, pmap_offset;
952 	vaddr_t			 hint;
953 
954 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
955 		splassert(IPL_NONE);
956 	else
957 		splassert(IPL_VM);
958 
959 	/*
960 	 * We use pmap_align and pmap_offset as alignment and offset variables.
961 	 *
962 	 * Because the align parameter takes precedence over pmap prefer,
963 	 * the pmap_align will need to be set to align, with pmap_offset = 0,
964 	 * if pmap_prefer will not align.
965 	 */
966 	if (uoffset == UVM_UNKNOWN_OFFSET) {
967 		pmap_align = MAX(align, PAGE_SIZE);
968 		pmap_offset = 0;
969 	} else {
970 		pmap_align = MAX(PMAP_PREFER_ALIGN(), PAGE_SIZE);
971 		pmap_offset = PMAP_PREFER_OFFSET(uoffset);
972 
973 		if (align == 0 ||
974 		    (align <= pmap_align && (pmap_offset & (align - 1)) == 0)) {
975 			/* pmap_offset satisfies align, no change. */
976 		} else {
977 			/* Align takes precedence over pmap prefer. */
978 			pmap_align = align;
979 			pmap_offset = 0;
980 		}
981 	}
982 
983 	/* Decode parameters. */
984 	prot = UVM_PROTECTION(flags);
985 	maxprot = UVM_MAXPROTECTION(flags);
986 	advice = UVM_ADVICE(flags);
987 	inherit = UVM_INHERIT(flags);
988 	error = 0;
989 	hint = trunc_page(*addr);
990 	TAILQ_INIT(&dead);
991 	KASSERT((sz & (vaddr_t)PAGE_MASK) == 0);
992 	KASSERT((align & (align - 1)) == 0);
993 
994 	/* Holes are incompatible with other types of mappings. */
995 	if (flags & UVM_FLAG_HOLE) {
996 		KASSERT(uobj == NULL && (flags & UVM_FLAG_FIXED) &&
997 		    (flags & (UVM_FLAG_OVERLAY | UVM_FLAG_COPYONW)) == 0);
998 	}
999 
1000 	/* Unset hint for kernel_map non-fixed allocations. */
1001 	if (!(map->flags & VM_MAP_ISVMSPACE) && !(flags & UVM_FLAG_FIXED))
1002 		hint = 0;
1003 
1004 	/* Check protection. */
1005 	if ((prot & maxprot) != prot)
1006 		return EACCES;
1007 
1008 	if (map == kernel_map &&
1009 	    (prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))
1010 		panic("uvm_map: kernel map W^X violation requested");
1011 
1012 	/*
1013 	 * Before grabbing the lock, allocate a map entry for later
1014 	 * use to ensure we don't wait for memory while holding the
1015 	 * vm_map_lock.
1016 	 */
1017 	new = uvm_mapent_alloc(map, flags);
1018 	if (new == NULL)
1019 		return ENOMEM;
1020 
1021 	if (flags & UVM_FLAG_TRYLOCK) {
1022 		if (vm_map_lock_try(map) == FALSE) {
1023 			error = EFAULT;
1024 			goto out;
1025 		}
1026 	} else {
1027 		vm_map_lock(map);
1028 	}
1029 
1030 	first = last = NULL;
1031 	if (flags & UVM_FLAG_FIXED) {
1032 		/*
1033 		 * Fixed location.
1034 		 *
1035 		 * Note: we ignore align, pmap_prefer.
1036 		 * Fill in first, last and *addr.
1037 		 */
1038 		KASSERT((*addr & PAGE_MASK) == 0);
1039 
1040 		/*
1041 		 * Grow pmap to include allocated address.
1042 		 * If the growth fails, the allocation will fail too.
1043 		 */
1044 		if ((map->flags & VM_MAP_ISVMSPACE) == 0 &&
1045 		    uvm_maxkaddr < (*addr + sz)) {
1046 			uvm_map_kmem_grow(map, &dead,
1047 			    *addr + sz - uvm_maxkaddr, flags);
1048 		}
1049 
1050 		/* Check that the space is available. */
1051 		if (flags & UVM_FLAG_UNMAP) {
1052 			if (uvm_unmap_remove(map, *addr, *addr + sz, &dead,
1053 			    FALSE, TRUE, TRUE) != 0) {
1054 				error = EPERM;	/* immutable entries found */
1055 				goto unlock;
1056 			}
1057 		}
1058 		if (!uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1059 			error = ENOMEM;
1060 			goto unlock;
1061 		}
1062 	} else if (*addr != 0 && (*addr & PAGE_MASK) == 0 &&
1063 	    (map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE &&
1064 	    (align == 0 || (*addr & (align - 1)) == 0) &&
1065 	    uvm_map_isavail(map, NULL, &first, &last, *addr, sz)) {
1066 		/*
1067 		 * Address used as hint.
1068 		 *
1069 		 * Note: we enforce the alignment restriction,
1070 		 * but ignore pmap_prefer.
1071 		 */
1072 	} else if ((prot & PROT_EXEC) != 0 && map->uaddr_exe != NULL) {
1073 		/* Run selection algorithm for executables. */
1074 		error = uvm_addr_invoke(map, map->uaddr_exe, &first, &last,
1075 		    addr, sz, pmap_align, pmap_offset, prot, hint);
1076 
1077 		/* Grow kernel memory and try again. */
1078 		if (error != 0 && (map->flags & VM_MAP_ISVMSPACE) == 0) {
1079 			uvm_map_kmem_grow(map, &dead, sz, flags);
1080 
1081 			error = uvm_addr_invoke(map, map->uaddr_exe,
1082 			    &first, &last, addr, sz,
1083 			    pmap_align, pmap_offset, prot, hint);
1084 		}
1085 
1086 		if (error != 0)
1087 			goto unlock;
1088 	} else {
1089 		/* Update freelists from vmspace. */
1090 		if (map->flags & VM_MAP_ISVMSPACE)
1091 			uvm_map_vmspace_update(map, &dead, flags);
1092 
1093 		error = uvm_map_findspace(map, &first, &last, addr, sz,
1094 		    pmap_align, pmap_offset, prot, hint);
1095 
1096 		/* Grow kernel memory and try again. */
1097 		if (error != 0 && (map->flags & VM_MAP_ISVMSPACE) == 0) {
1098 			uvm_map_kmem_grow(map, &dead, sz, flags);
1099 
1100 			error = uvm_map_findspace(map, &first, &last, addr, sz,
1101 			    pmap_align, pmap_offset, prot, hint);
1102 		}
1103 
1104 		if (error != 0)
1105 			goto unlock;
1106 	}
1107 
1108 	/* Double-check if selected address doesn't cause overflow. */
1109 	if (*addr + sz < *addr) {
1110 		error = ENOMEM;
1111 		goto unlock;
1112 	}
1113 
1114 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == VM_MAP_ISVMSPACE ||
1115 	    uvm_maxkaddr >= *addr + sz);
1116 
1117 	/* If we only want a query, return now. */
1118 	if (flags & UVM_FLAG_QUERY) {
1119 		error = 0;
1120 		goto unlock;
1121 	}
1122 
1123 	if (uobj == NULL)
1124 		uoffset = 0;
1125 	else if (uoffset == UVM_UNKNOWN_OFFSET) {
1126 		KASSERT(UVM_OBJ_IS_KERN_OBJECT(uobj));
1127 		uoffset = *addr - vm_map_min(kernel_map);
1128 	}
1129 
1130 	/*
1131 	 * Create new entry.
1132 	 * first and last may be invalidated after this call.
1133 	 */
1134 	entry = uvm_map_mkentry(map, first, last, *addr, sz, flags, &dead,
1135 	    new);
1136 	if (entry == NULL) {
1137 		error = ENOMEM;
1138 		goto unlock;
1139 	}
1140 	new = NULL;
1141 	KDASSERT(entry->start == *addr && entry->end == *addr + sz);
1142 	entry->object.uvm_obj = uobj;
1143 	entry->offset = uoffset;
1144 	entry->protection = prot;
1145 	entry->max_protection = maxprot;
1146 	entry->inheritance = inherit;
1147 	entry->wired_count = 0;
1148 	entry->advice = advice;
1149 	if (prot & PROT_WRITE)
1150 		map->wserial++;
1151 	if (flags & UVM_FLAG_SYSCALL) {
1152 		entry->etype |= UVM_ET_SYSCALL;
1153 		map->wserial++;
1154 	}
1155 	if (flags & UVM_FLAG_STACK) {
1156 		entry->etype |= UVM_ET_STACK;
1157 		if (flags & UVM_FLAG_UNMAP)
1158 			map->sserial++;
1159 	}
1160 	if (uobj)
1161 		entry->etype |= UVM_ET_OBJ;
1162 	else if (flags & UVM_FLAG_HOLE)
1163 		entry->etype |= UVM_ET_HOLE;
1164 	if (flags & UVM_FLAG_NOFAULT)
1165 		entry->etype |= UVM_ET_NOFAULT;
1166 	if (flags & UVM_FLAG_WC)
1167 		entry->etype |= UVM_ET_WC;
1168 	if (flags & UVM_FLAG_COPYONW) {
1169 		entry->etype |= UVM_ET_COPYONWRITE;
1170 		if ((flags & UVM_FLAG_OVERLAY) == 0)
1171 			entry->etype |= UVM_ET_NEEDSCOPY;
1172 	}
1173 	if (flags & UVM_FLAG_CONCEAL)
1174 		entry->etype |= UVM_ET_CONCEAL;
1175 	if (flags & UVM_FLAG_OVERLAY) {
1176 		entry->aref.ar_pageoff = 0;
1177 		entry->aref.ar_amap = amap_alloc(sz, M_WAITOK, 0);
1178 	}
1179 
1180 	/* Update map and process statistics. */
1181 	if (!(flags & UVM_FLAG_HOLE)) {
1182 		map->size += sz;
1183 		if ((map->flags & VM_MAP_ISVMSPACE) && uobj == NULL &&
1184 		    prot != PROT_NONE) {
1185 			((struct vmspace *)map)->vm_dused +=
1186 			    uvmspace_dused(map, *addr, *addr + sz);
1187 		}
1188 	}
1189 
1190 	/*
1191 	 * Try to merge entry.
1192 	 *
1193 	 * Userland allocations are kept separated most of the time.
1194 	 * Forego the effort of merging what most of the time can't be merged
1195 	 * and only try the merge if it concerns a kernel entry.
1196 	 */
1197 	if ((flags & UVM_FLAG_NOMERGE) == 0 &&
1198 	    (map->flags & VM_MAP_ISVMSPACE) == 0)
1199 		uvm_mapent_tryjoin(map, entry, &dead);
1200 
1201 unlock:
1202 	vm_map_unlock(map);
1203 
1204 	/*
1205 	 * Remove dead entries.
1206 	 *
1207 	 * Dead entries may be the result of merging.
1208 	 * uvm_map_mkentry may also create dead entries, when it attempts to
1209 	 * destroy free-space entries.
1210 	 */
1211 	if (map->flags & VM_MAP_INTRSAFE)
1212 		uvm_unmap_detach_intrsafe(&dead);
1213 	else
1214 		uvm_unmap_detach(&dead, 0);
1215 out:
1216 	if (new)
1217 		uvm_mapent_free(new);
1218 	return error;
1219 }
1220 
1221 /*
1222  * True iff e1 and e2 can be joined together.
1223  */
1224 int
1225 uvm_mapent_isjoinable(struct vm_map *map, struct vm_map_entry *e1,
1226     struct vm_map_entry *e2)
1227 {
1228 	KDASSERT(e1 != NULL && e2 != NULL);
1229 
1230 	/* Must be the same entry type and not have free memory between. */
1231 	if (e1->etype != e2->etype || e1->end != e2->start)
1232 		return 0;
1233 
1234 	/* Submaps are never joined. */
1235 	if (UVM_ET_ISSUBMAP(e1))
1236 		return 0;
1237 
1238 	/* Never merge wired memory. */
1239 	if (VM_MAPENT_ISWIRED(e1) || VM_MAPENT_ISWIRED(e2))
1240 		return 0;
1241 
1242 	/* Protection, inheritance and advice must be equal. */
1243 	if (e1->protection != e2->protection ||
1244 	    e1->max_protection != e2->max_protection ||
1245 	    e1->inheritance != e2->inheritance ||
1246 	    e1->advice != e2->advice)
1247 		return 0;
1248 
1249 	/* If uvm_object: object itself and offsets within object must match. */
1250 	if (UVM_ET_ISOBJ(e1)) {
1251 		if (e1->object.uvm_obj != e2->object.uvm_obj)
1252 			return 0;
1253 		if (e1->offset + (e1->end - e1->start) != e2->offset)
1254 			return 0;
1255 	}
1256 
1257 	/*
1258 	 * Cannot join shared amaps.
1259 	 * Note: no need to lock amap to look at refs, since we don't care
1260 	 * about its exact value.
1261 	 * If it is 1 (i.e. we have the only reference) it will stay there.
1262 	 */
1263 	if (e1->aref.ar_amap && amap_refs(e1->aref.ar_amap) != 1)
1264 		return 0;
1265 	if (e2->aref.ar_amap && amap_refs(e2->aref.ar_amap) != 1)
1266 		return 0;
1267 
1268 	/* Apparently, e1 and e2 match. */
1269 	return 1;
1270 }
1271 
1272 /*
1273  * Join support function.
1274  *
1275  * Returns the merged entry on success.
1276  * Returns NULL if the merge failed.
1277  */
1278 struct vm_map_entry*
1279 uvm_mapent_merge(struct vm_map *map, struct vm_map_entry *e1,
1280     struct vm_map_entry *e2, struct uvm_map_deadq *dead)
1281 {
1282 	struct uvm_addr_state *free;
1283 
1284 	/*
1285 	 * Merging is not supported for map entries that
1286 	 * contain an amap in e1. This should never happen
1287 	 * anyway, because only kernel entries are merged.
1288 	 * These do not contain amaps.
1289 	 * e2 contains no real information in its amap,
1290 	 * so it can be erased immediately.
1291 	 */
1292 	KASSERT(e1->aref.ar_amap == NULL);
1293 
1294 	/*
1295 	 * Don't drop obj reference:
1296 	 * uvm_unmap_detach will do this for us.
1297 	 */
1298 	free = uvm_map_uaddr_e(map, e1);
1299 	uvm_mapent_free_remove(map, free, e1);
1300 
1301 	free = uvm_map_uaddr_e(map, e2);
1302 	uvm_mapent_free_remove(map, free, e2);
1303 	uvm_mapent_addr_remove(map, e2);
1304 	e1->end = e2->end;
1305 	e1->guard = e2->guard;
1306 	e1->fspace = e2->fspace;
1307 	uvm_mapent_free_insert(map, free, e1);
1308 
1309 	DEAD_ENTRY_PUSH(dead, e2);
1310 	return e1;
1311 }
1312 
1313 /*
1314  * Attempt forward and backward joining of entry.
1315  *
1316  * Returns entry after joins.
1317  * We are guaranteed that the amap of entry is either non-existent or
1318  * has never been used.
1319  */
1320 struct vm_map_entry*
1321 uvm_mapent_tryjoin(struct vm_map *map, struct vm_map_entry *entry,
1322     struct uvm_map_deadq *dead)
1323 {
1324 	struct vm_map_entry *other;
1325 	struct vm_map_entry *merged;
1326 
1327 	/* Merge with previous entry. */
1328 	other = RBT_PREV(uvm_map_addr, entry);
1329 	if (other && uvm_mapent_isjoinable(map, other, entry)) {
1330 		merged = uvm_mapent_merge(map, other, entry, dead);
1331 		if (merged)
1332 			entry = merged;
1333 	}
1334 
1335 	/*
1336 	 * Merge with next entry.
1337 	 *
1338 	 * Because amap can only extend forward and the next entry
1339 	 * probably contains sensible info, only perform forward merging
1340 	 * in the absence of an amap.
1341 	 */
1342 	other = RBT_NEXT(uvm_map_addr, entry);
1343 	if (other && entry->aref.ar_amap == NULL &&
1344 	    other->aref.ar_amap == NULL &&
1345 	    uvm_mapent_isjoinable(map, entry, other)) {
1346 		merged = uvm_mapent_merge(map, entry, other, dead);
1347 		if (merged)
1348 			entry = merged;
1349 	}
1350 
1351 	return entry;
1352 }
1353 
1354 /*
1355  * Kill entries that are no longer in a map.
1356  */
1357 void
1358 uvm_unmap_detach(struct uvm_map_deadq *deadq, int flags)
1359 {
1360 	struct vm_map_entry *entry, *tmp;
1361 	int waitok = flags & UVM_PLA_WAITOK;
1362 
1363 	TAILQ_FOREACH_SAFE(entry, deadq, dfree.deadq, tmp) {
1364 		/* Drop reference to amap, if we've got one. */
1365 		if (entry->aref.ar_amap)
1366 			amap_unref(entry->aref.ar_amap,
1367 			    entry->aref.ar_pageoff,
1368 			    atop(entry->end - entry->start),
1369 			    flags & AMAP_REFALL);
1370 
1371 		/* Skip entries for which we have to grab the kernel lock. */
1372 		if (UVM_ET_ISSUBMAP(entry) || UVM_ET_ISOBJ(entry))
1373 			continue;
1374 
1375 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1376 		uvm_mapent_free(entry);
1377 	}
1378 
1379 	if (TAILQ_EMPTY(deadq))
1380 		return;
1381 
1382 	KERNEL_LOCK();
1383 	while ((entry = TAILQ_FIRST(deadq)) != NULL) {
1384 		if (waitok)
1385 			uvm_pause();
1386 		/* Drop reference to our backing object, if we've got one. */
1387 		if (UVM_ET_ISSUBMAP(entry)) {
1388 			/* ... unlikely to happen, but play it safe */
1389 			uvm_map_deallocate(entry->object.sub_map);
1390 		} else if (UVM_ET_ISOBJ(entry) &&
1391 		    entry->object.uvm_obj->pgops->pgo_detach) {
1392 			entry->object.uvm_obj->pgops->pgo_detach(
1393 			    entry->object.uvm_obj);
1394 		}
1395 
1396 		/* Step to next. */
1397 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1398 		uvm_mapent_free(entry);
1399 	}
1400 	KERNEL_UNLOCK();
1401 }
1402 
1403 void
1404 uvm_unmap_detach_intrsafe(struct uvm_map_deadq *deadq)
1405 {
1406 	struct vm_map_entry *entry;
1407 
1408 	while ((entry = TAILQ_FIRST(deadq)) != NULL) {
1409 		KASSERT(entry->aref.ar_amap == NULL);
1410 		KASSERT(!UVM_ET_ISSUBMAP(entry));
1411 		KASSERT(!UVM_ET_ISOBJ(entry));
1412 		TAILQ_REMOVE(deadq, entry, dfree.deadq);
1413 		uvm_mapent_free(entry);
1414 	}
1415 }
1416 
1417 /*
1418  * Create and insert new entry.
1419  *
1420  * Returned entry contains new addresses and is inserted properly in the tree.
1421  * first and last are (probably) no longer valid.
1422  */
1423 struct vm_map_entry*
1424 uvm_map_mkentry(struct vm_map *map, struct vm_map_entry *first,
1425     struct vm_map_entry *last, vaddr_t addr, vsize_t sz, int flags,
1426     struct uvm_map_deadq *dead, struct vm_map_entry *new)
1427 {
1428 	struct vm_map_entry *entry, *prev;
1429 	struct uvm_addr_state *free;
1430 	vaddr_t min, max;	/* free space boundaries for new entry */
1431 
1432 	KDASSERT(map != NULL);
1433 	KDASSERT(first != NULL);
1434 	KDASSERT(last != NULL);
1435 	KDASSERT(dead != NULL);
1436 	KDASSERT(sz > 0);
1437 	KDASSERT(addr + sz > addr);
1438 	KDASSERT(first->end <= addr && VMMAP_FREE_END(first) > addr);
1439 	KDASSERT(last->start < addr + sz && VMMAP_FREE_END(last) >= addr + sz);
1440 	KDASSERT(uvm_map_isavail(map, NULL, &first, &last, addr, sz));
1441 	uvm_tree_sanity(map, __FILE__, __LINE__);
1442 
1443 	min = addr + sz;
1444 	max = VMMAP_FREE_END(last);
1445 
1446 	/* Initialize new entry. */
1447 	if (new == NULL)
1448 		entry = uvm_mapent_alloc(map, flags);
1449 	else
1450 		entry = new;
1451 	if (entry == NULL)
1452 		return NULL;
1453 	entry->offset = 0;
1454 	entry->etype = 0;
1455 	entry->wired_count = 0;
1456 	entry->aref.ar_pageoff = 0;
1457 	entry->aref.ar_amap = NULL;
1458 
1459 	entry->start = addr;
1460 	entry->end = min;
1461 	entry->guard = 0;
1462 	entry->fspace = 0;
1463 
1464 	vm_map_assert_wrlock(map);
1465 
1466 	/* Reset free space in first. */
1467 	free = uvm_map_uaddr_e(map, first);
1468 	uvm_mapent_free_remove(map, free, first);
1469 	first->guard = 0;
1470 	first->fspace = 0;
1471 
1472 	/*
1473 	 * Remove all entries that are fully replaced.
1474 	 * We are iterating using last in reverse order.
