xref: /openbsd/sys/uvm/uvm_page.c (revision 404b540a)
1 /*	$OpenBSD: uvm_page.c,v 1.97 2009/10/14 17:53:30 beck Exp $	*/
2 /*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by Charles D. Cranor,
24  *      Washington University, the University of California, Berkeley and
25  *      its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  * uvm_page.c: page ops.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/sched.h>
78 #include <sys/kernel.h>
79 #include <sys/vnode.h>
80 #include <sys/mount.h>
81 
82 #include <uvm/uvm.h>
83 
84 /*
85  * for object trees
86  */
87 RB_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
88 
89 int
90 uvm_pagecmp(struct vm_page *a, struct vm_page *b)
91 {
92 	return (a->offset < b->offset ? -1 : a->offset > b->offset);
93 }
94 
95 /*
96  * global vars... XXXCDC: move to uvm. structure.
97  */
98 
99 /*
100  * physical memory config is stored in vm_physmem.
101  */
102 
103 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
104 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
105 
106 /*
107  * Some supported CPUs in a given architecture don't support all
108  * of the things necessary to do idle page zero'ing efficiently.
109  * We therefore provide a way to disable it from machdep code here.
110  */
111 
112 /*
113  * XXX disabled until we can find a way to do this without causing
114  * problems for either cpu caches or DMA latency.
115  */
116 boolean_t vm_page_zero_enable = FALSE;
117 
118 /*
119  * local variables
120  */
121 
122 /*
123  * these variables record the values returned by vm_page_bootstrap,
124  * for debugging purposes.  The implementation of uvm_pageboot_alloc
125  * and pmap_startup here also uses them internally.
126  */
127 
128 static vaddr_t      virtual_space_start;
129 static vaddr_t      virtual_space_end;
130 
131 /*
132  * History
133  */
134 UVMHIST_DECL(pghist);
135 
136 /*
137  * local prototypes
138  */
139 
140 static void uvm_pageinsert(struct vm_page *);
141 static void uvm_pageremove(struct vm_page *);
142 
143 /*
144  * inline functions
145  */
146 
147 /*
148  * uvm_pageinsert: insert a page in the object
149  *
150  * => caller must lock object
151  * => caller must lock page queues XXX questionable
152  * => call should have already set pg's object and offset pointers
153  *    and bumped the version counter
154  */
155 
156 __inline static void
157 uvm_pageinsert(struct vm_page *pg)
158 {
159 	UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
160 
161 	KASSERT((pg->pg_flags & PG_TABLED) == 0);
162 	/* XXX should we check duplicates? */
163 	RB_INSERT(uvm_objtree, &pg->uobject->memt, pg);
164 	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
165 	pg->uobject->uo_npages++;
166 }
167 
168 /*
169  * uvm_page_remove: remove page from object
170  *
171  * => caller must lock object
172  * => caller must lock page queues
173  */
174 
175 static __inline void
176 uvm_pageremove(struct vm_page *pg)
177 {
178 	UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
179 
180 	KASSERT(pg->pg_flags & PG_TABLED);
181 	RB_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
182 
183 	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
184 	pg->uobject->uo_npages--;
185 	pg->uobject = NULL;
186 	pg->pg_version++;
187 }
188 
189 /*
190  * uvm_page_init: init the page system.   called from uvm_init().
191  *
192  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
193  */
194 
195 void
196 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
197 {
198 	vsize_t freepages, pagecount, n;
199 	vm_page_t pagearray;
200 	int lcv, i;
201 	paddr_t paddr;
202 #if defined(UVMHIST)
203 	static struct uvm_history_ent pghistbuf[100];
204 #endif
205 
206 	UVMHIST_FUNC("uvm_page_init");
207 	UVMHIST_INIT_STATIC(pghist, pghistbuf);
208 	UVMHIST_CALLED(pghist);
209 
210 	/*
211 	 * init the page queues and page queue locks
212 	 */
213 
214 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
215 		for (i = 0; i < PGFL_NQUEUES; i++)
216 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
217 	}
218 	TAILQ_INIT(&uvm.page_active);
219 	TAILQ_INIT(&uvm.page_inactive_swp);
220 	TAILQ_INIT(&uvm.page_inactive_obj);
221 	simple_lock_init(&uvm.pageqlock);
222 	mtx_init(&uvm.fpageqlock, IPL_VM);
223 
224 	/*
225 	 * allocate vm_page structures.