1475 	 */
1476 	for (; first != last; last = prev) {
1477 		prev = RBT_PREV(uvm_map_addr, last);
1478 
1479 		KDASSERT(last->start == last->end);
1480 		free = uvm_map_uaddr_e(map, last);
1481 		uvm_mapent_free_remove(map, free, last);
1482 		uvm_mapent_addr_remove(map, last);
1483 		DEAD_ENTRY_PUSH(dead, last);
1484 	}
1485 	/* Remove first if it is entirely inside <addr, addr+sz>.  */
1486 	if (first->start == addr) {
1487 		uvm_mapent_addr_remove(map, first);
1488 		DEAD_ENTRY_PUSH(dead, first);
1489 	} else {
1490 		uvm_map_fix_space(map, first, VMMAP_FREE_START(first),
1491 		    addr, flags);
1492 	}
1493 
1494 	/* Finally, link in entry. */
1495 	uvm_mapent_addr_insert(map, entry);
1496 	uvm_map_fix_space(map, entry, min, max, flags);
1497 
1498 	uvm_tree_sanity(map, __FILE__, __LINE__);
1499 	return entry;
1500 }
1501 
1502 
1503 /*
1504  * uvm_mapent_alloc: allocate a map entry
1505  */
1506 struct vm_map_entry *
1507 uvm_mapent_alloc(struct vm_map *map, int flags)
1508 {
1509 	struct vm_map_entry *me, *ne;
1510 	int pool_flags;
1511 	int i;
1512 
1513 	pool_flags = PR_WAITOK;
1514 	if (flags & UVM_FLAG_TRYLOCK)
1515 		pool_flags = PR_NOWAIT;
1516 
1517 	if (map->flags & VM_MAP_INTRSAFE || cold) {
1518 		mtx_enter(&uvm_kmapent_mtx);
1519 		if (SLIST_EMPTY(&uvm.kentry_free)) {
1520 			ne = km_alloc(PAGE_SIZE, &kv_page, &kp_dirty,
1521 			    &kd_nowait);
1522 			if (ne == NULL)
1523 				panic("uvm_mapent_alloc: cannot allocate map "
1524 				    "entry");
1525 			for (i = 0; i < PAGE_SIZE / sizeof(*ne); i++) {
1526 				SLIST_INSERT_HEAD(&uvm.kentry_free,
1527 				    &ne[i], daddrs.addr_kentry);
1528 			}
1529 			if (ratecheck(&uvm_kmapent_last_warn_time,
1530 			    &uvm_kmapent_warn_rate))
1531 				printf("uvm_mapent_alloc: out of static "
1532 				    "map entries\n");
1533 		}
1534 		me = SLIST_FIRST(&uvm.kentry_free);
1535 		SLIST_REMOVE_HEAD(&uvm.kentry_free, daddrs.addr_kentry);
1536 		uvmexp.kmapent++;
1537 		mtx_leave(&uvm_kmapent_mtx);
1538 		me->flags = UVM_MAP_STATIC;
1539 	} else if (map == kernel_map) {
1540 		splassert(IPL_NONE);
1541 		me = pool_get(&uvm_map_entry_kmem_pool, pool_flags);
1542 		if (me == NULL)
1543 			goto out;
1544 		me->flags = UVM_MAP_KMEM;
1545 	} else {
1546 		splassert(IPL_NONE);
1547 		me = pool_get(&uvm_map_entry_pool, pool_flags);
1548 		if (me == NULL)
1549 			goto out;
1550 		me->flags = 0;
1551 	}
1552 
1553 	RBT_POISON(uvm_map_addr, me, UVMMAP_DEADBEEF);
1554 out:
1555 	return me;
1556 }
1557 
1558 /*
1559  * uvm_mapent_free: free map entry
1560  *
1561  * => XXX: static pool for kernel map?
1562  */
1563 void
1564 uvm_mapent_free(struct vm_map_entry *me)
1565 {
1566 	if (me->flags & UVM_MAP_STATIC) {
1567 		mtx_enter(&uvm_kmapent_mtx);
1568 		SLIST_INSERT_HEAD(&uvm.kentry_free, me, daddrs.addr_kentry);
1569 		uvmexp.kmapent--;
1570 		mtx_leave(&uvm_kmapent_mtx);
1571 	} else if (me->flags & UVM_MAP_KMEM) {
1572 		splassert(IPL_NONE);
1573 		pool_put(&uvm_map_entry_kmem_pool, me);
1574 	} else {
1575 		splassert(IPL_NONE);
1576 		pool_put(&uvm_map_entry_pool, me);
1577 	}
1578 }
1579 
1580 /*
1581  * uvm_map_lookup_entry: find map entry at or before an address.
1582  *
1583  * => map must at least be read-locked by caller
1584  * => entry is returned in "entry"
1585  * => return value is true if address is in the returned entry
1586  * ET_HOLE entries are considered to not contain a mapping, ergo FALSE is
1587  * returned for those mappings.
1588  */
1589 boolean_t
1590 uvm_map_lookup_entry(struct vm_map *map, vaddr_t address,
1591     struct vm_map_entry **entry)
1592 {
1593 	vm_map_assert_anylock(map);
1594 
1595 	*entry = uvm_map_entrybyaddr(&map->addr, address);
1596 	return *entry != NULL && !UVM_ET_ISHOLE(*entry) &&
1597 	    (*entry)->start <= address && (*entry)->end > address;
1598 }
1599 
1600 /*
1601  * Stack must be in a MAP_STACK entry. PROT_NONE indicates stack not yet
1602  * grown -- then uvm_map_check_region_range() should not cache the entry
1603  * because growth won't be seen.
1604  */
1605 int
1606 uvm_map_inentry_sp(vm_map_entry_t entry)
1607 {
1608 	if ((entry->etype & UVM_ET_STACK) == 0) {
1609 		if (entry->protection == PROT_NONE)
1610 			return (-1);	/* don't update range */
1611 		return (0);
1612 	}
1613 	return (1);
1614 }
1615 
1616 /*
1617  * The system call must not come from a writeable entry, W^X is violated.
1618  * (Would be nice if we can spot aliasing, which is also kind of bad)
1619  *
1620  * The system call must come from an syscall-labeled entry (which are
1621  * the text regions of the main program, sigtramp, ld.so, or libc).
1622  */
1623 int
1624 uvm_map_inentry_pc(vm_map_entry_t entry)
1625 {
1626 	if (entry->protection & PROT_WRITE)
1627 		return (0);	/* not permitted */
1628 	if ((entry->etype & UVM_ET_SYSCALL) == 0)
1629 		return (0);	/* not permitted */
1630 	return (1);
1631 }
1632 
1633 int
1634 uvm_map_inentry_recheck(u_long serial, vaddr_t addr, struct p_inentry *ie)
1635 {
1636 	return (serial != ie->ie_serial || ie->ie_start == 0 ||
1637 	    addr < ie->ie_start || addr >= ie->ie_end);
1638 }
1639 
1640 /*
1641  * Inside a vm_map find the reg address and verify it via function.
1642  * Remember low and high addresses of region if valid and return TRUE,
1643  * else return FALSE.
1644  */
1645 boolean_t
1646 uvm_map_inentry_fix(struct proc *p, struct p_inentry *ie, vaddr_t addr,
1647     int (*fn)(vm_map_entry_t), u_long serial)
1648 {
1649 	vm_map_t map = &p->p_vmspace->vm_map;
1650 	vm_map_entry_t entry;
1651 	int ret;
1652 
1653 	if (addr < map->min_offset || addr >= map->max_offset)
1654 		return (FALSE);
1655 
1656 	/* lock map */
1657 	vm_map_lock_read(map);
1658 
1659 	/* lookup */
1660 	if (!uvm_map_lookup_entry(map, trunc_page(addr), &entry)) {
1661 		vm_map_unlock_read(map);
1662 		return (FALSE);
1663 	}
1664 
1665 	ret = (*fn)(entry);
1666 	if (ret == 0) {
1667 		vm_map_unlock_read(map);
1668 		return (FALSE);
1669 	} else if (ret == 1) {
1670 		ie->ie_start = entry->start;
1671 		ie->ie_end = entry->end;
1672 		ie->ie_serial = serial;
1673 	} else {
1674 		/* do not update, re-check later */
1675 	}
1676 	vm_map_unlock_read(map);
1677 	return (TRUE);
1678 }
1679 
1680 boolean_t
1681 uvm_map_inentry(struct proc *p, struct p_inentry *ie, vaddr_t addr,
1682     const char *fmt, int (*fn)(vm_map_entry_t), u_long serial)
1683 {
1684 	union sigval sv;
1685 	boolean_t ok = TRUE;
1686 
1687 	if (uvm_map_inentry_recheck(serial, addr, ie)) {
1688 		ok = uvm_map_inentry_fix(p, ie, addr, fn, serial);
1689 		if (!ok) {
1690 			KERNEL_LOCK();
1691 			printf(fmt, p->p_p->ps_comm, p->p_p->ps_pid, p->p_tid,
1692 			    addr, ie->ie_start, ie->ie_end-1);
1693 			p->p_p->ps_acflag |= AMAP;
1694 			sv.sival_ptr = (void *)PROC_PC(p);
1695 			trapsignal(p, SIGSEGV, 0, SEGV_ACCERR, sv);
1696 			KERNEL_UNLOCK();
1697 		}
1698 	}
1699 	return (ok);
1700 }
1701 
1702 /*
1703  * Check whether the given address range can be converted to a MAP_STACK
1704  * mapping.
1705  *
1706  * Must be called with map locked.
1707  */
1708 boolean_t
1709 uvm_map_is_stack_remappable(struct vm_map *map, vaddr_t addr, vaddr_t sz,
1710     int sigaltstack_check)
1711 {
1712 	vaddr_t end = addr + sz;
1713 	struct vm_map_entry *first, *iter, *prev = NULL;
1714 
1715 	vm_map_assert_anylock(map);
1716 
1717 	if (!uvm_map_lookup_entry(map, addr, &first)) {
1718 		printf("map stack 0x%lx-0x%lx of map %p failed: no mapping\n",
1719 		    addr, end, map);
1720 		return FALSE;
1721 	}
1722 
1723 	/*
1724 	 * Check that the address range exists and is contiguous.
1725 	 */
1726 	for (iter = first; iter != NULL && iter->start < end;
1727 	    prev = iter, iter = RBT_NEXT(uvm_map_addr, iter)) {
1728 		/*
1729 		 * Make sure that we do not have holes in the range.
1730 		 */
1731 #if 0
1732 		if (prev != NULL) {
1733 			printf("prev->start 0x%lx, prev->end 0x%lx, "
1734 			    "iter->start 0x%lx, iter->end 0x%lx\n",
1735 			    prev->start, prev->end, iter->start, iter->end);
1736 		}
1737 #endif
1738 
1739 		if (prev != NULL && prev->end != iter->start) {
1740 			printf("map stack 0x%lx-0x%lx of map %p failed: "
1741 			    "hole in range\n", addr, end, map);
1742 			return FALSE;
1743 		}
1744 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter)) {
1745 			printf("map stack 0x%lx-0x%lx of map %p failed: "
1746 			    "hole in range\n", addr, end, map);
1747 			return FALSE;
1748 		}
1749 		if (sigaltstack_check) {
1750 			if ((iter->etype & UVM_ET_SYSCALL))
1751 				return FALSE;
1752 			if (iter->protection != (PROT_READ | PROT_WRITE))
1753 				return FALSE;
1754 		}
1755 	}
1756 
1757 	return TRUE;
1758 }
1759 
1760 /*
1761  * Remap the middle-pages of an existing mapping as a stack range.
1762  * If there exists a previous contiguous mapping with the given range
1763  * [addr, addr + sz), with protection PROT_READ|PROT_WRITE, then the
1764  * mapping is dropped, and a new anon mapping is created and marked as
1765  * a stack.
1766  *
1767  * Must be called with map unlocked.
1768  */
1769 int
1770 uvm_map_remap_as_stack(struct proc *p, vaddr_t addr, vaddr_t sz)
1771 {
1772 	vm_map_t map = &p->p_vmspace->vm_map;
1773 	vaddr_t start, end;
1774 	int error;
1775 	int flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
1776 	    PROT_READ | PROT_WRITE | PROT_EXEC,
1777 	    MAP_INHERIT_COPY, MADV_NORMAL,
1778 	    UVM_FLAG_STACK | UVM_FLAG_FIXED | UVM_FLAG_UNMAP |
1779 	    UVM_FLAG_COPYONW | UVM_FLAG_SIGALTSTACK);
1780 
1781 	start = round_page(addr);
1782 	end = trunc_page(addr + sz);
1783 #ifdef MACHINE_STACK_GROWS_UP
1784 	if (end == addr + sz)
1785 		end -= PAGE_SIZE;
1786 #else
1787 	if (start == addr)
1788 		start += PAGE_SIZE;
1789 #endif
1790 
1791 	if (start < map->min_offset || end >= map->max_offset || end < start)
1792 		return EINVAL;
1793 
1794 	/*
1795 	 * UVM_FLAG_SIGALTSTACK indicates that immutable may be bypassed,
1796 	 * but the range is checked that it is contiguous, is not a syscall
1797 	 * mapping, and protection RW.  Then, a new mapping (all zero) is
1798 	 * placed upon the region, which prevents an attacker from pivoting
1799 	 * into pre-placed MAP_STACK space.
1800 	 */
1801 	error = uvm_mapanon(map, &start, end - start, 0, flags);
1802 	if (error != 0)
1803 		printf("map stack for pid %d failed\n", p->p_p->ps_pid);
1804 
1805 	return error;
1806 }
1807 
1808 /*
1809  * uvm_map_pie: return a random load address for a PIE executable
1810  * properly aligned.
1811  */
1812 #ifndef VM_PIE_MAX_ADDR
1813 #define VM_PIE_MAX_ADDR (VM_MAXUSER_ADDRESS / 4)
1814 #endif
1815 
1816 #ifndef VM_PIE_MIN_ADDR
1817 #define VM_PIE_MIN_ADDR VM_MIN_ADDRESS
1818 #endif
1819 
1820 #ifndef VM_PIE_MIN_ALIGN
1821 #define VM_PIE_MIN_ALIGN PAGE_SIZE
1822 #endif
1823 
1824 vaddr_t
1825 uvm_map_pie(vaddr_t align)
1826 {
1827 	vaddr_t addr, space, min;
1828 
1829 	align = MAX(align, VM_PIE_MIN_ALIGN);
1830 
1831 	/* round up to next alignment */
1832 	min = (VM_PIE_MIN_ADDR + align - 1) & ~(align - 1);
1833 
1834 	if (align >= VM_PIE_MAX_ADDR || min >= VM_PIE_MAX_ADDR)
1835 		return (align);
1836 
1837 	space = (VM_PIE_MAX_ADDR - min) / align;
1838 	space = MIN(space, (u_int32_t)-1);
1839 
1840 	addr = (vaddr_t)arc4random_uniform((u_int32_t)space) * align;
1841 	addr += min;
1842 
1843 	return (addr);
1844 }
1845 
1846 void
1847 uvm_unmap(struct vm_map *map, vaddr_t start, vaddr_t end)
1848 {
1849 	struct uvm_map_deadq dead;
1850 
1851 	KASSERT((start & (vaddr_t)PAGE_MASK) == 0 &&
1852 	    (end & (vaddr_t)PAGE_MASK) == 0);
1853 	TAILQ_INIT(&dead);
1854 	vm_map_lock(map);
1855 	uvm_unmap_remove(map, start, end, &dead, FALSE, TRUE, FALSE);
1856 	vm_map_unlock(map);
1857 
1858 	if (map->flags & VM_MAP_INTRSAFE)
1859 		uvm_unmap_detach_intrsafe(&dead);
1860 	else
1861 		uvm_unmap_detach(&dead, 0);
1862 }
1863 
1864 /*
1865  * Mark entry as free.
1866  *
1867  * entry will be put on the dead list.
1868  * The free space will be merged into the previous or a new entry,
1869  * unless markfree is false.
1870  */
1871 void
1872 uvm_mapent_mkfree(struct vm_map *map, struct vm_map_entry *entry,
1873     struct vm_map_entry **prev_ptr, struct uvm_map_deadq *dead,
1874     boolean_t markfree)
1875 {
1876 	struct uvm_addr_state	*free;
1877 	struct vm_map_entry	*prev;
1878 	vaddr_t			 addr;	/* Start of freed range. */
1879 	vaddr_t			 end;	/* End of freed range. */
1880 
1881 	UVM_MAP_REQ_WRITE(map);
1882 
1883 	prev = *prev_ptr;
1884 	if (prev == entry)
1885 		*prev_ptr = prev = NULL;
1886 
1887 	if (prev == NULL ||
1888 	    VMMAP_FREE_END(prev) != entry->start)
1889 		prev = RBT_PREV(uvm_map_addr, entry);
1890 
1891 	/* Entry is describing only free memory and has nothing to drain into. */
1892 	if (prev == NULL && entry->start == entry->end && markfree) {
1893 		*prev_ptr = entry;
1894 		return;
1895 	}
1896 
1897 	addr = entry->start;
1898 	end = VMMAP_FREE_END(entry);
1899 	free = uvm_map_uaddr_e(map, entry);
1900 	uvm_mapent_free_remove(map, free, entry);
1901 	uvm_mapent_addr_remove(map, entry);
1902 	DEAD_ENTRY_PUSH(dead, entry);
1903 
1904 	if (markfree) {
1905 		if (prev) {
1906 			free = uvm_map_uaddr_e(map, prev);
1907 			uvm_mapent_free_remove(map, free, prev);
1908 		}
1909 		*prev_ptr = uvm_map_fix_space(map, prev, addr, end, 0);
1910 	}
1911 }
1912 
1913 /*
1914  * Unwire and release referenced amap and object from map entry.
1915  */
1916 void
1917 uvm_unmap_kill_entry_withlock(struct vm_map *map, struct vm_map_entry *entry,
1918     int needlock)
1919 {
1920 	/* Unwire removed map entry. */
1921 	if (VM_MAPENT_ISWIRED(entry)) {
1922 		KERNEL_LOCK();
1923 		entry->wired_count = 0;
1924 		uvm_fault_unwire_locked(map, entry->start, entry->end);
1925 		KERNEL_UNLOCK();
1926 	}
1927 
1928 	if (needlock)
1929 		uvm_map_lock_entry(entry);
1930 
1931 	/* Entry-type specific code. */
1932 	if (UVM_ET_ISHOLE(entry)) {
1933 		/* Nothing to be done for holes. */
1934 	} else if (map->flags & VM_MAP_INTRSAFE) {
1935 		KASSERT(vm_map_pmap(map) == pmap_kernel());
1936 
1937 		uvm_km_pgremove_intrsafe(entry->start, entry->end);
1938 	} else if (UVM_ET_ISOBJ(entry) &&
1939 	    UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj)) {
1940 		KASSERT(vm_map_pmap(map) == pmap_kernel());
1941 		/*
1942 		 * Note: kernel object mappings are currently used in
1943 		 * two ways:
1944 		 *  [1] "normal" mappings of pages in the kernel object
1945 		 *  [2] uvm_km_valloc'd allocations in which we
1946 		 *      pmap_enter in some non-kernel-object page
1947 		 *      (e.g. vmapbuf).
1948 		 *
1949 		 * for case [1], we need to remove the mapping from
1950 		 * the pmap and then remove the page from the kernel
1951 		 * object (because, once pages in a kernel object are
1952 		 * unmapped they are no longer needed, unlike, say,
1953 		 * a vnode where you might want the data to persist
1954 		 * until flushed out of a queue).
1955 		 *
1956 		 * for case [2], we need to remove the mapping from
1957 		 * the pmap.  there shouldn't be any pages at the
1958 		 * specified offset in the kernel object [but it
1959 		 * doesn't hurt to call uvm_km_pgremove just to be
1960 		 * safe?]
1961 		 *
1962 		 * uvm_km_pgremove currently does the following:
1963 		 *   for pages in the kernel object range:
1964 		 *     - drops the swap slot
1965 		 *     - uvm_pagefree the page
1966 		 *
1967 		 * note there is version of uvm_km_pgremove() that
1968 		 * is used for "intrsafe" objects.
1969 		 */
1970 		/*
1971 		 * remove mappings from pmap and drop the pages
1972 		 * from the object.  offsets are always relative
1973 		 * to vm_map_min(kernel_map).
1974 		 */
1975 		uvm_km_pgremove(entry->object.uvm_obj, entry->start,
1976 		    entry->end);
1977 	} else {
1978 		/* remove mappings the standard way. */
1979 		pmap_remove(map->pmap, entry->start, entry->end);
1980 	}
1981 
1982 	if (needlock)
1983 		uvm_map_unlock_entry(entry);
1984 }
1985 
1986 void
1987 uvm_unmap_kill_entry(struct vm_map *map, struct vm_map_entry *entry)
1988 {
1989 	uvm_unmap_kill_entry_withlock(map, entry, 0);
1990 }
1991 
1992 /*
1993  * Remove all entries from start to end.
1994  *
1995  * If remove_holes, then remove ET_HOLE entries as well.
1996  * If markfree, entry will be properly marked free, otherwise, no replacement
1997  * entry will be put in the tree (corrupting the tree).
1998  */
1999 int
2000 uvm_unmap_remove(struct vm_map *map, vaddr_t start, vaddr_t end,
2001     struct uvm_map_deadq *dead, boolean_t remove_holes,
2002     boolean_t markfree, boolean_t checkimmutable)
2003 {
2004 	struct vm_map_entry *prev_hint, *next, *entry;
2005 
2006 	start = MAX(start, map->min_offset);
2007 	end = MIN(end, map->max_offset);
2008 	if (start >= end)
2009 		return 0;
2010 
2011 	vm_map_assert_wrlock(map);
2012 
2013 	/* Find first affected entry. */
2014 	entry = uvm_map_entrybyaddr(&map->addr, start);
2015 	KDASSERT(entry != NULL && entry->start <= start);
2016 
2017 	if (checkimmutable) {
2018 		struct vm_map_entry *entry1 = entry;
2019 
2020 		/* Refuse to unmap if any entries are immutable */
2021 		if (entry1->end <= start)
2022 			entry1 = RBT_NEXT(uvm_map_addr, entry1);
2023 		for (; entry1 != NULL && entry1->start < end; entry1 = next) {
2024 			KDASSERT(entry1->start >= start);
2025 			next = RBT_NEXT(uvm_map_addr, entry1);
2026 			/* Treat memory holes as free space. */
2027 			if (entry1->start == entry1->end || UVM_ET_ISHOLE(entry1))
2028 				continue;
2029 			if (entry1->etype & UVM_ET_IMMUTABLE)
2030 				return EPERM;
2031 		}
2032 	}
2033 
2034 	if (entry->end <= start && markfree)
2035 		entry = RBT_NEXT(uvm_map_addr, entry);
2036 	else
2037 		UVM_MAP_CLIP_START(map, entry, start);
2038 
2039 	/*
2040 	 * Iterate entries until we reach end address.
2041 	 * prev_hint hints where the freed space can be appended to.
2042 	 */
2043 	prev_hint = NULL;
2044 	for (; entry != NULL && entry->start < end; entry = next) {
2045 		KDASSERT(entry->start >= start);
2046 		if (entry->end > end || !markfree)
2047 			UVM_MAP_CLIP_END(map, entry, end);
2048 		KDASSERT(entry->start >= start && entry->end <= end);
2049 		next = RBT_NEXT(uvm_map_addr, entry);
2050 
2051 		/* Don't remove holes unless asked to do so. */
2052 		if (UVM_ET_ISHOLE(entry)) {
2053 			if (!remove_holes) {
2054 				prev_hint = entry;
2055 				continue;
2056 			}
2057 		}
2058 
2059 		/* A stack has been removed.. */
2060 		if (UVM_ET_ISSTACK(entry) && (map->flags & VM_MAP_ISVMSPACE))
2061 			map->sserial++;
2062 
2063 		/* Kill entry. */
2064 		uvm_unmap_kill_entry_withlock(map, entry, 1);
2065 
2066 		/* Update space usage. */
2067 		if ((map->flags & VM_MAP_ISVMSPACE) &&
2068 		    entry->object.uvm_obj == NULL &&
2069 		    entry->protection != PROT_NONE &&
2070 		    !UVM_ET_ISHOLE(entry)) {
2071 			((struct vmspace *)map)->vm_dused -=
2072 			    uvmspace_dused(map, entry->start, entry->end);
2073 		}
2074 		if (!UVM_ET_ISHOLE(entry))
2075 			map->size -= entry->end - entry->start;
2076 
2077 		/* Actual removal of entry. */
2078 		uvm_mapent_mkfree(map, entry, &prev_hint, dead, markfree);
2079 	}
2080 
2081 	pmap_update(vm_map_pmap(map));
2082 
2083 #ifdef VMMAP_DEBUG
2084 	if (markfree) {
2085 		for (entry = uvm_map_entrybyaddr(&map->addr, start);
2086 		    entry != NULL && entry->start < end;
2087 		    entry = RBT_NEXT(uvm_map_addr, entry)) {
2088 			KDASSERT(entry->end <= start ||
2089 			    entry->start == entry->end ||
2090 			    UVM_ET_ISHOLE(entry));
2091 		}
2092 	} else {
2093 		vaddr_t a;
2094 		for (a = start; a < end; a += PAGE_SIZE)
2095 			KDASSERT(uvm_map_entrybyaddr(&map->addr, a) == NULL);
2096 	}
2097 #endif
2098 	return 0;
2099 }
2100 
2101 /*
2102  * Mark all entries from first until end (exclusive) as pageable.
2103  *
2104  * Lock must be exclusive on entry and will not be touched.
2105  */
2106 void
2107 uvm_map_pageable_pgon(struct vm_map *map, struct vm_map_entry *first,
2108     struct vm_map_entry *end, vaddr_t start_addr, vaddr_t end_addr)
2109 {
2110 	struct vm_map_entry *iter;
2111 
2112 	for (iter = first; iter != end;
2113 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2114 		KDASSERT(iter->start >= start_addr && iter->end <= end_addr);
2115 		if (!VM_MAPENT_ISWIRED(iter) || UVM_ET_ISHOLE(iter))
2116 			continue;
2117 
2118 		iter->wired_count = 0;
2119 		uvm_fault_unwire_locked(map, iter->start, iter->end);
2120 	}
2121 }
2122 
2123 /*
2124  * Mark all entries from first until end (exclusive) as wired.
2125  *
2126  * Lockflags determines the lock state on return from this function.
2127  * Lock must be exclusive on entry.
2128  */
2129 int
2130 uvm_map_pageable_wire(struct vm_map *map, struct vm_map_entry *first,
2131     struct vm_map_entry *end, vaddr_t start_addr, vaddr_t end_addr,
2132     int lockflags)
2133 {
2134 	struct vm_map_entry *iter;
2135 #ifdef DIAGNOSTIC
2136 	unsigned int timestamp_save;
2137 #endif
2138 	int error;
2139 
2140 	/*
2141 	 * Wire pages in two passes:
2142 	 *
2143 	 * 1: holding the write lock, we create any anonymous maps that need
2144 	 *    to be created.  then we clip each map entry to the region to
2145 	 *    be wired and increment its wiring count.
2146 	 *
2147 	 * 2: we mark the map busy, unlock it and call uvm_fault_wire to fault
2148 	 *    in the pages for any newly wired area (wired_count == 1).
2149 	 */
2150 	for (iter = first; iter != end;
2151 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2152 		KDASSERT(iter->start >= start_addr && iter->end <= end_addr);
2153 		if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2154 		    iter->protection == PROT_NONE)
2155 			continue;
2156 
2157 		/*
2158 		 * Perform actions of vm_map_lookup that need the write lock.
2159 		 * - create an anonymous map for copy-on-write
2160 		 * - anonymous map for zero-fill
2161 		 * Skip submaps.
2162 		 */
2163 		if (!VM_MAPENT_ISWIRED(iter) && !UVM_ET_ISSUBMAP(iter) &&
2164 		    UVM_ET_ISNEEDSCOPY(iter) &&
2165 		    ((iter->protection & PROT_WRITE) ||
2166 		    iter->object.uvm_obj == NULL)) {
2167 			amap_copy(map, iter, M_WAITOK,
2168 			    UVM_ET_ISSTACK(iter) ? FALSE : TRUE,
2169 			    iter->start, iter->end);
2170 		}
2171 		iter->wired_count++;
2172 	}
2173 
2174 	/*
2175 	 * Pass 2.
2176 	 */
2177 #ifdef DIAGNOSTIC
2178 	timestamp_save = map->timestamp;
2179 #endif
2180 	vm_map_busy(map);
2181 	vm_map_unlock(map);
2182 
2183 	error = 0;
2184 	for (iter = first; error == 0 && iter != end;
2185 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
2186 		if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2187 		    iter->protection == PROT_NONE)
2188 			continue;
2189 
2190 		error = uvm_fault_wire(map, iter->start, iter->end,
2191 		    iter->protection);
2192 	}
2193 
2194 	vm_map_lock(map);
2195 	vm_map_unbusy(map);
2196 
2197 	if (error) {
2198 #ifdef DIAGNOSTIC
2199 		if (timestamp_save != map->timestamp)
2200 			panic("uvm_map_pageable_wire: stale map");
2201 #endif
2202 
2203 		/*
2204 		 * first is no longer needed to restart loops.
2205 		 * Use it as iterator to unmap successful mappings.
2206 		 */
2207 		for (; first != iter;
2208 		    first = RBT_NEXT(uvm_map_addr, first)) {
2209 			if (UVM_ET_ISHOLE(first) ||
2210 			    first->start == first->end ||
2211 			    first->protection == PROT_NONE)
2212 				continue;
2213 
2214 			first->wired_count--;
2215 			if (!VM_MAPENT_ISWIRED(first)) {
2216 				uvm_fault_unwire_locked(map,
2217 				    first->start, first->end);
2218 			}
2219 		}
2220 
2221 		/* decrease counter in the rest of the entries */
2222 		for (; iter != end;
2223 		    iter = RBT_NEXT(uvm_map_addr, iter)) {
2224 			if (UVM_ET_ISHOLE(iter) || iter->start == iter->end ||
2225 			    iter->protection == PROT_NONE)
2226 				continue;
2227 
2228 			iter->wired_count--;
2229 		}
2230 
2231 		if ((lockflags & UVM_LK_EXIT) == 0)
2232 			vm_map_unlock(map);
2233 		return error;
2234 	}
2235 
2236 
2237 	if ((lockflags & UVM_LK_EXIT) == 0) {
2238 		vm_map_unlock(map);
2239 	} else {
2240 #ifdef DIAGNOSTIC
2241 		if (timestamp_save != map->timestamp)
2242 			panic("uvm_map_pageable_wire: stale map");
2243 #endif
2244 	}
2245 	return 0;
2246 }
2247 
2248 /*
2249  * uvm_map_pageable: set pageability of a range in a map.
2250  *
2251  * Flags:
2252  * UVM_LK_ENTER: map is already locked by caller
2253  * UVM_LK_EXIT:  don't unlock map on exit
2254  *
2255  * The full range must be in use (entries may not have fspace != 0).
2256  * UVM_ET_HOLE counts as unmapped.
2257  */
2258 int
2259 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
2260     boolean_t new_pageable, int lockflags)
2261 {
2262 	struct vm_map_entry *first, *last, *tmp;
2263 	int error;
2264 
2265 	start = trunc_page(start);
2266 	end = round_page(end);
2267 
2268 	if (start > end)
2269 		return EINVAL;
2270 	if (start == end)
2271 		return 0;	/* nothing to do */
2272 	if (start < map->min_offset)
2273 		return EFAULT; /* why? see first XXX below */
2274 	if (end > map->max_offset)
2275 		return EINVAL; /* why? see second XXX below */
2276 
2277 	KASSERT(map->flags & VM_MAP_PAGEABLE);
2278 	if ((lockflags & UVM_LK_ENTER) == 0)
2279 		vm_map_lock(map);
2280 
2281 	/*
2282 	 * Find first entry.
2283 	 *
2284 	 * Initial test on start is different, because of the different
2285 	 * error returned. Rest is tested further down.
2286 	 */
2287 	first = uvm_map_entrybyaddr(&map->addr, start);
2288 	if (first->end <= start || UVM_ET_ISHOLE(first)) {
2289 		/*
2290 		 * XXX if the first address is not mapped, it is EFAULT?
2291 		 */
2292 		error = EFAULT;
2293 		goto out;
2294 	}
2295 
2296 	/* Check that the range has no holes. */
2297 	for (last = first; last != NULL && last->start < end;
2298 	    last = RBT_NEXT(uvm_map_addr, last)) {
2299 		if (UVM_ET_ISHOLE(last) ||
2300 		    (last->end < end && VMMAP_FREE_END(last) != last->end)) {
2301 			/*
2302 			 * XXX unmapped memory in range, why is it EINVAL
2303 			 * instead of EFAULT?
2304 			 */
2305 			error = EINVAL;
2306 			goto out;
2307 		}
2308 	}
2309 
2310 	/*
2311 	 * Last ended at the first entry after the range.
2312 	 * Move back one step.
2313 	 *
2314 	 * Note that last may be NULL.
2315 	 */
2316 	if (last == NULL) {
2317 		last = RBT_MAX(uvm_map_addr, &map->addr);
2318 		if (last->end < end) {
2319 			error = EINVAL;
2320 			goto out;
2321 		}
2322 	} else {
2323 		KASSERT(last != first);
2324 		last = RBT_PREV(uvm_map_addr, last);
2325 	}
2326 
2327 	/* Wire/unwire pages here. */
2328 	if (new_pageable) {
2329 		/*
2330 		 * Mark pageable.
2331 		 * entries that are not wired are untouched.
2332 		 */
2333 		if (VM_MAPENT_ISWIRED(first))
2334 			UVM_MAP_CLIP_START(map, first, start);
2335 		/*
2336 		 * Split last at end.
2337 		 * Make tmp be the first entry after what is to be touched.
2338 		 * If last is not wired, don't touch it.
2339 		 */
2340 		if (VM_MAPENT_ISWIRED(last)) {
2341 			UVM_MAP_CLIP_END(map, last, end);
2342 			tmp = RBT_NEXT(uvm_map_addr, last);
2343 		} else
2344 			tmp = last;
2345 
2346 		uvm_map_pageable_pgon(map, first, tmp, start, end);
2347 		error = 0;
2348 
2349 out:
2350 		if ((lockflags & UVM_LK_EXIT) == 0)
2351 			vm_map_unlock(map);
2352 		return error;
2353 	} else {
2354 		/*
2355 		 * Mark entries wired.
2356 		 * entries are always touched (because recovery needs this).
2357 		 */
2358 		if (!VM_MAPENT_ISWIRED(first))
2359 			UVM_MAP_CLIP_START(map, first, start);
2360 		/*
2361 		 * Split last at end.
2362 		 * Make tmp be the first entry after what is to be touched.
2363 		 * If last is not wired, don't touch it.
2364 		 */
2365 		if (!VM_MAPENT_ISWIRED(last)) {
2366 			UVM_MAP_CLIP_END(map, last, end);
2367 			tmp = RBT_NEXT(uvm_map_addr, last);
2368 		} else
2369 			tmp = last;
2370 
2371 		return uvm_map_pageable_wire(map, first, tmp, start, end,
2372 		    lockflags);
2373 	}
2374 }
2375 
2376 /*
2377  * uvm_map_pageable_all: special case of uvm_map_pageable - affects
2378  * all mapped regions.
2379  *
2380  * Map must not be locked.
2381  * If no flags are specified, all regions are unwired.
2382  */
2383 int
2384 uvm_map_pageable_all(struct vm_map *map, int flags, vsize_t limit)
2385 {
2386 	vsize_t size;
2387 	struct vm_map_entry *iter;
2388 
2389 	KASSERT(map->flags & VM_MAP_PAGEABLE);
2390 	vm_map_lock(map);
2391 
2392 	if (flags == 0) {
2393 		uvm_map_pageable_pgon(map, RBT_MIN(uvm_map_addr, &map->addr),
2394 		    NULL, map->min_offset, map->max_offset);
2395 
2396 		vm_map_modflags(map, 0, VM_MAP_WIREFUTURE);
2397 		vm_map_unlock(map);
2398 		return 0;
2399 	}
2400 
2401 	if (flags & MCL_FUTURE)
2402 		vm_map_modflags(map, VM_MAP_WIREFUTURE, 0);
2403 	if (!(flags & MCL_CURRENT)) {
2404 		vm_map_unlock(map);
2405 		return 0;
2406 	}
2407 
2408 	/*
2409 	 * Count number of pages in all non-wired entries.
2410 	 * If the number exceeds the limit, abort.
2411 	 */
2412 	size = 0;
2413 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2414 		if (VM_MAPENT_ISWIRED(iter) || UVM_ET_ISHOLE(iter))
2415 			continue;
2416 
2417 		size += iter->end - iter->start;
2418 	}
2419 
2420 	if (atop(size) + uvmexp.wired > uvmexp.wiredmax) {
2421 		vm_map_unlock(map);
2422 		return ENOMEM;
2423 	}
2424 
2425 	/* XXX non-pmap_wired_count case must be handled by caller */
2426 #ifdef pmap_wired_count
2427 	if (limit != 0 &&
2428 	    size + ptoa(pmap_wired_count(vm_map_pmap(map))) > limit) {
2429 		vm_map_unlock(map);
2430 		return ENOMEM;
2431 	}
2432 #endif
2433 
2434 	/*
2435 	 * uvm_map_pageable_wire will release lock
2436 	 */
2437 	return uvm_map_pageable_wire(map, RBT_MIN(uvm_map_addr, &map->addr),
2438 	    NULL, map->min_offset, map->max_offset, 0);
2439 }
2440 
2441 /*
2442  * Initialize map.
2443  *
2444  * Allocates sufficient entries to describe the free memory in the map.
2445  */
2446 void
2447 uvm_map_setup(struct vm_map *map, pmap_t pmap, vaddr_t min, vaddr_t max,
2448     int flags)
2449 {
2450 	int i;
2451 
2452 	KASSERT((min & (vaddr_t)PAGE_MASK) == 0);
2453 	KASSERT((max & (vaddr_t)PAGE_MASK) == 0 ||
2454 	    (max & (vaddr_t)PAGE_MASK) == (vaddr_t)PAGE_MASK);
2455 
2456 	/*
2457 	 * Update parameters.
2458 	 *
2459 	 * This code handles (vaddr_t)-1 and other page mask ending addresses
2460 	 * properly.
2461 	 * We lose the top page if the full virtual address space is used.
2462 	 */
2463 	if (max & (vaddr_t)PAGE_MASK) {
2464 		max += 1;
2465 		if (max == 0) /* overflow */
2466 			max -= PAGE_SIZE;
2467 	}
2468 
2469 	RBT_INIT(uvm_map_addr, &map->addr);
2470 	map->uaddr_exe = NULL;
2471 	for (i = 0; i < nitems(map->uaddr_any); ++i)
2472 		map->uaddr_any[i] = NULL;
2473 	map->uaddr_brk_stack = NULL;
2474 
2475 	map->pmap = pmap;
2476 	map->size = 0;
2477 	map->ref_count = 0;
2478 	map->min_offset = min;
2479 	map->max_offset = max;
2480 	map->b_start = map->b_end = 0; /* Empty brk() area by default. */
2481 	map->s_start = map->s_end = 0; /* Empty stack area by default. */
2482 	map->flags = flags;
2483 	map->timestamp = 0;
2484 	map->busy = NULL;
2485 	if (flags & VM_MAP_ISVMSPACE)
2486 		rw_init_flags(&map->lock, "vmmaplk", RWL_DUPOK);
2487 	else
2488 		rw_init(&map->lock, "kmmaplk");
2489 	mtx_init(&map->mtx, IPL_VM);
2490 	mtx_init(&map->flags_lock, IPL_VM);
2491 
2492 	/* Configure the allocators. */
2493 	if (flags & VM_MAP_ISVMSPACE)
2494 		uvm_map_setup_md(map);
2495 	else
2496 		map->uaddr_any[3] = &uaddr_kbootstrap;
2497 
2498 	/*
2499 	 * Fill map entries.
2500 	 * We do not need to write-lock the map here because only the current
2501 	 * thread sees it right now. Initialize ref_count to 0 above to avoid
2502 	 * bogus triggering of lock-not-held assertions.
2503 	 */
2504 	uvm_map_setup_entries(map);
2505 	uvm_tree_sanity(map, __FILE__, __LINE__);
2506 	map->ref_count = 1;
2507 }
2508 
2509 /*
2510  * Destroy the map.
2511  *
2512  * This is the inverse operation to uvm_map_setup.
2513  */
2514 void
2515 uvm_map_teardown(struct vm_map *map)
2516 {
2517 	struct uvm_map_deadq	 dead_entries;
2518 	struct vm_map_entry	*entry, *tmp;
2519 #ifdef VMMAP_DEBUG
2520 	size_t			 numq, numt;
2521 #endif
2522 	int			 i;
2523 
2524 	KERNEL_ASSERT_LOCKED();
2525 	KERNEL_UNLOCK();
2526 	KERNEL_ASSERT_UNLOCKED();
2527 
2528 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
2529 
2530 	vm_map_lock(map);
2531 
2532 	/* Remove address selectors. */
2533 	uvm_addr_destroy(map->uaddr_exe);
2534 	map->uaddr_exe = NULL;
2535 	for (i = 0; i < nitems(map->uaddr_any); i++) {
2536 		uvm_addr_destroy(map->uaddr_any[i]);
2537 		map->uaddr_any[i] = NULL;
2538 	}
2539 	uvm_addr_destroy(map->uaddr_brk_stack);
2540 	map->uaddr_brk_stack = NULL;
2541 
2542 	/*
2543 	 * Remove entries.
2544 	 *
2545 	 * The following is based on graph breadth-first search.
2546 	 *
2547 	 * In color terms:
2548 	 * - the dead_entries set contains all nodes that are reachable
2549 	 *   (i.e. both the black and the grey nodes)
2550 	 * - any entry not in dead_entries is white
2551 	 * - any entry that appears in dead_entries before entry,
2552 	 *   is black, the rest is grey.
2553 	 * The set [entry, end] is also referred to as the wavefront.
2554 	 *
2555 	 * Since the tree is always a fully connected graph, the breadth-first
2556 	 * search guarantees that each vmmap_entry is visited exactly once.
2557 	 * The vm_map is broken down in linear time.
2558 	 */
2559 	TAILQ_INIT(&dead_entries);
2560 	if ((entry = RBT_ROOT(uvm_map_addr, &map->addr)) != NULL)
2561 		DEAD_ENTRY_PUSH(&dead_entries, entry);
2562 	while (entry != NULL) {
2563 		sched_pause(yield);
2564 		uvm_unmap_kill_entry(map, entry);
2565 		if ((tmp = RBT_LEFT(uvm_map_addr, entry)) != NULL)
2566 			DEAD_ENTRY_PUSH(&dead_entries, tmp);
2567 		if ((tmp = RBT_RIGHT(uvm_map_addr, entry)) != NULL)
2568 			DEAD_ENTRY_PUSH(&dead_entries, tmp);
2569 		/* Update wave-front. */
2570 		entry = TAILQ_NEXT(entry, dfree.deadq);
2571 	}
2572 
2573 	vm_map_unlock(map);
2574 
2575 #ifdef VMMAP_DEBUG
2576 	numt = numq = 0;
2577 	RBT_FOREACH(entry, uvm_map_addr, &map->addr)
2578 		numt++;
2579 	TAILQ_FOREACH(entry, &dead_entries, dfree.deadq)
2580 		numq++;
2581 	KASSERT(numt == numq);
2582 #endif
2583 	uvm_unmap_detach(&dead_entries, UVM_PLA_WAITOK);
2584 
2585 	KERNEL_LOCK();
2586 
2587 	pmap_destroy(map->pmap);
2588 	map->pmap = NULL;
2589 }
2590 
2591 /*
2592  * Populate map with free-memory entries.
2593  *
2594  * Map must be initialized and empty.
2595  */
2596 void
2597 uvm_map_setup_entries(struct vm_map *map)
2598 {
2599 	KDASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
2600 
2601 	uvm_map_fix_space(map, NULL, map->min_offset, map->max_offset, 0);
2602 }
2603 
2604 /*
2605  * Split entry at given address.
2606  *
2607  * orig:  entry that is to be split.
2608  * next:  a newly allocated map entry that is not linked.
2609  * split: address at which the split is done.
2610  */
2611 void
2612 uvm_map_splitentry(struct vm_map *map, struct vm_map_entry *orig,
2613     struct vm_map_entry *next, vaddr_t split)
2614 {
2615 	struct uvm_addr_state *free, *free_before;
2616 	vsize_t adj;
2617 
2618 	if ((split & PAGE_MASK) != 0) {
2619 		panic("uvm_map_splitentry: split address 0x%lx "
2620 		    "not on page boundary!", split);
2621 	}
2622 	KDASSERT(map != NULL && orig != NULL && next != NULL);
2623 	uvm_tree_sanity(map, __FILE__, __LINE__);
2624 	KASSERT(orig->start < split && VMMAP_FREE_END(orig) > split);
2625 
2626 #ifdef VMMAP_DEBUG
2627 	KDASSERT(RBT_FIND(uvm_map_addr, &map->addr, orig) == orig);
2628 	KDASSERT(RBT_FIND(uvm_map_addr, &map->addr, next) != next);
2629 #endif /* VMMAP_DEBUG */
2630 
2631 	/*
2632 	 * Free space will change, unlink from free space tree.
2633 	 */
2634 	free = uvm_map_uaddr_e(map, orig);
2635 	uvm_mapent_free_remove(map, free, orig);
2636 
2637 	adj = split - orig->start;
2638 
2639 	uvm_mapent_copy(orig, next);
2640 	if (split >= orig->end) {
2641 		next->etype = 0;
2642 		next->offset = 0;
2643 		next->wired_count = 0;
2644 		next->start = next->end = split;
2645 		next->guard = 0;
2646 		next->fspace = VMMAP_FREE_END(orig) - split;
2647 		next->aref.ar_amap = NULL;
2648 		next->aref.ar_pageoff = 0;
2649 		orig->guard = MIN(orig->guard, split - orig->end);
2650 		orig->fspace = split - VMMAP_FREE_START(orig);
2651 	} else {
2652 		orig->fspace = 0;
2653 		orig->guard = 0;
2654 		orig->end = next->start = split;
2655 
2656 		if (next->aref.ar_amap) {
2657 			amap_splitref(&orig->aref, &next->aref, adj);
2658 		}
2659 		if (UVM_ET_ISSUBMAP(orig)) {
2660 			uvm_map_reference(next->object.sub_map);
2661 			next->offset += adj;
2662 		} else if (UVM_ET_ISOBJ(orig)) {
2663 			if (next->object.uvm_obj->pgops &&
2664 			    next->object.uvm_obj->pgops->pgo_reference) {
2665 				KERNEL_LOCK();
2666 				next->object.uvm_obj->pgops->pgo_reference(
2667 				    next->object.uvm_obj);
2668 				KERNEL_UNLOCK();
2669 			}
2670 			next->offset += adj;
2671 		}
2672 	}
2673 
2674 	/*
2675 	 * Link next into address tree.
2676 	 * Link orig and next into free-space tree.
2677 	 *
2678 	 * Don't insert 'next' into the addr tree until orig has been linked,
2679 	 * in case the free-list looks at adjacent entries in the addr tree
2680 	 * for its decisions.