226 	 */
227 
228 	/*
229 	 * sanity check:
230 	 * before calling this function the MD code is expected to register
231 	 * some free RAM with the uvm_page_physload() function.   our job
232 	 * now is to allocate vm_page structures for this memory.
233 	 */
234 
235 	if (vm_nphysseg == 0)
236 		panic("uvm_page_bootstrap: no memory pre-allocated");
237 
238 	/*
239 	 * first calculate the number of free pages...
240 	 *
241 	 * note that we use start/end rather than avail_start/avail_end.
242 	 * this allows us to allocate extra vm_page structures in case we
243 	 * want to return some memory to the pool after booting.
244 	 */
245 
246 	freepages = 0;
247 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
248 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
249 
250 	/*
251 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
252 	 * use.   for each page of memory we use we need a vm_page structure.
253 	 * thus, the total number of pages we can use is the total size of
254 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
255 	 * structure.   we add one to freepages as a fudge factor to avoid
256 	 * truncation errors (since we can only allocate in terms of whole
257 	 * pages).
258 	 */
259 
260 	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
261 	    (PAGE_SIZE + sizeof(struct vm_page));
262 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
263 	    sizeof(struct vm_page));
264 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
265 
266 	/*
267 	 * init the vm_page structures and put them in the correct place.
268 	 */
269 
270 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
271 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
272 		if (n > pagecount) {
273 			printf("uvm_page_init: lost %ld page(s) in init\n",
274 			    (long)(n - pagecount));
275 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
276 			/* n = pagecount; */
277 		}
278 
279 		/* set up page array pointers */
280 		vm_physmem[lcv].pgs = pagearray;
281 		pagearray += n;
282 		pagecount -= n;
283 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
284 
285 		/* init and free vm_pages (we've already zeroed them) */
286 		paddr = ptoa(vm_physmem[lcv].start);
287 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
288 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
289 #ifdef __HAVE_VM_PAGE_MD
290 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
291 #endif
292 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
293 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
294 				uvmexp.npages++;
295 				/* add page to free pool */
296 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
297 			}
298 		}
299 	}
300 
301 	/*
302 	 * pass up the values of virtual_space_start and
303 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
304 	 * layers of the VM.
305 	 */
306 
307 	*kvm_startp = round_page(virtual_space_start);
308 	*kvm_endp = trunc_page(virtual_space_end);
309 
310 	/*
311 	 * init locks for kernel threads
312 	 */
313 	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
314 
315 	/*
316 	 * init reserve thresholds
317 	 * XXXCDC - values may need adjusting
318 	 */
319 	uvmexp.reserve_pagedaemon = 4;
320 	uvmexp.reserve_kernel = 6;
321 	uvmexp.anonminpct = 10;
322 	uvmexp.vnodeminpct = 10;
323 	uvmexp.vtextminpct = 5;
324 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
325 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
326 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
327 
328   	/*
329 	 * determine if we should zero pages in the idle loop.
330 	 */
331 
332 	uvm.page_idle_zero = vm_page_zero_enable;
333 
334 	/*
335 	 * done!
336 	 */
337 
338 	uvm.page_init_done = TRUE;
339 }
340 
341 /*
342  * uvm_setpagesize: set the page size
343  *
344  * => sets page_shift and page_mask from uvmexp.pagesize.
345  */
346 
347 void
348 uvm_setpagesize(void)
349 {
350 	if (uvmexp.pagesize == 0)
351 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
352 	uvmexp.pagemask = uvmexp.pagesize - 1;
353 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
354 		panic("uvm_setpagesize: page size not a power of two");
355 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
356 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
357 			break;
358 }
359 
360 /*
361  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
362  */
363 
364 vaddr_t
365 uvm_pageboot_alloc(vsize_t size)
366 {
367 #if defined(PMAP_STEAL_MEMORY)
368 	vaddr_t addr;
369 
370 	/*
371 	 * defer bootstrap allocation to MD code (it may want to allocate
372 	 * from a direct-mapped segment).  pmap_steal_memory should round
373 	 * off virtual_space_start/virtual_space_end.