2681 	 */
2682 	if (orig->fspace > 0)
2683 		free_before = free;
2684 	else
2685 		free_before = uvm_map_uaddr_e(map, orig);
2686 	uvm_mapent_free_insert(map, free_before, orig);
2687 	uvm_mapent_addr_insert(map, next);
2688 	uvm_mapent_free_insert(map, free, next);
2689 
2690 	uvm_tree_sanity(map, __FILE__, __LINE__);
2691 }
2692 
2693 
2694 #ifdef VMMAP_DEBUG
2695 
2696 void
2697 uvm_tree_assert(struct vm_map *map, int test, char *test_str,
2698     char *file, int line)
2699 {
2700 	char* map_special;
2701 
2702 	if (test)
2703 		return;
2704 
2705 	if (map == kernel_map)
2706 		map_special = " (kernel_map)";
2707 	else if (map == kmem_map)
2708 		map_special = " (kmem_map)";
2709 	else
2710 		map_special = "";
2711 	panic("uvm_tree_sanity %p%s (%s %d): %s", map, map_special, file,
2712 	    line, test_str);
2713 }
2714 
2715 /*
2716  * Check that map is sane.
2717  */
2718 void
2719 uvm_tree_sanity(struct vm_map *map, char *file, int line)
2720 {
2721 	struct vm_map_entry	*iter;
2722 	vaddr_t			 addr;
2723 	vaddr_t			 min, max, bound; /* Bounds checker. */
2724 	struct uvm_addr_state	*free;
2725 
2726 	addr = vm_map_min(map);
2727 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2728 		/*
2729 		 * Valid start, end.
2730 		 * Catch overflow for end+fspace.
2731 		 */
2732 		UVM_ASSERT(map, iter->end >= iter->start, file, line);
2733 		UVM_ASSERT(map, VMMAP_FREE_END(iter) >= iter->end, file, line);
2734 
2735 		/* May not be empty. */
2736 		UVM_ASSERT(map, iter->start < VMMAP_FREE_END(iter),
2737 		    file, line);
2738 
2739 		/* Addresses for entry must lie within map boundaries. */
2740 		UVM_ASSERT(map, iter->start >= vm_map_min(map) &&
2741 		    VMMAP_FREE_END(iter) <= vm_map_max(map), file, line);
2742 
2743 		/* Tree may not have gaps. */
2744 		UVM_ASSERT(map, iter->start == addr, file, line);
2745 		addr = VMMAP_FREE_END(iter);
2746 
2747 		/*
2748 		 * Free space may not cross boundaries, unless the same
2749 		 * free list is used on both sides of the border.
2750 		 */
2751 		min = VMMAP_FREE_START(iter);
2752 		max = VMMAP_FREE_END(iter);
2753 
2754 		while (min < max &&
2755 		    (bound = uvm_map_boundary(map, min, max)) != max) {
2756 			UVM_ASSERT(map,
2757 			    uvm_map_uaddr(map, bound - 1) ==
2758 			    uvm_map_uaddr(map, bound),
2759 			    file, line);
2760 			min = bound;
2761 		}
2762 
2763 		free = uvm_map_uaddr_e(map, iter);
2764 		if (free) {
2765 			UVM_ASSERT(map, (iter->etype & UVM_ET_FREEMAPPED) != 0,
2766 			    file, line);
2767 		} else {
2768 			UVM_ASSERT(map, (iter->etype & UVM_ET_FREEMAPPED) == 0,
2769 			    file, line);
2770 		}
2771 	}
2772 	UVM_ASSERT(map, addr == vm_map_max(map), file, line);
2773 }
2774 
2775 void
2776 uvm_tree_size_chk(struct vm_map *map, char *file, int line)
2777 {
2778 	struct vm_map_entry *iter;
2779 	vsize_t size;
2780 
2781 	size = 0;
2782 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2783 		if (!UVM_ET_ISHOLE(iter))
2784 			size += iter->end - iter->start;
2785 	}
2786 
2787 	if (map->size != size)
2788 		printf("map size = 0x%lx, should be 0x%lx\n", map->size, size);
2789 	UVM_ASSERT(map, map->size == size, file, line);
2790 
2791 	vmspace_validate(map);
2792 }
2793 
2794 /*
2795  * This function validates the statistics on vmspace.
2796  */
2797 void
2798 vmspace_validate(struct vm_map *map)
2799 {
2800 	struct vmspace *vm;
2801 	struct vm_map_entry *iter;
2802 	vaddr_t imin, imax;
2803 	vaddr_t stack_begin, stack_end; /* Position of stack. */
2804 	vsize_t stack, heap; /* Measured sizes. */
2805 
2806 	if (!(map->flags & VM_MAP_ISVMSPACE))
2807 		return;
2808 
2809 	vm = (struct vmspace *)map;
2810 	stack_begin = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
2811 	stack_end = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
2812 
2813 	stack = heap = 0;
2814 	RBT_FOREACH(iter, uvm_map_addr, &map->addr) {
2815 		imin = imax = iter->start;
2816 
2817 		if (UVM_ET_ISHOLE(iter) || iter->object.uvm_obj != NULL ||
2818 		    iter->protection != PROT_NONE)
2819 			continue;
2820 
2821 		/*
2822 		 * Update stack, heap.
2823 		 * Keep in mind that (theoretically) the entries of
2824 		 * userspace and stack may be joined.
2825 		 */
2826 		while (imin != iter->end) {
2827 			/*
2828 			 * Set imax to the first boundary crossed between
2829 			 * imin and stack addresses.
2830 			 */
2831 			imax = iter->end;
2832 			if (imin < stack_begin && imax > stack_begin)
2833 				imax = stack_begin;
2834 			else if (imin < stack_end && imax > stack_end)
2835 				imax = stack_end;
2836 
2837 			if (imin >= stack_begin && imin < stack_end)
2838 				stack += imax - imin;
2839 			else
2840 				heap += imax - imin;
2841 			imin = imax;
2842 		}
2843 	}
2844 
2845 	heap >>= PAGE_SHIFT;
2846 	if (heap != vm->vm_dused) {
2847 		printf("vmspace stack range: 0x%lx-0x%lx\n",
2848 		    stack_begin, stack_end);
2849 		panic("vmspace_validate: vmspace.vm_dused invalid, "
2850 		    "expected %ld pgs, got %d pgs in map %p",
2851 		    heap, vm->vm_dused,
2852 		    map);
2853 	}
2854 }
2855 
2856 #endif /* VMMAP_DEBUG */
2857 
2858 /*
2859  * uvm_map_init: init mapping system at boot time.   note that we allocate
2860  * and init the static pool of structs vm_map_entry for the kernel here.
2861  */
2862 void
2863 uvm_map_init(void)
2864 {
2865 	static struct vm_map_entry kernel_map_entry[MAX_KMAPENT];
2866 	int lcv;
2867 
2868 	/* now set up static pool of kernel map entries ... */
2869 	mtx_init(&uvm_kmapent_mtx, IPL_VM);
2870 	SLIST_INIT(&uvm.kentry_free);
2871 	for (lcv = 0 ; lcv < MAX_KMAPENT ; lcv++) {
2872 		SLIST_INSERT_HEAD(&uvm.kentry_free,
2873 		    &kernel_map_entry[lcv], daddrs.addr_kentry);
2874 	}
2875 
2876 	/* initialize the map-related pools. */
2877 	pool_init(&uvm_vmspace_pool, sizeof(struct vmspace), 0,
2878 	    IPL_NONE, PR_WAITOK, "vmsppl", NULL);
2879 	pool_init(&uvm_map_entry_pool, sizeof(struct vm_map_entry), 0,
2880 	    IPL_VM, PR_WAITOK, "vmmpepl", NULL);
2881 	pool_init(&uvm_map_entry_kmem_pool, sizeof(struct vm_map_entry), 0,
2882 	    IPL_VM, 0, "vmmpekpl", NULL);
2883 	pool_sethiwat(&uvm_map_entry_pool, 8192);
2884 
2885 	uvm_addr_init();
2886 }
2887 
2888 #if defined(DDB)
2889 
2890 /*
2891  * DDB hooks
2892  */
2893 
2894 /*
2895  * uvm_map_printit: actually prints the map
2896  */
2897 void
2898 uvm_map_printit(struct vm_map *map, boolean_t full,
2899     int (*pr)(const char *, ...))
2900 {
2901 	struct vmspace			*vm;
2902 	struct vm_map_entry		*entry;
2903 	struct uvm_addr_state		*free;
2904 	int				 in_free, i;
2905 	char				 buf[8];
2906 
2907 	(*pr)("MAP %p: [0x%lx->0x%lx]\n", map, map->min_offset,map->max_offset);
2908 	(*pr)("\tbrk() allocate range: 0x%lx-0x%lx\n",
2909 	    map->b_start, map->b_end);
2910 	(*pr)("\tstack allocate range: 0x%lx-0x%lx\n",
2911 	    map->s_start, map->s_end);
2912 	(*pr)("\tsz=%u, ref=%d, version=%u, flags=0x%x\n",
2913 	    map->size, map->ref_count, map->timestamp,
2914 	    map->flags);
2915 	(*pr)("\tpmap=%p(resident=%d)\n", map->pmap,
2916 	    pmap_resident_count(map->pmap));
2917 
2918 	/* struct vmspace handling. */
2919 	if (map->flags & VM_MAP_ISVMSPACE) {
2920 		vm = (struct vmspace *)map;
2921 
2922 		(*pr)("\tvm_refcnt=%d vm_shm=%p vm_rssize=%u vm_swrss=%u\n",
2923 		    vm->vm_refcnt, vm->vm_shm, vm->vm_rssize, vm->vm_swrss);
2924 		(*pr)("\tvm_tsize=%u vm_dsize=%u\n",
2925 		    vm->vm_tsize, vm->vm_dsize);
2926 		(*pr)("\tvm_taddr=%p vm_daddr=%p\n",
2927 		    vm->vm_taddr, vm->vm_daddr);
2928 		(*pr)("\tvm_maxsaddr=%p vm_minsaddr=%p\n",
2929 		    vm->vm_maxsaddr, vm->vm_minsaddr);
2930 	}
2931 
2932 	if (!full)
2933 		goto print_uaddr;
2934 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
2935 		(*pr)(" - %p: 0x%lx->0x%lx: obj=%p/0x%llx, amap=%p/%d\n",
2936 		    entry, entry->start, entry->end, entry->object.uvm_obj,
2937 		    (long long)entry->offset, entry->aref.ar_amap,
2938 		    entry->aref.ar_pageoff);
2939 		(*pr)("\tsubmap=%c, cow=%c, nc=%c, stack=%c, "
2940 		    "syscall=%c, prot(max)=%d/%d, inh=%d, "
2941 		    "wc=%d, adv=%d\n",
2942 		    (entry->etype & UVM_ET_SUBMAP) ? 'T' : 'F',
2943 		    (entry->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F',
2944 		    (entry->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F',
2945 		    (entry->etype & UVM_ET_STACK) ? 'T' : 'F',
2946 		    (entry->etype & UVM_ET_SYSCALL) ? 'T' : 'F',
2947 		    entry->protection, entry->max_protection,
2948 		    entry->inheritance, entry->wired_count, entry->advice);
2949 
2950 		free = uvm_map_uaddr_e(map, entry);
2951 		in_free = (free != NULL);
2952 		(*pr)("\thole=%c, free=%c, guard=0x%lx, "
2953 		    "free=0x%lx-0x%lx\n",
2954 		    (entry->etype & UVM_ET_HOLE) ? 'T' : 'F',
2955 		    in_free ? 'T' : 'F',
2956 		    entry->guard,
2957 		    VMMAP_FREE_START(entry), VMMAP_FREE_END(entry));
2958 		(*pr)("\tfspace_augment=%lu\n", entry->fspace_augment);
2959 		(*pr)("\tfreemapped=%c, uaddr=%p\n",
2960 		    (entry->etype & UVM_ET_FREEMAPPED) ? 'T' : 'F', free);
2961 		if (free) {
2962 			(*pr)("\t\t(0x%lx-0x%lx %s)\n",
2963 			    free->uaddr_minaddr, free->uaddr_maxaddr,
2964 			    free->uaddr_functions->uaddr_name);
2965 		}
2966 	}
2967 
2968 print_uaddr:
2969 	uvm_addr_print(map->uaddr_exe, "exe", full, pr);
2970 	for (i = 0; i < nitems(map->uaddr_any); i++) {
2971 		snprintf(&buf[0], sizeof(buf), "any[%d]", i);
2972 		uvm_addr_print(map->uaddr_any[i], &buf[0], full, pr);
2973 	}
2974 	uvm_addr_print(map->uaddr_brk_stack, "brk/stack", full, pr);
2975 }
2976 
2977 /*
2978  * uvm_object_printit: actually prints the object
2979  */
2980 void
2981 uvm_object_printit(struct uvm_object *uobj, boolean_t full,
2982     int (*pr)(const char *, ...))
2983 {
2984 	struct vm_page *pg;
2985 	int cnt = 0;
2986 
2987 	(*pr)("OBJECT %p: pgops=%p, npages=%d, ",
2988 	    uobj, uobj->pgops, uobj->uo_npages);
2989 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
2990 		(*pr)("refs=<SYSTEM>\n");
2991 	else
2992 		(*pr)("refs=%d\n", uobj->uo_refs);
2993 
2994 	if (!full) {
2995 		return;
2996 	}
2997 	(*pr)("  PAGES <pg,offset>:\n  ");
2998 	RBT_FOREACH(pg, uvm_objtree, &uobj->memt) {
2999 		(*pr)("<%p,0x%llx> ", pg, (long long)pg->offset);
3000 		if ((cnt % 3) == 2) {
3001 			(*pr)("\n  ");
3002 		}
3003 		cnt++;
3004 	}
3005 	if ((cnt % 3) != 2) {
3006 		(*pr)("\n");
3007 	}
3008 }
3009 
3010 /*
3011  * uvm_page_printit: actually print the page
3012  */
3013 static const char page_flagbits[] =
3014 	"\20\1BUSY\2WANTED\3TABLED\4CLEAN\5CLEANCHK\6RELEASED\7FAKE\10RDONLY"
3015 	"\11ZERO\12DEV\15PAGER1\21FREE\22INACTIVE\23ACTIVE\25ANON\26AOBJ"
3016 	"\27ENCRYPT\31PMAP0\32PMAP1\33PMAP2\34PMAP3\35PMAP4\36PMAP5";
3017 
3018 void
3019 uvm_page_printit(struct vm_page *pg, boolean_t full,
3020     int (*pr)(const char *, ...))
3021 {
3022 	struct vm_page *tpg;
3023 	struct uvm_object *uobj;
3024 	struct pglist *pgl;
3025 
3026 	(*pr)("PAGE %p:\n", pg);
3027 	(*pr)("  flags=%b, vers=%d, wire_count=%d, pa=0x%llx\n",
3028 	    pg->pg_flags, page_flagbits, pg->pg_version, pg->wire_count,
3029 	    (long long)pg->phys_addr);
3030 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
3031 	    pg->uobject, pg->uanon, (long long)pg->offset);
3032 #if defined(UVM_PAGE_TRKOWN)
3033 	if (pg->pg_flags & PG_BUSY)
3034 		(*pr)("  owning thread = %d, tag=%s",
3035 		    pg->owner, pg->owner_tag);
3036 	else
3037 		(*pr)("  page not busy, no owner");
3038 #else
3039 	(*pr)("  [page ownership tracking disabled]");
3040 #endif
3041 	(*pr)("\tvm_page_md %p\n", &pg->mdpage);
3042 
3043 	if (!full)
3044 		return;
3045 
3046 	/* cross-verify object/anon */
3047 	if ((pg->pg_flags & PQ_FREE) == 0) {
3048 		if (pg->pg_flags & PQ_ANON) {
3049 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
3050 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
3051 				(pg->uanon) ? pg->uanon->an_page : NULL);
3052 			else
3053 				(*pr)("  anon backpointer is OK\n");
3054 		} else {
3055 			uobj = pg->uobject;
3056 			if (uobj) {
3057 				(*pr)("  checking object list\n");
3058 				RBT_FOREACH(tpg, uvm_objtree, &uobj->memt) {
3059 					if (tpg == pg) {
3060 						break;
3061 					}
3062 				}
3063 				if (tpg)
3064 					(*pr)("  page found on object list\n");
3065 				else
3066 					(*pr)("  >>> PAGE NOT FOUND "
3067 					    "ON OBJECT LIST! <<<\n");
3068 			}
3069 		}
3070 	}
3071 
3072 	/* cross-verify page queue */
3073 	if (pg->pg_flags & PQ_FREE) {
3074 		if (uvm_pmr_isfree(pg))
3075 			(*pr)("  page found in uvm_pmemrange\n");
3076 		else
3077 			(*pr)("  >>> page not found in uvm_pmemrange <<<\n");
3078 		pgl = NULL;
3079 	} else if (pg->pg_flags & PQ_INACTIVE) {
3080 		pgl = &uvm.page_inactive;
3081 	} else if (pg->pg_flags & PQ_ACTIVE) {
3082 		pgl = &uvm.page_active;
3083  	} else {
3084 		pgl = NULL;
3085 	}
3086 
3087 	if (pgl) {
3088 		(*pr)("  checking pageq list\n");
3089 		TAILQ_FOREACH(tpg, pgl, pageq) {
3090 			if (tpg == pg) {
3091 				break;
3092 			}
3093 		}
3094 		if (tpg)
3095 			(*pr)("  page found on pageq list\n");
3096 		else
3097 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
3098 	}
3099 }
3100 #endif
3101 
3102 /*
3103  * uvm_map_protect: change map protection
3104  *
3105  * => set_max means set max_protection.
3106  * => map must be unlocked.
3107  */
3108 int
3109 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
3110     vm_prot_t new_prot, int etype, boolean_t set_max, boolean_t checkimmutable)
3111 {
3112 	struct vm_map_entry *first, *iter;
3113 	vm_prot_t old_prot;
3114 	vm_prot_t mask;
3115 	vsize_t dused;
3116 	int error;
3117 
3118 	KASSERT((etype & ~UVM_ET_STACK) == 0);	/* only UVM_ET_STACK allowed */
3119 
3120 	if (start > end)
3121 		return EINVAL;
3122 	start = MAX(start, map->min_offset);
3123 	end = MIN(end, map->max_offset);
3124 	if (start >= end)
3125 		return 0;
3126 
3127 	dused = 0;
3128 	error = 0;
3129 	vm_map_lock(map);
3130 
3131 	/*
3132 	 * Set up first and last.
3133 	 * - first will contain first entry at or after start.
3134 	 */
3135 	first = uvm_map_entrybyaddr(&map->addr, start);
3136 	KDASSERT(first != NULL);
3137 	if (first->end <= start)
3138 		first = RBT_NEXT(uvm_map_addr, first);
3139 
3140 	/* First, check for protection violations. */
3141 	for (iter = first; iter != NULL && iter->start < end;
3142 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
3143 		/* Treat memory holes as free space. */
3144 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter))
3145 			continue;
3146 
3147 		if (checkimmutable && (iter->etype & UVM_ET_IMMUTABLE)) {
3148 			error = EPERM;
3149 			goto out;
3150 		}
3151 		old_prot = iter->protection;
3152 		if (old_prot == PROT_NONE && new_prot != old_prot) {
3153 			dused += uvmspace_dused(
3154 			    map, MAX(start, iter->start), MIN(end, iter->end));
3155 		}
3156 
3157 		if (UVM_ET_ISSUBMAP(iter)) {
3158 			error = EINVAL;
3159 			goto out;
3160 		}
3161 		if ((new_prot & iter->max_protection) != new_prot) {
3162 			error = EACCES;
3163 			goto out;
3164 		}
3165 		if (map == kernel_map &&
3166 		    (new_prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))
3167 			panic("uvm_map_protect: kernel map W^X violation requested");
3168 	}
3169 
3170 	/* Check limits. */
3171 	if (dused > 0 && (map->flags & VM_MAP_ISVMSPACE)) {
3172 		vsize_t limit = lim_cur(RLIMIT_DATA);
3173 		dused = ptoa(dused);
3174 		if (limit < dused ||
3175 		    limit - dused < ptoa(((struct vmspace *)map)->vm_dused)) {
3176 			error = ENOMEM;
3177 			goto out;
3178 		}
3179 	}
3180 
3181 	/* only apply UVM_ET_STACK on a mapping changing to RW */
3182 	if (etype && new_prot != (PROT_READ|PROT_WRITE))
3183 		etype = 0;
3184 
3185 	/* Fix protections.  */
3186 	for (iter = first; iter != NULL && iter->start < end;
3187 	    iter = RBT_NEXT(uvm_map_addr, iter)) {
3188 		/* Treat memory holes as free space. */
3189 		if (iter->start == iter->end || UVM_ET_ISHOLE(iter))
3190 			continue;
3191 
3192 		old_prot = iter->protection;
3193 
3194 		/*
3195 		 * Skip adapting protection iff old and new protection
3196 		 * are equal.
3197 		 */
3198 		if (set_max) {
3199 			if (old_prot == (new_prot & old_prot) &&
3200 			    iter->max_protection == new_prot)
3201 				continue;
3202 		} else {
3203 			if (old_prot == new_prot)
3204 				continue;
3205 		}
3206 
3207 		UVM_MAP_CLIP_START(map, iter, start);
3208 		UVM_MAP_CLIP_END(map, iter, end);
3209 
3210 		if (set_max) {
3211 			iter->max_protection = new_prot;
3212 			iter->protection &= new_prot;
3213 		} else
3214 			iter->protection = new_prot;
3215 		iter->etype |= etype;	/* potentially add UVM_ET_STACK */
3216 
3217 		/*
3218 		 * update physical map if necessary.  worry about copy-on-write
3219 		 * here -- CHECK THIS XXX
3220 		 */
3221 		if (iter->protection != old_prot) {
3222 			mask = UVM_ET_ISCOPYONWRITE(iter) ?
3223 			    ~PROT_WRITE : PROT_MASK;
3224 
3225 			/* XXX should only wserial++ if no split occurs */
3226 			if (iter->protection & PROT_WRITE)
3227 				map->wserial++;
3228 
3229 			if (map->flags & VM_MAP_ISVMSPACE) {
3230 				if (old_prot == PROT_NONE) {
3231 					((struct vmspace *)map)->vm_dused +=
3232 					    uvmspace_dused(map, iter->start,
3233 					        iter->end);
3234 				}
3235 				if (iter->protection == PROT_NONE) {
3236 					((struct vmspace *)map)->vm_dused -=
3237 					    uvmspace_dused(map, iter->start,
3238 					        iter->end);
3239 				}
3240 			}
3241 
3242 			/* update pmap */
3243 			if ((iter->protection & mask) == PROT_NONE &&
3244 			    VM_MAPENT_ISWIRED(iter)) {
3245 				/*
3246 				 * TODO(ariane) this is stupid. wired_count
3247 				 * is 0 if not wired, otherwise anything
3248 				 * larger than 0 (incremented once each time
3249 				 * wire is called).
3250 				 * Mostly to be able to undo the damage on
3251 				 * failure. Not the actually be a wired
3252 				 * refcounter...
3253 				 * Originally: iter->wired_count--;
3254 				 * (don't we have to unwire this in the pmap
3255 				 * as well?)
3256 				 */
3257 				iter->wired_count = 0;
3258 			}
3259 			uvm_map_lock_entry(iter);
3260 			pmap_protect(map->pmap, iter->start, iter->end,
3261 			    iter->protection & mask);
3262 			uvm_map_unlock_entry(iter);
3263 		}
3264 
3265 		/*
3266 		 * If the map is configured to lock any future mappings,
3267 		 * wire this entry now if the old protection was PROT_NONE
3268 		 * and the new protection is not PROT_NONE.
3269 		 */
3270 		if ((map->flags & VM_MAP_WIREFUTURE) != 0 &&
3271 		    VM_MAPENT_ISWIRED(iter) == 0 &&
3272 		    old_prot == PROT_NONE &&
3273 		    new_prot != PROT_NONE) {
3274 			if (uvm_map_pageable(map, iter->start, iter->end,
3275 			    FALSE, UVM_LK_ENTER | UVM_LK_EXIT) != 0) {
3276 				/*
3277 				 * If locking the entry fails, remember the
3278 				 * error if it's the first one.  Note we
3279 				 * still continue setting the protection in
3280 				 * the map, but it will return the resource
3281 				 * storage condition regardless.
3282 				 *
3283 				 * XXX Ignore what the actual error is,
3284 				 * XXX just call it a resource shortage
3285 				 * XXX so that it doesn't get confused
3286 				 * XXX what uvm_map_protect() itself would
3287 				 * XXX normally return.
3288 				 */
3289 				error = ENOMEM;
3290 			}
3291 		}
3292 	}
3293 	pmap_update(map->pmap);
3294 
3295 out:
3296 	if (etype & UVM_ET_STACK)
3297 		map->sserial++;
3298 	vm_map_unlock(map);
3299 	return error;
3300 }
3301 
3302 /*
3303  * uvmspace_alloc: allocate a vmspace structure.
3304  *
3305  * - structure includes vm_map and pmap
3306  * - XXX: no locking on this structure
3307  * - refcnt set to 1, rest must be init'd by caller
3308  */
3309 struct vmspace *
3310 uvmspace_alloc(vaddr_t min, vaddr_t max, boolean_t pageable,
3311     boolean_t remove_holes)
3312 {
3313 	struct vmspace *vm;
3314 
3315 	vm = pool_get(&uvm_vmspace_pool, PR_WAITOK | PR_ZERO);
3316 	uvmspace_init(vm, NULL, min, max, pageable, remove_holes);
3317 	return (vm);
3318 }
3319 
3320 /*
3321  * uvmspace_init: initialize a vmspace structure.
3322  *
3323  * - XXX: no locking on this structure
3324  * - refcnt set to 1, rest must be init'd by caller
3325  */
3326 void
3327 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t min, vaddr_t max,
3328     boolean_t pageable, boolean_t remove_holes)
3329 {
3330 	KASSERT(pmap == NULL || pmap == pmap_kernel());
3331 
3332 	if (pmap)
3333 		pmap_reference(pmap);
3334 	else
3335 		pmap = pmap_create();
3336 
3337 	uvm_map_setup(&vm->vm_map, pmap, min, max,
3338 	    (pageable ? VM_MAP_PAGEABLE : 0) | VM_MAP_ISVMSPACE);
3339 
3340 	vm->vm_refcnt = 1;
3341 
3342 	if (remove_holes)
3343 		pmap_remove_holes(vm);
3344 }
3345 
3346 /*
3347  * uvmspace_share: share a vmspace between two processes
3348  *
3349  * - used for vfork
3350  */
3351 
3352 struct vmspace *
3353 uvmspace_share(struct process *pr)
3354 {
3355 	struct vmspace *vm = pr->ps_vmspace;
3356 
3357 	uvmspace_addref(vm);
3358 	return vm;
3359 }
3360 
3361 /*
3362  * uvmspace_exec: the process wants to exec a new program
3363  *
3364  * - XXX: no locking on vmspace
3365  */
3366 
3367 void
3368 uvmspace_exec(struct proc *p, vaddr_t start, vaddr_t end)
3369 {
3370 	struct process *pr = p->p_p;
3371 	struct vmspace *nvm, *ovm = pr->ps_vmspace;
3372 	struct vm_map *map = &ovm->vm_map;
3373 	struct uvm_map_deadq dead_entries;
3374 
3375 	KASSERT((start & (vaddr_t)PAGE_MASK) == 0);
3376 	KASSERT((end & (vaddr_t)PAGE_MASK) == 0 ||
3377 	    (end & (vaddr_t)PAGE_MASK) == (vaddr_t)PAGE_MASK);
3378 
3379 	pmap_unuse_final(p);   /* before stack addresses go away */
3380 	TAILQ_INIT(&dead_entries);
3381 
3382 	/* see if more than one process is using this vmspace...  */
3383 	if (ovm->vm_refcnt == 1) {
3384 		/*
3385 		 * If pr is the only process using its vmspace then
3386 		 * we can safely recycle that vmspace for the program
3387 		 * that is being exec'd.
3388 		 */
3389 
3390 #ifdef SYSVSHM
3391 		/*
3392 		 * SYSV SHM semantics require us to kill all segments on an exec
3393 		 */
3394 		if (ovm->vm_shm)
3395 			shmexit(ovm);
3396 #endif
3397 
3398 		/*
3399 		 * POSIX 1003.1b -- "lock future mappings" is revoked
3400 		 * when a process execs another program image.
3401 		 */
3402 		vm_map_lock(map);
3403 		vm_map_modflags(map, 0, VM_MAP_WIREFUTURE |
3404 		    VM_MAP_SYSCALL_ONCE | VM_MAP_PINSYSCALL_ONCE);
3405 
3406 		/*
3407 		 * now unmap the old program
3408 		 *
3409 		 * Instead of attempting to keep the map valid, we simply
3410 		 * nuke all entries and ask uvm_map_setup to reinitialize
3411 		 * the map to the new boundaries.
3412 		 *
3413 		 * uvm_unmap_remove will actually nuke all entries for us
3414 		 * (as in, not replace them with free-memory entries).
3415 		 */
3416 		uvm_unmap_remove(map, map->min_offset, map->max_offset,
3417 		    &dead_entries, TRUE, FALSE, FALSE);
3418 
3419 		KDASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
3420 
3421 		/* Nuke statistics and boundaries. */
3422 		memset(&ovm->vm_startcopy, 0,
3423 		    (caddr_t) (ovm + 1) - (caddr_t) &ovm->vm_startcopy);
3424 
3425 
3426 		if (end & (vaddr_t)PAGE_MASK) {
3427 			end += 1;
3428 			if (end == 0) /* overflow */
3429 				end -= PAGE_SIZE;
3430 		}
3431 
3432 		/* Setup new boundaries and populate map with entries. */
3433 		map->min_offset = start;
3434 		map->max_offset = end;
3435 		uvm_map_setup_entries(map);
3436 		vm_map_unlock(map);
3437 
3438 		/* but keep MMU holes unavailable */
3439 		pmap_remove_holes(ovm);
3440 	} else {
3441 		/*
3442 		 * pr's vmspace is being shared, so we can't reuse
3443 		 * it for pr since it is still being used for others.
3444 		 * allocate a new vmspace for pr
3445 		 */
3446 		nvm = uvmspace_alloc(start, end,
3447 		    (map->flags & VM_MAP_PAGEABLE) ? TRUE : FALSE, TRUE);
3448 
3449 		/* install new vmspace and drop our ref to the old one. */
3450 		pmap_deactivate(p);
3451 		p->p_vmspace = pr->ps_vmspace = nvm;
3452 		pmap_activate(p);
3453 
3454 		uvmspace_free(ovm);
3455 	}
3456 #ifdef PMAP_CHECK_COPYIN
3457 	p->p_vmspace->vm_map.check_copyin_count = 0;	/* disable checks */
3458 #endif
3459 
3460 	/* Release dead entries */
3461 	uvm_unmap_detach(&dead_entries, 0);
3462 }
3463 
3464 /*
3465  * uvmspace_addref: add a reference to a vmspace.
3466  */
3467 void
3468 uvmspace_addref(struct vmspace *vm)
3469 {
3470 	KERNEL_ASSERT_LOCKED();
3471 	KASSERT(vm->vm_refcnt > 0);
3472 
3473 	vm->vm_refcnt++;
3474 }
3475 
3476 /*
3477  * uvmspace_free: free a vmspace data structure
3478  */
3479 void
3480 uvmspace_free(struct vmspace *vm)
3481 {
3482 	KERNEL_ASSERT_LOCKED();
3483 
3484 	if (--vm->vm_refcnt == 0) {
3485 		/*
3486 		 * lock the map, to wait out all other references to it.  delete
3487 		 * all of the mappings and pages they hold, then call the pmap
3488 		 * module to reclaim anything left.
3489 		 */
3490 #ifdef SYSVSHM
3491 		/* Get rid of any SYSV shared memory segments. */
3492 		if (vm->vm_shm != NULL)
3493 			shmexit(vm);
3494 #endif
3495 
3496 		uvm_map_teardown(&vm->vm_map);
3497 		pool_put(&uvm_vmspace_pool, vm);
3498 	}
3499 }
3500 
3501 /*
3502  * uvm_share: Map the address range [srcaddr, srcaddr + sz) in
3503  * srcmap to the address range [dstaddr, dstaddr + sz) in
3504  * dstmap.
3505  *
3506  * The whole address range in srcmap must be backed by an object
3507  * (no holes).
3508  *
3509  * If successful, the address ranges share memory and the destination
3510  * address range uses the protection flags in prot.
3511  *
3512  * This routine assumes that sz is a multiple of PAGE_SIZE and
3513  * that dstaddr and srcaddr are page-aligned.
3514  */
3515 int
3516 uvm_share(struct vm_map *dstmap, vaddr_t dstaddr, vm_prot_t prot,
3517     struct vm_map *srcmap, vaddr_t srcaddr, vsize_t sz)
3518 {
3519 	int ret = 0;
3520 	vaddr_t unmap_end;
3521 	vaddr_t dstva;
3522 	vsize_t s_off, len, n = sz, remain;
3523 	struct vm_map_entry *first = NULL, *last = NULL;
3524 	struct vm_map_entry *src_entry, *psrc_entry = NULL;
3525 	struct uvm_map_deadq dead;
3526 
3527 	if (srcaddr >= srcmap->max_offset || sz > srcmap->max_offset - srcaddr)
3528 		return EINVAL;
3529 
3530 	TAILQ_INIT(&dead);
3531 	vm_map_lock(dstmap);
3532 	vm_map_lock_read(srcmap);
3533 
3534 	if (!uvm_map_isavail(dstmap, NULL, &first, &last, dstaddr, sz)) {
3535 		ret = ENOMEM;
3536 		goto exit_unlock;
3537 	}
3538 	if (!uvm_map_lookup_entry(srcmap, srcaddr, &src_entry)) {
3539 		ret = EINVAL;
3540 		goto exit_unlock;
3541 	}
3542 
3543 	dstva = dstaddr;
3544 	unmap_end = dstaddr;
3545 	for (; src_entry != NULL;
3546 	    psrc_entry = src_entry,
3547 	    src_entry = RBT_NEXT(uvm_map_addr, src_entry)) {
3548 		/* hole in address space, bail out */
3549 		if (psrc_entry != NULL && psrc_entry->end != src_entry->start)
3550 			break;
3551 		if (src_entry->start >= srcaddr + sz)
3552 			break;
3553 
3554 		if (UVM_ET_ISSUBMAP(src_entry))
3555 			panic("uvm_share: encountered a submap (illegal)");
3556 		if (!UVM_ET_ISCOPYONWRITE(src_entry) &&
3557 		    UVM_ET_ISNEEDSCOPY(src_entry))
3558 			panic("uvm_share: non-copy_on_write map entries "
3559 			    "marked needs_copy (illegal)");
3560 
3561 		/*
3562 		 * srcaddr > map entry start? means we are in the middle of a
3563 		 * map, so we calculate the offset to use in the source map.
3564 		 */
3565 		if (srcaddr > src_entry->start)
3566 			s_off = srcaddr - src_entry->start;
3567 		else if (srcaddr == src_entry->start)
3568 			s_off = 0;
3569 		else
3570 			panic("uvm_share: map entry start > srcaddr");
3571 
3572 		remain = src_entry->end - src_entry->start - s_off;
3573 
3574 		/* Determine how many bytes to share in this pass */
3575 		if (n < remain)
3576 			len = n;
3577 		else
3578 			len = remain;
3579 
3580 		if (uvm_mapent_share(dstmap, dstva, len, s_off, prot, prot,
3581 		    srcmap, src_entry, &dead) == NULL)
3582 			break;
3583 
3584 		n -= len;
3585 		dstva += len;
3586 		srcaddr += len;
3587 		unmap_end = dstva + len;
3588 		if (n == 0)
3589 			goto exit_unlock;
3590 	}
3591 
3592 	ret = EINVAL;
3593 	uvm_unmap_remove(dstmap, dstaddr, unmap_end, &dead, FALSE, TRUE, FALSE);
3594 
3595 exit_unlock:
3596 	vm_map_unlock_read(srcmap);
3597 	vm_map_unlock(dstmap);
3598 	uvm_unmap_detach(&dead, 0);
3599 
3600 	return ret;
3601 }
3602 
3603 /*
3604  * Clone map entry into other map.
3605  *
3606  * Mapping will be placed at dstaddr, for the same length.
3607  * Space must be available.
3608  * Reference counters are incremented.
3609  */
3610 struct vm_map_entry *
3611 uvm_mapent_clone(struct vm_map *dstmap, vaddr_t dstaddr, vsize_t dstlen,
3612     vsize_t off, vm_prot_t prot, vm_prot_t maxprot,
3613     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead,
3614     int mapent_flags, int amap_share_flags)
3615 {
3616 	struct vm_map_entry *new_entry, *first, *last;
3617 
3618 	KDASSERT(!UVM_ET_ISSUBMAP(old_entry));
3619 
3620 	/* Create new entry (linked in on creation). Fill in first, last. */
3621 	first = last = NULL;
3622 	if (!uvm_map_isavail(dstmap, NULL, &first, &last, dstaddr, dstlen)) {
3623 		panic("uvm_mapent_clone: no space in map for "
3624 		    "entry in empty map");
3625 	}
3626 	new_entry = uvm_map_mkentry(dstmap, first, last,
3627 	    dstaddr, dstlen, mapent_flags, dead, NULL);
3628 	if (new_entry == NULL)
3629 		return NULL;
3630 	/* old_entry -> new_entry */
3631 	new_entry->object = old_entry->object;
3632 	new_entry->offset = old_entry->offset;
3633 	new_entry->aref = old_entry->aref;
3634 	new_entry->etype |= old_entry->etype & ~UVM_ET_FREEMAPPED;
3635 	new_entry->protection = prot;
3636 	new_entry->max_protection = maxprot;
3637 	new_entry->inheritance = old_entry->inheritance;
3638 	new_entry->advice = old_entry->advice;
3639 
3640 	/* gain reference to object backing the map (can't be a submap). */
3641 	if (new_entry->aref.ar_amap) {
3642 		new_entry->aref.ar_pageoff += off >> PAGE_SHIFT;
3643 		amap_ref(new_entry->aref.ar_amap, new_entry->aref.ar_pageoff,
3644 		    (new_entry->end - new_entry->start) >> PAGE_SHIFT,
3645 		    amap_share_flags);
3646 	}
3647 
3648 	if (UVM_ET_ISOBJ(new_entry) &&
3649 	    new_entry->object.uvm_obj->pgops->pgo_reference) {
3650 		new_entry->offset += off;
3651 		new_entry->object.uvm_obj->pgops->pgo_reference
3652 		    (new_entry->object.uvm_obj);
3653 	}
3654 
3655 	return new_entry;
3656 }
3657 
3658 struct vm_map_entry *
3659 uvm_mapent_share(struct vm_map *dstmap, vaddr_t dstaddr, vsize_t dstlen,
3660     vsize_t off, vm_prot_t prot, vm_prot_t maxprot, struct vm_map *old_map,
3661     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3662 {
3663 	/*
3664 	 * If old_entry refers to a copy-on-write region that has not yet been
3665 	 * written to (needs_copy flag is set), then we need to allocate a new
3666 	 * amap for old_entry.
3667 	 *
3668 	 * If we do not do this, and the process owning old_entry does a copy-on
3669 	 * write later, old_entry and new_entry will refer to different memory
3670 	 * regions, and the memory between the processes is no longer shared.
3671 	 *
3672 	 * [in other words, we need to clear needs_copy]
3673 	 */
3674 
3675 	if (UVM_ET_ISNEEDSCOPY(old_entry)) {
3676 		/* get our own amap, clears needs_copy */
3677 		amap_copy(old_map, old_entry, M_WAITOK, FALSE, 0, 0);
3678 		/* XXXCDC: WAITOK??? */
3679 	}
3680 
3681 	return uvm_mapent_clone(dstmap, dstaddr, dstlen, off,
3682 	    prot, maxprot, old_entry, dead, 0, AMAP_SHARED);
3683 }
3684 
3685 /*
3686  * share the mapping: this means we want the old and
3687  * new entries to share amaps and backing objects.
3688  */
3689 struct vm_map_entry *
3690 uvm_mapent_forkshared(struct vmspace *new_vm, struct vm_map *new_map,
3691     struct vm_map *old_map,
3692     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3693 {
3694 	struct vm_map_entry *new_entry;
3695 
3696 	new_entry = uvm_mapent_share(new_map, old_entry->start,
3697 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3698 	    old_entry->max_protection, old_map, old_entry, dead);
3699 
3700 	return (new_entry);
3701 }
3702 
3703 /*
3704  * copy-on-write the mapping (using mmap's
3705  * MAP_PRIVATE semantics)
3706  *
3707  * allocate new_entry, adjust reference counts.
3708  * (note that new references are read-only).
3709  */
3710 struct vm_map_entry *
3711 uvm_mapent_forkcopy(struct vmspace *new_vm, struct vm_map *new_map,
3712     struct vm_map *old_map,
3713     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3714 {
3715 	struct vm_map_entry	*new_entry;
3716 	boolean_t		 protect_child;
3717 
3718 	new_entry = uvm_mapent_clone(new_map, old_entry->start,
3719 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3720 	    old_entry->max_protection, old_entry, dead, 0, 0);
3721 
3722 	new_entry->etype |=
3723 	    (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
3724 
3725 	/*
3726 	 * the new entry will need an amap.  it will either
3727 	 * need to be copied from the old entry or created
3728 	 * from scratch (if the old entry does not have an
3729 	 * amap).  can we defer this process until later
3730 	 * (by setting "needs_copy") or do we need to copy
3731 	 * the amap now?
3732 	 *
3733 	 * we must copy the amap now if any of the following
3734 	 * conditions hold:
3735 	 * 1. the old entry has an amap and that amap is
3736 	 *    being shared.  this means that the old (parent)
3737 	 *    process is sharing the amap with another
3738 	 *    process.  if we do not clear needs_copy here
3739 	 *    we will end up in a situation where both the
3740 	 *    parent and child process are referring to the
3741 	 *    same amap with "needs_copy" set.  if the
3742 	 *    parent write-faults, the fault routine will
3743 	 *    clear "needs_copy" in the parent by allocating
3744 	 *    a new amap.   this is wrong because the
3745 	 *    parent is supposed to be sharing the old amap
3746 	 *    and the new amap will break that.
3747 	 *
3748 	 * 2. if the old entry has an amap and a non-zero
3749 	 *    wire count then we are going to have to call
3750 	 *    amap_cow_now to avoid page faults in the
3751 	 *    parent process.   since amap_cow_now requires
3752 	 *    "needs_copy" to be clear we might as well
3753 	 *    clear it here as well.
3754 	 *
3755 	 */
3756 	if (old_entry->aref.ar_amap != NULL &&
3757 	    ((amap_flags(old_entry->aref.ar_amap) &
3758 	    AMAP_SHARED) != 0 ||
3759 	    VM_MAPENT_ISWIRED(old_entry))) {
3760 		amap_copy(new_map, new_entry, M_WAITOK, FALSE,
3761 		    0, 0);
3762 		/* XXXCDC: M_WAITOK ... ok? */
3763 	}
3764 
3765 	/*
3766 	 * if the parent's entry is wired down, then the
3767 	 * parent process does not want page faults on
3768 	 * access to that memory.  this means that we
3769 	 * cannot do copy-on-write because we can't write
3770 	 * protect the old entry.   in this case we
3771 	 * resolve all copy-on-write faults now, using
3772 	 * amap_cow_now.   note that we have already
3773 	 * allocated any needed amap (above).
3774 	 */
3775 	if (VM_MAPENT_ISWIRED(old_entry)) {
3776 		/*
3777 		 * resolve all copy-on-write faults now
3778 		 * (note that there is nothing to do if
3779 		 * the old mapping does not have an amap).
3780 		 */
3781 		if (old_entry->aref.ar_amap)
3782 			amap_cow_now(new_map, new_entry);
3783 	} else {
3784 		if (old_entry->aref.ar_amap) {
3785 			/*
3786 			 * setup mappings to trigger copy-on-write faults
3787 			 * we must write-protect the parent if it has
3788 			 * an amap and it is not already "needs_copy"...
3789 			 * if it is already "needs_copy" then the parent
3790 			 * has already been write-protected by a previous
3791 			 * fork operation.
3792 			 *
3793 			 * if we do not write-protect the parent, then
3794 			 * we must be sure to write-protect the child.
3795 			 */
3796 			if (!UVM_ET_ISNEEDSCOPY(old_entry)) {
3797 				if (old_entry->max_protection & PROT_WRITE) {
3798 					uvm_map_lock_entry(old_entry);
3799 					pmap_protect(old_map->pmap,
3800 					    old_entry->start,
3801 					    old_entry->end,
3802 					    old_entry->protection &
3803 					    ~PROT_WRITE);
3804 					uvm_map_unlock_entry(old_entry);
3805 					pmap_update(old_map->pmap);
3806 				}
3807 				old_entry->etype |= UVM_ET_NEEDSCOPY;
3808 			}
3809 
3810 	  		/* parent must now be write-protected */
3811 	  		protect_child = FALSE;
3812 		} else {
3813 			/*
3814 			 * we only need to protect the child if the
3815 			 * parent has write access.
3816 			 */
3817 			if (old_entry->max_protection & PROT_WRITE)
3818 				protect_child = TRUE;
3819 			else
3820 				protect_child = FALSE;
3821 		}
3822 
3823 		/* protect the child's mappings if necessary */
3824 		if (protect_child) {
3825 			pmap_protect(new_map->pmap, new_entry->start,
3826 			    new_entry->end,
3827 			    new_entry->protection &
3828 			    ~PROT_WRITE);
3829 		}
3830 	}
3831 
3832 	return (new_entry);
3833 }
3834 
3835 /*
3836  * zero the mapping: the new entry will be zero initialized
3837  */
3838 struct vm_map_entry *
3839 uvm_mapent_forkzero(struct vmspace *new_vm, struct vm_map *new_map,
3840     struct vm_map *old_map,
3841     struct vm_map_entry *old_entry, struct uvm_map_deadq *dead)
3842 {
3843 	struct vm_map_entry *new_entry;
3844 
3845 	new_entry = uvm_mapent_clone(new_map, old_entry->start,
3846 	    old_entry->end - old_entry->start, 0, old_entry->protection,
3847 	    old_entry->max_protection, old_entry, dead, 0, 0);
3848 
3849 	new_entry->etype |=
3850 	    (UVM_ET_COPYONWRITE|UVM_ET_NEEDSCOPY);
3851 
3852 	if (new_entry->aref.ar_amap) {
3853 		amap_unref(new_entry->aref.ar_amap, new_entry->aref.ar_pageoff,
3854 		    atop(new_entry->end - new_entry->start), 0);
3855 		new_entry->aref.ar_amap = NULL;
3856 		new_entry->aref.ar_pageoff = 0;
3857 	}
3858 
3859 	if (UVM_ET_ISOBJ(new_entry)) {
3860 		if (new_entry->object.uvm_obj->pgops->pgo_detach)
3861 			new_entry->object.uvm_obj->pgops->pgo_detach(
3862 			    new_entry->object.uvm_obj);
3863 		new_entry->object.uvm_obj = NULL;
3864 		new_entry->etype &= ~UVM_ET_OBJ;
3865 	}
3866 
3867 	return (new_entry);
3868 }
3869 
3870 /*
3871  * uvmspace_fork: fork a process' main map
3872  *
3873  * => create a new vmspace for child process from parent.
3874  * => parent's map must not be locked.
3875  */
3876 struct vmspace *
3877 uvmspace_fork(struct process *pr)
3878 {
3879 	struct vmspace *vm1 = pr->ps_vmspace;
3880 	struct vmspace *vm2;
3881 	struct vm_map *old_map = &vm1->vm_map;
3882 	struct vm_map *new_map;
3883 	struct vm_map_entry *old_entry, *new_entry;
3884 	struct uvm_map_deadq dead;
3885 
3886 	vm_map_lock(old_map);
3887 
3888 	vm2 = uvmspace_alloc(old_map->min_offset, old_map->max_offset,
3889 	    (old_map->flags & VM_MAP_PAGEABLE) ? TRUE : FALSE, FALSE);
3890 	memcpy(&vm2->vm_startcopy, &vm1->vm_startcopy,
3891 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
3892 	vm2->vm_dused = 0; /* Statistic managed by us. */
3893 	new_map = &vm2->vm_map;
3894 	vm_map_lock(new_map);
3895 
3896 	/* go entry-by-entry */
3897 	TAILQ_INIT(&dead);
3898 	RBT_FOREACH(old_entry, uvm_map_addr, &old_map->addr) {
3899 		if (old_entry->start == old_entry->end)
3900 			continue;
3901 
3902 		/* first, some sanity checks on the old entry */
3903 		if (UVM_ET_ISSUBMAP(old_entry)) {
3904 			panic("fork: encountered a submap during fork "
3905 			    "(illegal)");
3906 		}
3907 
3908 		if (!UVM_ET_ISCOPYONWRITE(old_entry) &&
3909 		    UVM_ET_ISNEEDSCOPY(old_entry)) {
3910 			panic("fork: non-copy_on_write map entry marked "
3911 			    "needs_copy (illegal)");
3912 		}
3913 
3914 		/* Apply inheritance. */
3915 		switch (old_entry->inheritance) {
3916 		case MAP_INHERIT_SHARE:
3917 			new_entry = uvm_mapent_forkshared(vm2, new_map,
3918 			    old_map, old_entry, &dead);
3919 			break;
3920 		case MAP_INHERIT_COPY:
3921 			new_entry = uvm_mapent_forkcopy(vm2, new_map,
3922 			    old_map, old_entry, &dead);
3923 			break;
3924 		case MAP_INHERIT_ZERO:
3925 			new_entry = uvm_mapent_forkzero(vm2, new_map,
3926 			    old_map, old_entry, &dead);
3927 			break;
3928 		default:
3929 			continue;
3930 		}
3931 
3932 	 	/* Update process statistics. */
3933 		if (!UVM_ET_ISHOLE(new_entry))
3934 			new_map->size += new_entry->end - new_entry->start;
3935 		if (!UVM_ET_ISOBJ(new_entry) && !UVM_ET_ISHOLE(new_entry) &&
3936 		    new_entry->protection != PROT_NONE) {
3937 			vm2->vm_dused += uvmspace_dused(
3938 			    new_map, new_entry->start, new_entry->end);
3939 		}
3940 	}
3941 	new_map->flags |= old_map->flags &
3942 	    (VM_MAP_SYSCALL_ONCE | VM_MAP_PINSYSCALL_ONCE);
3943 #ifdef PMAP_CHECK_COPYIN
3944 	if (PMAP_CHECK_COPYIN) {
3945 		memcpy(&new_map->check_copyin, &old_map->check_copyin,
3946 		    sizeof(new_map->check_copyin));
3947 		membar_producer();
3948 		new_map->check_copyin_count = old_map->check_copyin_count;
3949 	}
3950 #endif
3951 
3952 	vm_map_unlock(old_map);
3953 	vm_map_unlock(new_map);
3954 
3955 	/*
3956 	 * This can actually happen, if multiple entries described a
3957 	 * space in which an entry was inherited.
3958 	 */
3959 	uvm_unmap_detach(&dead, 0);
3960 
3961 #ifdef SYSVSHM
3962 	if (vm1->vm_shm)
3963 		shmfork(vm1, vm2);
3964 #endif
3965 
3966 	return vm2;
3967 }
3968 
3969 /*
3970  * uvm_map_hint: return the beginning of the best area suitable for
3971  * creating a new mapping with "prot" protection.
3972  */
3973 vaddr_t
3974 uvm_map_hint(struct vmspace *vm, vm_prot_t prot, vaddr_t minaddr,
3975     vaddr_t maxaddr)
3976 {
3977 	vaddr_t addr;
3978 	vaddr_t spacing;
3979 
3980 #ifdef __i386__
3981 	/*
3982 	 * If executable skip first two pages, otherwise start
3983 	 * after data + heap region.
3984 	 */
3985 	if ((prot & PROT_EXEC) != 0 &&
3986 	    (vaddr_t)vm->vm_daddr >= I386_MAX_EXE_ADDR) {
3987 		addr = (PAGE_SIZE*2) +
3988 		    (arc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3989 		return (round_page(addr));
3990 	}
3991 #endif
3992 
3993 #if defined (__LP64__)
3994 	spacing = MIN(4UL * 1024 * 1024 * 1024, MAXDSIZ) - 1;
3995 #else
3996 	spacing = MIN(1 * 1024 * 1024 * 1024, MAXDSIZ) - 1;
3997 #endif
3998 
3999 	/*
4000 	 * Start malloc/mmap after the brk.
4001 	 */
4002 	addr = (vaddr_t)vm->vm_daddr + BRKSIZ;
4003 	addr = MAX(addr, minaddr);
4004 
4005 	if (addr < maxaddr) {
4006 		while (spacing > maxaddr - addr)
4007 			spacing >>= 1;
4008 	}
4009 	addr += arc4random() & spacing;
4010 	return (round_page(addr));
4011 }
4012 
4013 /*
4014  * uvm_map_submap: punch down part of a map into a submap
4015  *
4016  * => only the kernel_map is allowed to be submapped
4017  * => the purpose of submapping is to break up the locking granularity
4018  *	of a larger map
4019  * => the range specified must have been mapped previously with a uvm_map()
4020  *	call [with uobj==NULL] to create a blank map entry in the main map.
4021  *	[And it had better still be blank!]
4022  * => maps which contain submaps should never be copied or forked.
4023  * => to remove a submap, use uvm_unmap() on the main map
4024  *	and then uvm_map_deallocate() the submap.
4025  * => main map must be unlocked.
4026  * => submap must have been init'd and have a zero reference count.
4027  *	[need not be locked as we don't actually reference it]
4028  */
4029 int
4030 uvm_map_submap(struct vm_map *map, vaddr_t start, vaddr_t end,
4031     struct vm_map *submap)
4032 {
4033 	struct vm_map_entry *entry;
4034 	int result;
4035 
4036 	if (start > map->max_offset || end > map->max_offset ||
4037 	    start < map->min_offset || end < map->min_offset)
4038 		return EINVAL;
4039 
4040 	vm_map_lock(map);
4041 
4042 	if (uvm_map_lookup_entry(map, start, &entry)) {
4043 		UVM_MAP_CLIP_START(map, entry, start);
4044 		UVM_MAP_CLIP_END(map, entry, end);
4045 	} else
4046 		entry = NULL;
4047 
4048 	if (entry != NULL &&
4049 	    entry->start == start && entry->end == end &&
4050 	    entry->object.uvm_obj == NULL && entry->aref.ar_amap == NULL &&
4051 	    !UVM_ET_ISCOPYONWRITE(entry) && !UVM_ET_ISNEEDSCOPY(entry)) {
4052 		entry->etype |= UVM_ET_SUBMAP;
4053 		entry->object.sub_map = submap;
4054 		entry->offset = 0;
4055 		uvm_map_reference(submap);
4056 		result = 0;
4057 	} else
4058 		result = EINVAL;
4059 
4060 	vm_map_unlock(map);
4061 	return result;
4062 }
4063 
4064 /*
4065  * uvm_map_checkprot: check protection in map
4066  *
4067  * => must allow specific protection in a fully allocated region.
4068  * => map must be read or write locked by caller.
4069  */
4070 boolean_t
4071 uvm_map_checkprot(struct vm_map *map, vaddr_t start, vaddr_t end,
4072     vm_prot_t protection)
4073 {
4074 	struct vm_map_entry *entry;
4075 
4076 	vm_map_assert_anylock(map);
4077 
4078 	if (start < map->min_offset || end > map->max_offset || start > end)
4079 		return FALSE;
4080 	if (start == end)
4081 		return TRUE;
4082 
4083 	/*
4084 	 * Iterate entries.
4085 	 */
4086 	for (entry = uvm_map_entrybyaddr(&map->addr, start);
4087 	    entry != NULL && entry->start < end;
4088 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4089 		/* Fail if a hole is found. */
4090 		if (UVM_ET_ISHOLE(entry) ||
4091 		    (entry->end < end && entry->end != VMMAP_FREE_END(entry)))
4092 			return FALSE;
4093 
4094 		/* Check protection. */
4095 		if ((entry->protection & protection) != protection)
4096 			return FALSE;
4097 	}
4098 	return TRUE;
4099 }
4100 
4101 /*
4102  * uvm_map_create: create map
4103  */
4104 vm_map_t
4105 uvm_map_create(pmap_t pmap, vaddr_t min, vaddr_t max, int flags)
4106 {
4107 	vm_map_t map;
4108 
4109 	map = malloc(sizeof *map, M_VMMAP, M_WAITOK);
4110 	uvm_map_setup(map, pmap, min, max, flags);
4111 	return (map);
4112 }
4113 
4114 /*
4115  * uvm_map_deallocate: drop reference to a map
4116  *
4117  * => caller must not lock map
4118  * => we will zap map if ref count goes to zero
4119  */
4120 void
4121 uvm_map_deallocate(vm_map_t map)
4122 {
4123 	int c;
4124 	struct uvm_map_deadq dead;
4125 
4126 	c = atomic_dec_int_nv(&map->ref_count);
4127 	if (c > 0) {
4128 		return;
4129 	}
4130 
4131 	/*
4132 	 * all references gone.   unmap and free.
4133 	 *
4134 	 * No lock required: we are only one to access this map.
4135 	 */
4136 	TAILQ_INIT(&dead);
4137 	uvm_tree_sanity(map, __FILE__, __LINE__);
4138 	vm_map_lock(map);
4139 	uvm_unmap_remove(map, map->min_offset, map->max_offset, &dead,
4140 	    TRUE, FALSE, FALSE);
4141 	vm_map_unlock(map);
4142 	pmap_destroy(map->pmap);
4143 	KASSERT(RBT_EMPTY(uvm_map_addr, &map->addr));
4144 	free(map, M_VMMAP, sizeof *map);
4145 
4146 	uvm_unmap_detach(&dead, 0);
4147 }
4148 
4149 /*
4150  * uvm_map_inherit: set inheritance code for range of addrs in map.
4151  *
4152  * => map must be unlocked
4153  * => note that the inherit code is used during a "fork".  see fork
4154  *	code for details.
4155  */
4156 int
4157 uvm_map_inherit(struct vm_map *map, vaddr_t start, vaddr_t end,
4158     vm_inherit_t new_inheritance)
4159 {
4160 	struct vm_map_entry *entry, *entry1;
4161 	int error = EPERM;
4162 
4163 	switch (new_inheritance) {
4164 	case MAP_INHERIT_NONE:
4165 	case MAP_INHERIT_COPY:
4166 	case MAP_INHERIT_SHARE:
4167 	case MAP_INHERIT_ZERO:
4168 		break;
4169 	default:
4170 		return (EINVAL);
4171 	}
4172 
4173 	if (start > end)
4174 		return EINVAL;
4175 	start = MAX(start, map->min_offset);
4176 	end = MIN(end, map->max_offset);
4177 	if (start >= end)
4178 		return 0;
4179 
4180 	vm_map_lock(map);
4181 
4182 	entry = uvm_map_entrybyaddr(&map->addr, start);
4183 	if (entry->end > start)
4184 		UVM_MAP_CLIP_START(map, entry, start);
4185 	else
4186 		entry = RBT_NEXT(uvm_map_addr, entry);
4187 
4188 	/* First check for illegal operations */
4189 	entry1 = entry;
4190 	while (entry1 != NULL && entry1->start < end) {
4191 		if (entry1->etype & UVM_ET_IMMUTABLE)
4192 			goto out;
4193 		if (new_inheritance == MAP_INHERIT_ZERO &&
4194 		    (entry1->protection & PROT_WRITE) == 0)
4195 			goto out;
4196 		entry1 = RBT_NEXT(uvm_map_addr, entry1);
4197 	}
4198 
4199 	while (entry != NULL && entry->start < end) {
4200 		UVM_MAP_CLIP_END(map, entry, end);
4201 		entry->inheritance = new_inheritance;
4202 		entry = RBT_NEXT(uvm_map_addr, entry);
4203 	}
4204 
4205 	error = 0;
4206 out:
4207 	vm_map_unlock(map);
4208 	return (error);
4209 }
4210 
4211 #ifdef PMAP_CHECK_COPYIN
4212 static void inline
4213 check_copyin_add(struct vm_map *map, vaddr_t start, vaddr_t end)
4214 {
4215 	if (PMAP_CHECK_COPYIN == 0 ||
4216 	    map->check_copyin_count >= UVM_MAP_CHECK_COPYIN_MAX)
4217 		return;
4218 	vm_map_assert_wrlock(map);
4219 	map->check_copyin[map->check_copyin_count].start = start;
4220 	map->check_copyin[map->check_copyin_count].end = end;
4221 	membar_producer();
4222 	map->check_copyin_count++;
4223 }
4224 
4225 /*
4226  * uvm_map_check_copyin_add: remember regions which are X-only for copyin(),
4227  * copyinstr(), uiomove(), and others
4228  *
4229  * => map must be unlocked
4230  */
4231 int
4232 uvm_map_check_copyin_add(struct vm_map *map, vaddr_t start, vaddr_t end)
4233 {
4234 	if (start > end)
4235 		return EINVAL;
4236 	start = MAX(start, map->min_offset);
4237 	end = MIN(end, map->max_offset);
4238 	if (start >= end)
4239 		return 0;
4240 	vm_map_lock(map);
4241 	check_copyin_add(map, start, end);
4242 	vm_map_unlock(map);
4243 	return (0);
4244 }
4245 #endif /* PMAP_CHECK_COPYIN */
4246 
4247 /*
4248  * uvm_map_syscall: permit system calls for range of addrs in map.
4249  *
4250  * => map must be unlocked
4251  */
4252 int
4253 uvm_map_syscall(struct vm_map *map, vaddr_t start, vaddr_t end)
4254 {
4255 	struct vm_map_entry *entry;
4256 
4257 	if (start > end)
4258 		return EINVAL;
4259 	start = MAX(start, map->min_offset);
4260 	end = MIN(end, map->max_offset);
4261 	if (start >= end)
4262 		return 0;
4263 	if (map->flags & VM_MAP_SYSCALL_ONCE)	/* only allowed once */
4264 		return (EPERM);
4265 
4266 	vm_map_lock(map);
4267 
4268 	entry = uvm_map_entrybyaddr(&map->addr, start);
4269 	if (entry->end > start)
4270 		UVM_MAP_CLIP_START(map, entry, start);
4271 	else
4272 		entry = RBT_NEXT(uvm_map_addr, entry);
4273 
4274 	while (entry != NULL && entry->start < end) {
4275 		UVM_MAP_CLIP_END(map, entry, end);
4276 		entry->etype |= UVM_ET_SYSCALL;
4277 		entry = RBT_NEXT(uvm_map_addr, entry);
4278 	}
4279 
4280 #ifdef PMAP_CHECK_COPYIN
4281 	check_copyin_add(map, start, end);	/* Add libc's text segment */
4282 #endif
4283 	map->wserial++;
4284 	map->flags |= VM_MAP_SYSCALL_ONCE;
4285 	vm_map_unlock(map);
4286 	return (0);
4287 }
4288 
4289 /*
4290  * uvm_map_immutable: block mapping/mprotect for range of addrs in map.
4291  *
4292  * => map must be unlocked
4293  */
4294 int
4295 uvm_map_immutable(struct vm_map *map, vaddr_t start, vaddr_t end, int imut)
4296 {
4297 	struct vm_map_entry *entry, *entry1;
4298 	int error = EPERM;
4299 
4300 	if (start > end)
4301 		return EINVAL;
4302 	start = MAX(start, map->min_offset);
4303 	end = MIN(end, map->max_offset);
4304 	if (start >= end)
4305 		return 0;
4306 
4307 	vm_map_lock(map);
4308 
4309 	entry = uvm_map_entrybyaddr(&map->addr, start);
4310 	if (entry->end > start)
4311 		UVM_MAP_CLIP_START(map, entry, start);
4312 	else
4313 		entry = RBT_NEXT(uvm_map_addr, entry);
4314 
4315 	/* First check for illegal operations */
4316 	entry1 = entry;
4317 	while (entry1 != NULL && entry1->start < end) {
4318 		if (entry1->inheritance == MAP_INHERIT_ZERO)
4319 			goto out;
4320 		entry1 = RBT_NEXT(uvm_map_addr, entry1);
4321 	}
4322 
4323 	while (entry != NULL && entry->start < end) {
4324 		UVM_MAP_CLIP_END(map, entry, end);
4325 		if (imut)
4326 			entry->etype |= UVM_ET_IMMUTABLE;
4327 		else
4328 			entry->etype &= ~UVM_ET_IMMUTABLE;
4329 		entry = RBT_NEXT(uvm_map_addr, entry);
4330 	}
4331 
4332 	map->wserial++;
4333 	error = 0;
4334 out:
4335 	vm_map_unlock(map);
4336 	return (0);
4337 }
4338 
4339 /*
4340  * uvm_map_advice: set advice code for range of addrs in map.
4341  *
4342  * => map must be unlocked
4343  */
4344 int
4345 uvm_map_advice(struct vm_map *map, vaddr_t start, vaddr_t end, int new_advice)
4346 {
4347 	struct vm_map_entry *entry;
4348 
4349 	switch (new_advice) {
4350 	case MADV_NORMAL:
4351 	case MADV_RANDOM:
4352 	case MADV_SEQUENTIAL:
4353 		break;
4354 	default:
4355 		return (EINVAL);
4356 	}
4357 
4358 	if (start > end)
4359 		return EINVAL;
4360 	start = MAX(start, map->min_offset);
4361 	end = MIN(end, map->max_offset);
4362 	if (start >= end)
4363 		return 0;
4364 
4365 	vm_map_lock(map);
4366 
4367 	entry = uvm_map_entrybyaddr(&map->addr, start);
4368 	if (entry != NULL && entry->end > start)
4369 		UVM_MAP_CLIP_START(map, entry, start);
4370 	else if (entry!= NULL)
4371 		entry = RBT_NEXT(uvm_map_addr, entry);
4372 
4373 	/*
4374 	 * XXXJRT: disallow holes?
4375 	 */
4376 	while (entry != NULL && entry->start < end) {
4377 		UVM_MAP_CLIP_END(map, entry, end);
4378 		entry->advice = new_advice;
4379 		entry = RBT_NEXT(uvm_map_addr, entry);
4380 	}
4381 
4382 	vm_map_unlock(map);
4383 	return (0);
4384 }
4385 
4386 /*
4387  * uvm_map_extract: extract a mapping from a map and put it somewhere
4388  * in the kernel_map, setting protection to max_prot.
4389  *
4390  * => map should be unlocked (we will write lock it and kernel_map)
4391  * => returns 0 on success, error code otherwise
4392  * => start must be page aligned
4393  * => len must be page sized
4394  * => flags:
4395  *      UVM_EXTRACT_FIXPROT: set prot to maxprot as we go
4396  * Mappings are QREF's.
4397  */
4398 int
4399 uvm_map_extract(struct vm_map *srcmap, vaddr_t start, vsize_t len,
4400     vaddr_t *dstaddrp, int flags)
4401 {
4402 	struct uvm_map_deadq dead;
4403 	struct vm_map_entry *first, *entry, *newentry, *tmp1, *tmp2;
4404 	vaddr_t dstaddr;
4405 	vaddr_t end;
4406 	vaddr_t cp_start;
4407 	vsize_t cp_len, cp_off;
4408 	int error;
4409 
4410 	TAILQ_INIT(&dead);
4411 	end = start + len;
4412 
4413 	/*
4414 	 * Sanity check on the parameters.
4415 	 * Also, since the mapping may not contain gaps, error out if the
4416 	 * mapped area is not in source map.
4417 	 */
4418 	if ((start & (vaddr_t)PAGE_MASK) != 0 ||
4419 	    (end & (vaddr_t)PAGE_MASK) != 0 || end < start)
4420 		return EINVAL;
4421 	if (start < srcmap->min_offset || end > srcmap->max_offset)
4422 		return EINVAL;
4423 
4424 	/* Initialize dead entries. Handle len == 0 case. */
4425 	if (len == 0)
4426 		return 0;
4427 
4428 	/* Acquire lock on srcmap. */
4429 	vm_map_lock(srcmap);
4430 
4431 	/* Lock srcmap, lookup first and last entry in <start,len>. */
4432 	first = uvm_map_entrybyaddr(&srcmap->addr, start);
4433 
4434 	/* Check that the range is contiguous. */
4435 	for (entry = first; entry != NULL && entry->end < end;
4436 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4437 		if (VMMAP_FREE_END(entry) != entry->end ||
4438 		    UVM_ET_ISHOLE(entry)) {
4439 			error = EINVAL;
4440 			goto fail;
4441 		}
4442 	}
4443 	if (entry == NULL || UVM_ET_ISHOLE(entry)) {
4444 		error = EINVAL;
4445 		goto fail;
4446 	}
4447 
4448 	/*
4449 	 * Handle need-copy flag.
4450 	 */
4451 	for (entry = first; entry != NULL && entry->start < end;
4452 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4453 		if (UVM_ET_ISNEEDSCOPY(entry))
4454 			amap_copy(srcmap, entry, M_NOWAIT,
4455 			    UVM_ET_ISSTACK(entry) ? FALSE : TRUE, start, end);
4456 		if (UVM_ET_ISNEEDSCOPY(entry)) {
4457 			/*
4458 			 * amap_copy failure
4459 			 */
4460 			error = ENOMEM;
4461 			goto fail;
4462 		}
4463 	}
4464 
4465 	/* Lock destination map (kernel_map). */
4466 	vm_map_lock(kernel_map);
4467 
4468 	if (uvm_map_findspace(kernel_map, &tmp1, &tmp2, &dstaddr, len,
4469 	    MAX(PAGE_SIZE, PMAP_PREFER_ALIGN()), PMAP_PREFER_OFFSET(start),
4470 	    PROT_NONE, 0) != 0) {
4471 		error = ENOMEM;
4472 		goto fail2;
4473 	}
4474 	*dstaddrp = dstaddr;
4475 
4476 	/*
4477 	 * We now have srcmap and kernel_map locked.
4478 	 * dstaddr contains the destination offset in dstmap.
4479 	 */
4480 	/* step 1: start looping through map entries, performing extraction. */
4481 	for (entry = first; entry != NULL && entry->start < end;
4482 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4483 		KDASSERT(!UVM_ET_ISNEEDSCOPY(entry));
4484 		if (UVM_ET_ISHOLE(entry))
4485 			continue;
4486 
4487 		/* Calculate uvm_mapent_clone parameters. */
4488 		cp_start = entry->start;
4489 		if (cp_start < start) {
4490 			cp_off = start - cp_start;
4491 			cp_start = start;
4492 		} else
4493 			cp_off = 0;
4494 		cp_len = MIN(entry->end, end) - cp_start;
4495 
4496 		newentry = uvm_mapent_clone(kernel_map,
4497 		    cp_start - start + dstaddr, cp_len, cp_off,
4498 		    entry->protection, entry->max_protection,
4499 		    entry, &dead, flags, AMAP_SHARED | AMAP_REFALL);
4500 		if (newentry == NULL) {
4501 			error = ENOMEM;
4502 			goto fail2_unmap;
4503 		}
4504 		kernel_map->size += cp_len;
4505 
4506 		/* Figure out the best protection */
4507 		if ((flags & UVM_EXTRACT_FIXPROT) &&
4508 		    newentry->protection != PROT_NONE)
4509 			newentry->protection = newentry->max_protection;
4510 		newentry->protection &= ~PROT_EXEC;
4511 	}
4512 	pmap_update(kernel_map->pmap);
4513 
4514 	error = 0;
4515 
4516 	/* Unmap copied entries on failure. */
4517 fail2_unmap:
4518 	if (error) {
4519 		uvm_unmap_remove(kernel_map, dstaddr, dstaddr + len, &dead,
4520 		    FALSE, TRUE, FALSE);
4521 	}
4522 
4523 	/* Release maps, release dead entries. */
4524 fail2:
4525 	vm_map_unlock(kernel_map);
4526 
4527 fail:
4528 	vm_map_unlock(srcmap);
4529 
4530 	uvm_unmap_detach(&dead, 0);
4531 
4532 	return error;
4533 }
4534 
4535 /*
4536  * uvm_map_clean: clean out a map range
4537  *
4538  * => valid flags:
4539  *   if (flags & PGO_CLEANIT): dirty pages are cleaned first
4540  *   if (flags & PGO_SYNCIO): dirty pages are written synchronously
4541  *   if (flags & PGO_DEACTIVATE): any cached pages are deactivated after clean
4542  *   if (flags & PGO_FREE): any cached pages are freed after clean
4543  * => returns an error if any part of the specified range isn't mapped
4544  * => never a need to flush amap layer since the anonymous memory has
4545  *	no permanent home, but may deactivate pages there
4546  * => called from sys_msync() and sys_madvise()
4547  * => caller must not have map locked
4548  */
4549 
4550 int
4551 uvm_map_clean(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
4552 {
4553 	struct vm_map_entry *first, *entry;
4554 	struct vm_amap *amap;
4555 	struct vm_anon *anon;
4556 	struct vm_page *pg;
4557 	struct uvm_object *uobj;
4558 	vaddr_t cp_start, cp_end;
4559 	int refs;
4560 	int error;
4561 	boolean_t rv;
4562 
4563 	KASSERT((flags & (PGO_FREE|PGO_DEACTIVATE)) !=
4564 	    (PGO_FREE|PGO_DEACTIVATE));
4565 
4566 	if (start > end || start < map->min_offset || end > map->max_offset)
4567 		return EINVAL;
4568 
4569 	vm_map_lock(map);
4570 	first = uvm_map_entrybyaddr(&map->addr, start);
4571 
4572 	/* Make a first pass to check for various conditions. */
4573 	for (entry = first; entry != NULL && entry->start < end;
4574 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4575 		if (entry->etype & UVM_ET_IMMUTABLE) {
4576 			vm_map_unlock(map);
4577 			return EPERM;
4578 		}
4579 		if (UVM_ET_ISSUBMAP(entry)) {
4580 			vm_map_unlock(map);
4581 			return EINVAL;
4582 		}
4583 		if (UVM_ET_ISSUBMAP(entry) ||
4584 		    UVM_ET_ISHOLE(entry) ||
4585 		    (entry->end < end &&
4586 		    VMMAP_FREE_END(entry) != entry->end)) {
4587 			vm_map_unlock(map);
4588 			return EFAULT;
4589 		}
4590 	}
4591 
4592 	vm_map_busy(map);
4593 	vm_map_unlock(map);
4594 	error = 0;
4595 	for (entry = first; entry != NULL && entry->start < end;
4596 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
4597 		amap = entry->aref.ar_amap;	/* top layer */
4598 		if (UVM_ET_ISOBJ(entry))
4599 			uobj = entry->object.uvm_obj;
4600 		else
4601 			uobj = NULL;
4602 
4603 		/*
4604 		 * No amap cleaning necessary if:
4605 		 *  - there's no amap
4606 		 *  - we're not deactivating or freeing pages.
4607 		 */
4608 		if (amap == NULL || (flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
4609 			goto flush_object;
4610 
4611 		cp_start = MAX(entry->start, start);
4612 		cp_end = MIN(entry->end, end);
4613 
4614 		amap_lock(amap);
4615 		for (; cp_start != cp_end; cp_start += PAGE_SIZE) {
4616 			anon = amap_lookup(&entry->aref,
4617 			    cp_start - entry->start);
4618 			if (anon == NULL)
4619 				continue;
4620 
4621 			KASSERT(anon->an_lock == amap->am_lock);
4622 			pg = anon->an_page;
4623 			if (pg == NULL) {
4624 				continue;
4625 			}
4626 			KASSERT(pg->pg_flags & PQ_ANON);
4627 
4628 			switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
4629 			/*
4630 			 * XXX In these first 3 cases, we always just
4631 			 * XXX deactivate the page.  We may want to
4632 			 * XXX handle the different cases more
4633 			 * XXX specifically, in the future.
4634 			 */
4635 			case PGO_CLEANIT|PGO_FREE:
4636 			case PGO_CLEANIT|PGO_DEACTIVATE:
4637 			case PGO_DEACTIVATE:
4638 deactivate_it:
4639 				/* skip the page if it's wired */
4640 				if (pg->wire_count != 0)
4641 					break;
4642 
4643 				uvm_lock_pageq();
4644 
4645 				KASSERT(pg->uanon == anon);
4646 
4647 				/* zap all mappings for the page. */
4648 				pmap_page_protect(pg, PROT_NONE);
4649 
4650 				/* ...and deactivate the page. */
4651 				uvm_pagedeactivate(pg);
4652 
4653 				uvm_unlock_pageq();
4654 				break;
4655 			case PGO_FREE:
4656 				/*
4657 				 * If there are multiple references to
4658 				 * the amap, just deactivate the page.
4659 				 */
4660 				if (amap_refs(amap) > 1)
4661 					goto deactivate_it;
4662 
4663 				/* XXX skip the page if it's wired */
4664 				if (pg->wire_count != 0) {
4665 					break;
4666 				}
4667 				amap_unadd(&entry->aref,
4668 				    cp_start - entry->start);
4669 				refs = --anon->an_ref;
4670 				if (refs == 0)
4671 					uvm_anfree(anon);
4672 				break;
4673 			default:
4674 				panic("uvm_map_clean: weird flags");
4675 			}
4676 		}
4677 		amap_unlock(amap);
4678 
4679 flush_object:
4680 		cp_start = MAX(entry->start, start);
4681 		cp_end = MIN(entry->end, end);
4682 
4683 		/*
4684 		 * flush pages if we've got a valid backing object.
4685 		 *
4686 		 * Don't PGO_FREE if we don't have write permission
4687 		 * and don't flush if this is a copy-on-write object
4688 		 * since we can't know our permissions on it.
4689 		 */
4690 		if (uobj != NULL &&
4691 		    ((flags & PGO_FREE) == 0 ||
4692 		     ((entry->max_protection & PROT_WRITE) != 0 &&
4693 		      (entry->etype & UVM_ET_COPYONWRITE) == 0))) {
4694 			rw_enter(uobj->vmobjlock, RW_WRITE);
4695 			rv = uobj->pgops->pgo_flush(uobj,
4696 			    cp_start - entry->start + entry->offset,
4697 			    cp_end - entry->start + entry->offset, flags);
4698 			rw_exit(uobj->vmobjlock);
4699 
4700 			if (rv == FALSE)
4701 				error = EFAULT;
4702 		}
4703 	}
4704 
4705 	vm_map_unbusy(map);
4706 	return error;
4707 }
4708 
4709 /*
4710  * UVM_MAP_CLIP_END implementation
4711  */
4712 void
4713 uvm_map_clip_end(struct vm_map *map, struct vm_map_entry *entry, vaddr_t addr)
4714 {
4715 	struct vm_map_entry *tmp;
4716 
4717 	KASSERT(entry->start < addr && VMMAP_FREE_END(entry) > addr);
4718 	tmp = uvm_mapent_alloc(map, 0);
4719 
4720 	/* Invoke splitentry. */
4721 	uvm_map_splitentry(map, entry, tmp, addr);
4722 }
4723 
4724 /*
4725  * UVM_MAP_CLIP_START implementation
4726  *
4727  * Clippers are required to not change the pointers to the entry they are
4728  * clipping on.
4729  * Since uvm_map_splitentry turns the original entry into the lowest
4730  * entry (address wise) we do a swap between the new entry and the original
4731  * entry, prior to calling uvm_map_splitentry.
4732  */
4733 void
4734 uvm_map_clip_start(struct vm_map *map, struct vm_map_entry *entry, vaddr_t addr)
4735 {
4736 	struct vm_map_entry *tmp;
4737 	struct uvm_addr_state *free;
4738 
4739 	/* Unlink original. */
4740 	free = uvm_map_uaddr_e(map, entry);
4741 	uvm_mapent_free_remove(map, free, entry);
4742 	uvm_mapent_addr_remove(map, entry);
4743 
4744 	/* Copy entry. */
4745 	KASSERT(entry->start < addr && VMMAP_FREE_END(entry) > addr);
4746 	tmp = uvm_mapent_alloc(map, 0);
4747 	uvm_mapent_copy(entry, tmp);
4748 
4749 	/* Put new entry in place of original entry. */
4750 	uvm_mapent_addr_insert(map, tmp);
4751 	uvm_mapent_free_insert(map, free, tmp);
4752 
4753 	/* Invoke splitentry. */
4754 	uvm_map_splitentry(map, tmp, entry, addr);
4755 }
4756 
4757 /*
4758  * Boundary fixer.
4759  */
4760 static inline vaddr_t uvm_map_boundfix(vaddr_t, vaddr_t, vaddr_t);
4761 static inline vaddr_t
4762 uvm_map_boundfix(vaddr_t min, vaddr_t max, vaddr_t bound)
4763 {
4764 	return (min < bound && max > bound) ? bound : max;
4765 }
4766 
4767 /*
4768  * Choose free list based on address at start of free space.
4769  *
4770  * The uvm_addr_state returned contains addr and is the first of:
4771  * - uaddr_exe
4772  * - uaddr_brk_stack
4773  * - uaddr_any
4774  */
4775 struct uvm_addr_state*
4776 uvm_map_uaddr(struct vm_map *map, vaddr_t addr)
4777 {
4778 	struct uvm_addr_state *uaddr;
4779 	int i;
4780 
4781 	/* Special case the first page, to prevent mmap from returning 0. */
4782 	if (addr < VMMAP_MIN_ADDR)
4783 		return NULL;
4784 
4785 	/* Upper bound for kernel maps at uvm_maxkaddr. */
4786 	if ((map->flags & VM_MAP_ISVMSPACE) == 0) {
4787 		if (addr >= uvm_maxkaddr)
4788 			return NULL;
4789 	}
4790 
4791 	/* Is the address inside the exe-only map? */
4792 	if (map->uaddr_exe != NULL && addr >= map->uaddr_exe->uaddr_minaddr &&
4793 	    addr < map->uaddr_exe->uaddr_maxaddr)
4794 		return map->uaddr_exe;
4795 
4796 	/* Check if the space falls inside brk/stack area. */
4797 	if ((addr >= map->b_start && addr < map->b_end) ||
4798 	    (addr >= map->s_start && addr < map->s_end)) {
4799 		if (map->uaddr_brk_stack != NULL &&
4800 		    addr >= map->uaddr_brk_stack->uaddr_minaddr &&
4801 		    addr < map->uaddr_brk_stack->uaddr_maxaddr) {
4802 			return map->uaddr_brk_stack;
4803 		} else
4804 			return NULL;
4805 	}
4806 
4807 	/*
4808 	 * Check the other selectors.
4809 	 *
4810 	 * These selectors are only marked as the owner, if they have insert
4811 	 * functions.
4812 	 */
4813 	for (i = 0; i < nitems(map->uaddr_any); i++) {
4814 		uaddr = map->uaddr_any[i];
4815 		if (uaddr == NULL)
4816 			continue;
4817 		if (uaddr->uaddr_functions->uaddr_free_insert == NULL)
4818 			continue;
4819 
4820 		if (addr >= uaddr->uaddr_minaddr &&
4821 		    addr < uaddr->uaddr_maxaddr)
4822 			return uaddr;
4823 	}
4824 
4825 	return NULL;
4826 }
4827 
4828 /*
4829  * Choose free list based on address at start of free space.
4830  *
4831  * The uvm_addr_state returned contains addr and is the first of:
4832  * - uaddr_exe
4833  * - uaddr_brk_stack
4834  * - uaddr_any
4835  */
4836 struct uvm_addr_state*
4837 uvm_map_uaddr_e(struct vm_map *map, struct vm_map_entry *entry)
4838 {
4839 	return uvm_map_uaddr(map, VMMAP_FREE_START(entry));
4840 }
4841 
4842 /*
4843  * Returns the first free-memory boundary that is crossed by [min-max].
4844  */
4845 vsize_t
4846 uvm_map_boundary(struct vm_map *map, vaddr_t min, vaddr_t max)
4847 {
4848 	struct uvm_addr_state	*uaddr;
4849 	int			 i;
4850 
4851 	/* Never return first page. */
4852 	max = uvm_map_boundfix(min, max, VMMAP_MIN_ADDR);
4853 
4854 	/* Treat the maxkaddr special, if the map is a kernel_map. */
4855 	if ((map->flags & VM_MAP_ISVMSPACE) == 0)
4856 		max = uvm_map_boundfix(min, max, uvm_maxkaddr);
4857 
4858 	/* Check for exe-only boundaries. */
4859 	if (map->uaddr_exe != NULL) {
4860 		max = uvm_map_boundfix(min, max, map->uaddr_exe->uaddr_minaddr);
4861 		max = uvm_map_boundfix(min, max, map->uaddr_exe->uaddr_maxaddr);
4862 	}
4863 
4864 	/* Check for exe-only boundaries. */
4865 	if (map->uaddr_brk_stack != NULL) {
4866 		max = uvm_map_boundfix(min, max,
4867 		    map->uaddr_brk_stack->uaddr_minaddr);
4868 		max = uvm_map_boundfix(min, max,
4869 		    map->uaddr_brk_stack->uaddr_maxaddr);
4870 	}
4871 
4872 	/* Check other boundaries. */
4873 	for (i = 0; i < nitems(map->uaddr_any); i++) {
4874 		uaddr = map->uaddr_any[i];
4875 		if (uaddr != NULL) {
4876 			max = uvm_map_boundfix(min, max, uaddr->uaddr_minaddr);
4877 			max = uvm_map_boundfix(min, max, uaddr->uaddr_maxaddr);
4878 		}
4879 	}
4880 
4881 	/* Boundaries at stack and brk() area. */
4882 	max = uvm_map_boundfix(min, max, map->s_start);
4883 	max = uvm_map_boundfix(min, max, map->s_end);
4884 	max = uvm_map_boundfix(min, max, map->b_start);
4885 	max = uvm_map_boundfix(min, max, map->b_end);
4886 
4887 	return max;
4888 }
4889 
4890 /*
4891  * Update map allocation start and end addresses from proc vmspace.
4892  */
4893 void
4894 uvm_map_vmspace_update(struct vm_map *map,
4895     struct uvm_map_deadq *dead, int flags)
4896 {
4897 	struct vmspace *vm;
4898 	vaddr_t b_start, b_end, s_start, s_end;
4899 
4900 	KASSERT(map->flags & VM_MAP_ISVMSPACE);
4901 	KASSERT(offsetof(struct vmspace, vm_map) == 0);
4902 
4903 	/*
4904 	 * Derive actual allocation boundaries from vmspace.
4905 	 */
4906 	vm = (struct vmspace *)map;
4907 	b_start = (vaddr_t)vm->vm_daddr;
4908 	b_end   = b_start + BRKSIZ;
4909 	s_start = MIN((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
4910 	s_end   = MAX((vaddr_t)vm->vm_maxsaddr, (vaddr_t)vm->vm_minsaddr);
4911 #ifdef DIAGNOSTIC
4912 	if ((b_start & (vaddr_t)PAGE_MASK) != 0 ||
4913 	    (b_end & (vaddr_t)PAGE_MASK) != 0 ||
4914 	    (s_start & (vaddr_t)PAGE_MASK) != 0 ||
4915 	    (s_end & (vaddr_t)PAGE_MASK) != 0) {
4916 		panic("uvm_map_vmspace_update: vmspace %p invalid bounds: "
4917 		    "b=0x%lx-0x%lx s=0x%lx-0x%lx",
4918 		    vm, b_start, b_end, s_start, s_end);
4919 	}
4920 #endif
4921 
4922 	if (__predict_true(map->b_start == b_start && map->b_end == b_end &&
4923 	    map->s_start == s_start && map->s_end == s_end))
4924 		return;
4925 
4926 	uvm_map_freelist_update(map, dead, b_start, b_end,
4927 	    s_start, s_end, flags);
4928 }
4929 
4930 /*
4931  * Grow kernel memory.
4932  *
4933  * This function is only called for kernel maps when an allocation fails.
4934  *
4935  * If the map has a gap that is large enough to accommodate alloc_sz, this
4936  * function will make sure map->free will include it.
4937  */
4938 void
4939 uvm_map_kmem_grow(struct vm_map *map, struct uvm_map_deadq *dead,
4940     vsize_t alloc_sz, int flags)
4941 {
4942 	vsize_t sz;
4943 	vaddr_t end;
4944 	struct vm_map_entry *entry;
4945 
4946 	/* Kernel memory only. */
4947 	KASSERT((map->flags & VM_MAP_ISVMSPACE) == 0);
4948 	/* Destroy free list. */
4949 	uvm_map_freelist_update_clear(map, dead);
4950 
4951 	/* Include the guard page in the hard minimum requirement of alloc_sz. */
4952 	if (map->flags & VM_MAP_GUARDPAGES)
4953 		alloc_sz += PAGE_SIZE;
4954 
4955 	/*
4956 	 * Grow by ALLOCMUL * alloc_sz, but at least VM_MAP_KSIZE_DELTA.
4957 	 *
4958 	 * Don't handle the case where the multiplication overflows:
4959 	 * if that happens, the allocation is probably too big anyway.
4960 	 */
4961 	sz = MAX(VM_MAP_KSIZE_ALLOCMUL * alloc_sz, VM_MAP_KSIZE_DELTA);
4962 
4963 	/*
4964 	 * Walk forward until a gap large enough for alloc_sz shows up.
4965 	 *
4966 	 * We assume the kernel map has no boundaries.
4967 	 * uvm_maxkaddr may be zero.
4968 	 */
4969 	end = MAX(uvm_maxkaddr, map->min_offset);
4970 	entry = uvm_map_entrybyaddr(&map->addr, end);
4971 	while (entry && entry->fspace < alloc_sz)
4972 		entry = RBT_NEXT(uvm_map_addr, entry);
4973 	if (entry) {
4974 		end = MAX(VMMAP_FREE_START(entry), end);
4975 		end += MIN(sz, map->max_offset - end);
4976 	} else
4977 		end = map->max_offset;
4978 
4979 	/* Reserve pmap entries. */
4980 #ifdef PMAP_GROWKERNEL
4981 	uvm_maxkaddr = pmap_growkernel(end);
4982 #else
4983 	uvm_maxkaddr = MAX(uvm_maxkaddr, end);
4984 #endif
4985 
4986 	/* Rebuild free list. */
4987 	uvm_map_freelist_update_refill(map, flags);
4988 }
4989 
4990 /*
4991  * Freelist update subfunction: unlink all entries from freelists.
4992  */
4993 void
4994 uvm_map_freelist_update_clear(struct vm_map *map, struct uvm_map_deadq *dead)
4995 {
4996 	struct uvm_addr_state *free;
4997 	struct vm_map_entry *entry, *prev, *next;
4998 
4999 	prev = NULL;
5000 	for (entry = RBT_MIN(uvm_map_addr, &map->addr); entry != NULL;
5001 	    entry = next) {
5002 		next = RBT_NEXT(uvm_map_addr, entry);
5003 
5004 		free = uvm_map_uaddr_e(map, entry);
5005 		uvm_mapent_free_remove(map, free, entry);
5006 
5007 		if (prev != NULL && entry->start == entry->end) {
5008 			prev->fspace += VMMAP_FREE_END(entry) - entry->end;
5009 			uvm_mapent_addr_remove(map, entry);
5010 			DEAD_ENTRY_PUSH(dead, entry);
5011 		} else
5012 			prev = entry;
5013 	}
5014 }
5015 
5016 /*
5017  * Freelist update subfunction: refill the freelists with entries.
5018  */
5019 void
5020 uvm_map_freelist_update_refill(struct vm_map *map, int flags)
5021 {
5022 	struct vm_map_entry *entry;
5023 	vaddr_t min, max;
5024 
5025 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
5026 		min = VMMAP_FREE_START(entry);
5027 		max = VMMAP_FREE_END(entry);
5028 		entry->fspace = 0;
5029 
5030 		entry = uvm_map_fix_space(map, entry, min, max, flags);
5031 	}
5032 
5033 	uvm_tree_sanity(map, __FILE__, __LINE__);
5034 }
5035 
5036 /*
5037  * Change {a,b}_{start,end} allocation ranges and associated free lists.
5038  */
5039 void
5040 uvm_map_freelist_update(struct vm_map *map, struct uvm_map_deadq *dead,
5041     vaddr_t b_start, vaddr_t b_end, vaddr_t s_start, vaddr_t s_end, int flags)
5042 {
5043 	KDASSERT(b_end >= b_start && s_end >= s_start);
5044 	vm_map_assert_wrlock(map);
5045 
5046 	/* Clear all free lists. */
5047 	uvm_map_freelist_update_clear(map, dead);
5048 
5049 	/* Apply new bounds. */
5050 	map->b_start = b_start;
5051 	map->b_end   = b_end;
5052 	map->s_start = s_start;
5053 	map->s_end   = s_end;
5054 
5055 	/* Refill free lists. */
5056 	uvm_map_freelist_update_refill(map, flags);
5057 }
5058 
5059 /*
5060  * Assign a uvm_addr_state to the specified pointer in vm_map.
5061  *
5062  * May sleep.
5063  */
5064 void
5065 uvm_map_set_uaddr(struct vm_map *map, struct uvm_addr_state **which,
5066     struct uvm_addr_state *newval)
5067 {
5068 	struct uvm_map_deadq dead;
5069 
5070 	/* Pointer which must be in this map. */
5071 	KASSERT(which != NULL);
5072 	KASSERT((void*)map <= (void*)(which) &&
5073 	    (void*)(which) < (void*)(map + 1));
5074 
5075 	vm_map_lock(map);
5076 	TAILQ_INIT(&dead);
5077 	uvm_map_freelist_update_clear(map, &dead);
5078 
5079 	uvm_addr_destroy(*which);
5080 	*which = newval;
5081 
5082 	uvm_map_freelist_update_refill(map, 0);
5083 	vm_map_unlock(map);
5084 	uvm_unmap_detach(&dead, 0);
5085 }
5086 
5087 /*
5088  * Correct space insert.
5089  *
5090  * Entry must not be on any freelist.
5091  */
5092 struct vm_map_entry*
5093 uvm_map_fix_space(struct vm_map *map, struct vm_map_entry *entry,
5094     vaddr_t min, vaddr_t max, int flags)
5095 {
5096 	struct uvm_addr_state	*free, *entfree;
5097 	vaddr_t			 lmax;
5098 
5099 	KASSERT(entry == NULL || (entry->etype & UVM_ET_FREEMAPPED) == 0);
5100 	KDASSERT(min <= max);
5101 	KDASSERT((entry != NULL && VMMAP_FREE_END(entry) == min) ||
5102 	    min == map->min_offset);
5103 
5104 	UVM_MAP_REQ_WRITE(map);
5105 
5106 	/*
5107 	 * During the function, entfree will always point at the uaddr state
5108 	 * for entry.
5109 	 */
5110 	entfree = (entry == NULL ? NULL :
5111 	    uvm_map_uaddr_e(map, entry));
5112 
5113 	while (min != max) {
5114 		/* Claim guard page for entry. */
5115 		if ((map->flags & VM_MAP_GUARDPAGES) && entry != NULL &&
5116 		    VMMAP_FREE_END(entry) == entry->end &&
5117 		    entry->start != entry->end) {
5118 			if (max - min == 2 * PAGE_SIZE) {
5119 				/*
5120 				 * If the free-space gap is exactly 2 pages,
5121 				 * we make the guard 2 pages instead of 1.
5122 				 * Because in a guarded map, an area needs
5123 				 * at least 2 pages to allocate from:
5124 				 * one page for the allocation and one for
5125 				 * the guard.
5126 				 */
5127 				entry->guard = 2 * PAGE_SIZE;
5128 				min = max;
5129 			} else {
5130 				entry->guard = PAGE_SIZE;
5131 				min += PAGE_SIZE;
5132 			}
5133 			continue;
5134 		}
5135 
5136 		/*
5137 		 * Handle the case where entry has a 2-page guard, but the
5138 		 * space after entry is freed.
5139 		 */
5140 		if (entry != NULL && entry->fspace == 0 &&
5141 		    entry->guard > PAGE_SIZE) {
5142 			entry->guard = PAGE_SIZE;
5143 			min = VMMAP_FREE_START(entry);
5144 		}
5145 
5146 		lmax = uvm_map_boundary(map, min, max);
5147 		free = uvm_map_uaddr(map, min);
5148 
5149 		/*
5150 		 * Entries are merged if they point at the same uvm_free().
5151 		 * Exception to that rule: if min == uvm_maxkaddr, a new
5152 		 * entry is started regardless (otherwise the allocators
5153 		 * will get confused).
5154 		 */
5155 		if (entry != NULL && free == entfree &&
5156 		    !((map->flags & VM_MAP_ISVMSPACE) == 0 &&
5157 		    min == uvm_maxkaddr)) {
5158 			KDASSERT(VMMAP_FREE_END(entry) == min);
5159 			entry->fspace += lmax - min;
5160 		} else {
5161 			/*
5162 			 * Commit entry to free list: it'll not be added to
5163 			 * anymore.
5164 			 * We'll start a new entry and add to that entry
5165 			 * instead.
5166 			 */
5167 			if (entry != NULL)
5168 				uvm_mapent_free_insert(map, entfree, entry);
5169 
5170 			/* New entry for new uaddr. */
5171 			entry = uvm_mapent_alloc(map, flags);
5172 			KDASSERT(entry != NULL);
5173 			entry->end = entry->start = min;
5174 			entry->guard = 0;
5175 			entry->fspace = lmax - min;
5176 			entry->object.uvm_obj = NULL;
5177 			entry->offset = 0;
5178 			entry->etype = 0;
5179 			entry->protection = entry->max_protection = 0;
5180 			entry->inheritance = 0;
5181 			entry->wired_count = 0;
5182 			entry->advice = 0;
5183 			entry->aref.ar_pageoff = 0;
5184 			entry->aref.ar_amap = NULL;
5185 			uvm_mapent_addr_insert(map, entry);
5186 
5187 			entfree = free;
5188 		}
5189 
5190 		min = lmax;
5191 	}
5192 	/* Finally put entry on the uaddr state. */
5193 	if (entry != NULL)
5194 		uvm_mapent_free_insert(map, entfree, entry);
5195 
5196 	return entry;
5197 }
5198 
5199 /*
5200  * MQuery style of allocation.
5201  *
5202  * This allocator searches forward until sufficient space is found to map
5203  * the given size.
5204  *
5205  * XXX: factor in offset (via pmap_prefer) and protection?
5206  */
5207 int
5208 uvm_map_mquery(struct vm_map *map, vaddr_t *addr_p, vsize_t sz, voff_t offset,
5209     int flags)
5210 {
5211 	struct vm_map_entry *entry, *last;
5212 	vaddr_t addr;
5213 	vaddr_t tmp, pmap_align, pmap_offset;
5214 	int error;
5215 
5216 	addr = *addr_p;
5217 	vm_map_lock_read(map);
5218 
5219 	/* Configure pmap prefer. */
5220 	if (offset != UVM_UNKNOWN_OFFSET) {
5221 		pmap_align = MAX(PAGE_SIZE, PMAP_PREFER_ALIGN());
5222 		pmap_offset = PMAP_PREFER_OFFSET(offset);
5223 	} else {
5224 		pmap_align = PAGE_SIZE;
5225 		pmap_offset = 0;
5226 	}
5227 
5228 	/* Align address to pmap_prefer unless FLAG_FIXED is set. */
5229 	if (!(flags & UVM_FLAG_FIXED) && offset != UVM_UNKNOWN_OFFSET) {
5230 	  	tmp = (addr & ~(pmap_align - 1)) | pmap_offset;
5231 		if (tmp < addr)
5232 			tmp += pmap_align;
5233 		addr = tmp;
5234 	}
5235 
5236 	/* First, check if the requested range is fully available. */
5237 	entry = uvm_map_entrybyaddr(&map->addr, addr);
5238 	last = NULL;
5239 	if (uvm_map_isavail(map, NULL, &entry, &last, addr, sz)) {
5240 		error = 0;
5241 		goto out;
5242 	}
5243 	if (flags & UVM_FLAG_FIXED) {
5244 		error = EINVAL;
5245 		goto out;
5246 	}
5247 
5248 	error = ENOMEM; /* Default error from here. */
5249 
5250 	/*
5251 	 * At this point, the memory at <addr, sz> is not available.
5252 	 * The reasons are:
5253 	 * [1] it's outside the map,
5254 	 * [2] it starts in used memory (and therefore needs to move
5255 	 *     toward the first free page in entry),
5256 	 * [3] it starts in free memory but bumps into used memory.
5257 	 *
5258 	 * Note that for case [2], the forward moving is handled by the
5259 	 * for loop below.
5260 	 */
5261 	if (entry == NULL) {
5262 		/* [1] Outside the map. */
5263 		if (addr >= map->max_offset)
5264 			goto out;
5265 		else
5266 			entry = RBT_MIN(uvm_map_addr, &map->addr);
5267 	} else if (VMMAP_FREE_START(entry) <= addr) {
5268 		/* [3] Bumped into used memory. */
5269 		entry = RBT_NEXT(uvm_map_addr, entry);
5270 	}
5271 
5272 	/* Test if the next entry is sufficient for the allocation. */
5273 	for (; entry != NULL;
5274 	    entry = RBT_NEXT(uvm_map_addr, entry)) {
5275 		if (entry->fspace == 0)
5276 			continue;
5277 		addr = VMMAP_FREE_START(entry);
5278 
5279 restart:	/* Restart address checks on address change. */
5280 		tmp = (addr & ~(pmap_align - 1)) | pmap_offset;
5281 		if (tmp < addr)
5282 			tmp += pmap_align;
5283 		addr = tmp;
5284 		if (addr >= VMMAP_FREE_END(entry))
5285 			continue;
5286 
5287 		/* Skip brk() allocation addresses. */
5288 		if (addr + sz > map->b_start && addr < map->b_end) {
5289 			if (VMMAP_FREE_END(entry) > map->b_end) {
5290 				addr = map->b_end;
5291 				goto restart;
5292 			} else
5293 				continue;
5294 		}
5295 		/* Skip stack allocation addresses. */
5296 		if (addr + sz > map->s_start && addr < map->s_end) {
5297 			if (VMMAP_FREE_END(entry) > map->s_end) {
5298 				addr = map->s_end;
5299 				goto restart;
5300 			} else
5301 				continue;
5302 		}
5303 
5304 		last = NULL;
5305 		if (uvm_map_isavail(map, NULL, &entry, &last, addr, sz)) {
5306 			error = 0;
5307 			goto out;
5308 		}
5309 	}
5310 
5311 out:
5312 	vm_map_unlock_read(map);
5313 	if (error == 0)
5314 		*addr_p = addr;
5315 	return error;
5316 }
5317 
5318 boolean_t
5319 vm_map_lock_try_ln(struct vm_map *map, char *file, int line)
5320 {
5321 	boolean_t rv;
5322 
5323 	if (map->flags & VM_MAP_INTRSAFE) {
5324 		rv = mtx_enter_try(&map->mtx);
5325 	} else {
5326 		mtx_enter(&map->flags_lock);
5327 		if ((map->flags & VM_MAP_BUSY) && (map->busy != curproc)) {
5328 			mtx_leave(&map->flags_lock);
5329 			return (FALSE);
5330 		}
5331 		mtx_leave(&map->flags_lock);
5332 		rv = (rw_enter(&map->lock, RW_WRITE|RW_NOSLEEP) == 0);
5333 		/* check if the lock is busy and back out if we won the race */
5334 		if (rv) {
5335 			mtx_enter(&map->flags_lock);
5336 			if ((map->flags & VM_MAP_BUSY) &&
5337 			    (map->busy != curproc)) {
5338 				rw_exit(&map->lock);
5339 				rv = FALSE;
5340 			}
5341 			mtx_leave(&map->flags_lock);
5342 		}
5343 	}
5344 
5345 	if (rv) {
5346 		map->timestamp++;
5347 		LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5348 		uvm_tree_sanity(map, file, line);
5349 		uvm_tree_size_chk(map, file, line);
5350 	}
5351 
5352 	return (rv);
5353 }
5354 
5355 void
5356 vm_map_lock_ln(struct vm_map *map, char *file, int line)
5357 {
5358 	if ((map->flags & VM_MAP_INTRSAFE) == 0) {
5359 		do {
5360 			mtx_enter(&map->flags_lock);
5361 tryagain:
5362 			while ((map->flags & VM_MAP_BUSY) &&
5363 			    (map->busy != curproc)) {
5364 				map->flags |= VM_MAP_WANTLOCK;
5365 				msleep_nsec(&map->flags, &map->flags_lock,
5366 				    PVM, vmmapbsy, INFSLP);
5367 			}
5368 			mtx_leave(&map->flags_lock);
5369 		} while (rw_enter(&map->lock, RW_WRITE|RW_SLEEPFAIL) != 0);
5370 		/* check if the lock is busy and back out if we won the race */
5371 		mtx_enter(&map->flags_lock);
5372 		if ((map->flags & VM_MAP_BUSY) && (map->busy != curproc)) {
5373 			rw_exit(&map->lock);
5374 			goto tryagain;
5375 		}
5376 		mtx_leave(&map->flags_lock);
5377 	} else {
5378 		mtx_enter(&map->mtx);
5379 	}
5380 
5381 	if (map->busy != curproc)
5382 		map->timestamp++;
5383 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5384 	uvm_tree_sanity(map, file, line);
5385 	uvm_tree_size_chk(map, file, line);
5386 }
5387 
5388 void
5389 vm_map_lock_read_ln(struct vm_map *map, char *file, int line)
5390 {
5391 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5392 		rw_enter_read(&map->lock);
5393 	else
5394 		mtx_enter(&map->mtx);
5395 	LPRINTF(("map   lock: %p (at %s %d)\n", map, file, line));
5396 	uvm_tree_sanity(map, file, line);
5397 	uvm_tree_size_chk(map, file, line);
5398 }
5399 
5400 void
5401 vm_map_unlock_ln(struct vm_map *map, char *file, int line)
5402 {
5403 	KASSERT(map->busy == NULL || map->busy == curproc);
5404 	uvm_tree_sanity(map, file, line);
5405 	uvm_tree_size_chk(map, file, line);
5406 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5407 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5408 		rw_exit(&map->lock);
5409 	else
5410 		mtx_leave(&map->mtx);
5411 }
5412 
5413 void
5414 vm_map_unlock_read_ln(struct vm_map *map, char *file, int line)
5415 {
5416 	/* XXX: RO */ uvm_tree_sanity(map, file, line);
5417 	/* XXX: RO */ uvm_tree_size_chk(map, file, line);
5418 	LPRINTF(("map unlock: %p (at %s %d)\n", map, file, line));
5419 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5420 		rw_exit_read(&map->lock);
5421 	else
5422 		mtx_leave(&map->mtx);
5423 }
5424 
5425 void
5426 vm_map_busy_ln(struct vm_map *map, char *file, int line)
5427 {
5428 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5429 	KASSERT(rw_write_held(&map->lock));
5430 	KASSERT(map->busy == NULL);
5431 
5432 	mtx_enter(&map->flags_lock);
5433 	map->busy = curproc;
5434 	map->flags |= VM_MAP_BUSY;
5435 	mtx_leave(&map->flags_lock);
5436 }
5437 
5438 void
5439 vm_map_unbusy_ln(struct vm_map *map, char *file, int line)
5440 {
5441 	int oflags;
5442 
5443 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
5444 	KASSERT(map->busy == curproc);
5445 
5446 	mtx_enter(&map->flags_lock);
5447 	oflags = map->flags;
5448 	map->busy = NULL;
5449 	map->flags &= ~(VM_MAP_BUSY|VM_MAP_WANTLOCK);
5450 	mtx_leave(&map->flags_lock);
5451 	if (oflags & VM_MAP_WANTLOCK)
5452 		wakeup(&map->flags);
5453 }
5454 
5455 void
5456 vm_map_assert_anylock_ln(struct vm_map *map, char *file, int line)
5457 {
5458 	LPRINTF(("map assert read or write locked: %p (at %s %d)\n", map, file, line));
5459 	if ((map->flags & VM_MAP_INTRSAFE) == 0)
5460 		rw_assert_anylock(&map->lock);
5461 	else
5462 		MUTEX_ASSERT_LOCKED(&map->mtx);
5463 }
5464 
5465 void
5466 vm_map_assert_wrlock_ln(struct vm_map *map, char *file, int line)
5467 {
5468 	LPRINTF(("map assert write locked: %p (at %s %d)\n", map, file, line));
5469 	if ((map->flags & VM_MAP_INTRSAFE) == 0) {
5470 		splassert(IPL_NONE);
5471 		rw_assert_wrlock(&map->lock);
5472 	} else
5473 		MUTEX_ASSERT_LOCKED(&map->mtx);
5474 }
5475 
5476 #ifndef SMALL_KERNEL
5477 int
5478 uvm_map_fill_vmmap(struct vm_map *map, struct kinfo_vmentry *kve,
5479     size_t *lenp)
5480 {
5481 	struct vm_map_entry *entry;
5482 	vaddr_t start;
5483 	int cnt, maxcnt, error = 0;
5484 
5485 	KASSERT(*lenp > 0);
5486 	KASSERT((*lenp % sizeof(*kve)) == 0);
5487 	cnt = 0;
5488 	maxcnt = *lenp / sizeof(*kve);
5489 	KASSERT(maxcnt > 0);
5490 
5491 	/*
5492 	 * Return only entries whose address is above the given base
5493 	 * address.  This allows userland to iterate without knowing the
5494 	 * number of entries beforehand.
5495 	 */
5496 	start = (vaddr_t)kve[0].kve_start;
5497 
5498 	vm_map_lock(map);
5499 	RBT_FOREACH(entry, uvm_map_addr, &map->addr) {
5500 		if (cnt == maxcnt) {
5501 			error = ENOMEM;
5502 			break;
5503 		}
5504 		if (start != 0 && entry->start < start)
5505 			continue;
5506 		kve->kve_start = entry->start;
5507 		kve->kve_end = entry->end;
5508 		kve->kve_guard = entry->guard;
5509 		kve->kve_fspace = entry->fspace;
5510 		kve->kve_fspace_augment = entry->fspace_augment;
5511 		kve->kve_offset = entry->offset;
5512 		kve->kve_wired_count = entry->wired_count;
5513 		kve->kve_etype = entry->etype;
5514 		kve->kve_protection = entry->protection;
5515 		kve->kve_max_protection = entry->max_protection;
5516 		kve->kve_advice = entry->advice;
5517 		kve->kve_inheritance = entry->inheritance;
5518 		kve->kve_flags = entry->flags;
5519 		kve++;
5520 		cnt++;
5521 	}
5522 	vm_map_unlock(map);
5523 
5524 	KASSERT(cnt <= maxcnt);
5525 
5526 	*lenp = sizeof(*kve) * cnt;
5527 	return error;
5528 }
5529 #endif
5530 
5531 
5532 RBT_GENERATE_AUGMENT(uvm_map_addr, vm_map_entry, daddrs.addr_entry,
5533     uvm_mapentry_addrcmp, uvm_map_addr_augment);
5534 
5535 
5536 /*
5537  * MD code: vmspace allocator setup.
5538  */
5539 
5540 #ifdef __i386__
5541 void
5542 uvm_map_setup_md(struct vm_map *map)
5543 {
5544 	vaddr_t		min, max;
5545 
5546 	min = map->min_offset;
5547 	max = map->max_offset;
5548 
5549 	/*
5550 	 * Ensure the selectors will not try to manage page 0;
5551 	 * it's too special.
5552 	 */
5553 	if (min < VMMAP_MIN_ADDR)
5554 		min = VMMAP_MIN_ADDR;
5555 
5556 #if 0	/* Cool stuff, not yet */
5557 	/* Executable code is special. */
5558 	map->uaddr_exe = uaddr_rnd_create(min, I386_MAX_EXE_ADDR);
5559 	/* Place normal allocations beyond executable mappings. */
5560 	map->uaddr_any[3] = uaddr_pivot_create(2 * I386_MAX_EXE_ADDR, max);
5561 #else	/* Crappy stuff, for now */
5562 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5563 #endif
5564 
5565 #ifndef SMALL_KERNEL
5566 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5567 #endif /* !SMALL_KERNEL */
5568 }
5569 #elif __LP64__
5570 void
5571 uvm_map_setup_md(struct vm_map *map)
5572 {
5573 	vaddr_t		min, max;
5574 
5575 	min = map->min_offset;
5576 	max = map->max_offset;
5577 
5578 	/*
5579 	 * Ensure the selectors will not try to manage page 0;
5580 	 * it's too special.
5581 	 */
5582 	if (min < VMMAP_MIN_ADDR)
5583 		min = VMMAP_MIN_ADDR;
5584 
5585 #if 0	/* Cool stuff, not yet */
5586 	map->uaddr_any[3] = uaddr_pivot_create(MAX(min, 0x100000000ULL), max);
5587 #else	/* Crappy stuff, for now */
5588 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5589 #endif
5590 
5591 #ifndef SMALL_KERNEL
5592 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5593 #endif /* !SMALL_KERNEL */
5594 }
5595 #else	/* non-i386, 32 bit */
5596 void
5597 uvm_map_setup_md(struct vm_map *map)
5598 {
5599 	vaddr_t		min, max;
5600 
5601 	min = map->min_offset;
5602 	max = map->max_offset;
5603 
5604 	/*
5605 	 * Ensure the selectors will not try to manage page 0;
5606 	 * it's too special.
5607 	 */
5608 	if (min < VMMAP_MIN_ADDR)
5609 		min = VMMAP_MIN_ADDR;
5610 
5611 #if 0	/* Cool stuff, not yet */
5612 	map->uaddr_any[3] = uaddr_pivot_create(min, max);
5613 #else	/* Crappy stuff, for now */
5614 	map->uaddr_any[0] = uaddr_rnd_create(min, max);
5615 #endif
5616 
5617 #ifndef SMALL_KERNEL
5618 	map->uaddr_brk_stack = uaddr_stack_brk_create(min, max);
5619 #endif /* !SMALL_KERNEL */
5620 }
5621 #endif
5622