374 	 */
375 
376 	addr = pmap_steal_memory(size, &virtual_space_start,
377 	    &virtual_space_end);
378 
379 	return(addr);
380 
381 #else /* !PMAP_STEAL_MEMORY */
382 
383 	static boolean_t initialized = FALSE;
384 	vaddr_t addr, vaddr;
385 	paddr_t paddr;
386 
387 	/* round to page size */
388 	size = round_page(size);
389 
390 	/*
391 	 * on first call to this function, initialize ourselves.
392 	 */
393 	if (initialized == FALSE) {
394 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
395 
396 		/* round it the way we like it */
397 		virtual_space_start = round_page(virtual_space_start);
398 		virtual_space_end = trunc_page(virtual_space_end);
399 
400 		initialized = TRUE;
401 	}
402 
403 	/*
404 	 * allocate virtual memory for this request
405 	 */
406 	if (virtual_space_start == virtual_space_end ||
407 	    (virtual_space_end - virtual_space_start) < size)
408 		panic("uvm_pageboot_alloc: out of virtual space");
409 
410 	addr = virtual_space_start;
411 
412 #ifdef PMAP_GROWKERNEL
413 	/*
414 	 * If the kernel pmap can't map the requested space,
415 	 * then allocate more resources for it.
416 	 */
417 	if (uvm_maxkaddr < (addr + size)) {
418 		uvm_maxkaddr = pmap_growkernel(addr + size);
419 		if (uvm_maxkaddr < (addr + size))
420 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
421 	}
422 #endif
423 
424 	virtual_space_start += size;
425 
426 	/*
427 	 * allocate and mapin physical pages to back new virtual pages
428 	 */
429 
430 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
431 	    vaddr += PAGE_SIZE) {
432 
433 		if (!uvm_page_physget(&paddr))
434 			panic("uvm_pageboot_alloc: out of memory");
435 
436 		/*
437 		 * Note this memory is no longer managed, so using
438 		 * pmap_kenter is safe.
439 		 */
440 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
441 	}
442 	pmap_update(pmap_kernel());
443 	return(addr);
444 #endif	/* PMAP_STEAL_MEMORY */
445 }
446 
447 #if !defined(PMAP_STEAL_MEMORY)
448 /*
449  * uvm_page_physget: "steal" one page from the vm_physmem structure.
450  *
451  * => attempt to allocate it off the end of a segment in which the "avail"
452  *    values match the start/end values.   if we can't do that, then we
453  *    will advance both values (making them equal, and removing some
454  *    vm_page structures from the non-avail area).
455  * => return false if out of memory.
456  */
457 
458 /* subroutine: try to allocate from memory chunks on the specified freelist */
459 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
460 
461 static boolean_t
462 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
463 {
464 	int lcv, x;
465 	UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
466 
467 	/* pass 1: try allocating from a matching end */
468 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
469 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
470 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
471 #else
472 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
473 #endif
474 	{
475 
476 		if (uvm.page_init_done == TRUE)
477 			panic("uvm_page_physget: called _after_ bootstrap");
478 
479 		if (vm_physmem[lcv].free_list != freelist)
480 			continue;
481 
482 		/* try from front */
483 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
484 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
485 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
486 			vm_physmem[lcv].avail_start++;
487 			vm_physmem[lcv].start++;
488 			/* nothing left?   nuke it */
489 			if (vm_physmem[lcv].avail_start ==
490 			    vm_physmem[lcv].end) {
491 				if (vm_nphysseg == 1)
492 				    panic("uvm_page_physget: out of memory!");
493 				vm_nphysseg--;
494 				for (x = lcv ; x < vm_nphysseg ; x++)
495 					/* structure copy */
496 					vm_physmem[x] = vm_physmem[x+1];
497 			}
498 			return (TRUE);
499 		}
500 
501 		/* try from rear */
502 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
503 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
504 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
505 			vm_physmem[lcv].avail_end--;
506 			vm_physmem[lcv].end--;
507 			/* nothing left?   nuke it */
508 			if (vm_physmem[lcv].avail_end ==
509 			    vm_physmem[lcv].start) {
510 				if (vm_nphysseg == 1)
511 				    panic("uvm_page_physget: out of memory!");
512 				vm_nphysseg--;
513 				for (x = lcv ; x < vm_nphysseg ; x++)
514 					/* structure copy */
515 					vm_physmem[x] = vm_physmem[x+1];
516 			}
517 			return (TRUE);
518 		}
519 	}
520 
521 	/* pass2: forget about matching ends, just allocate something */
522 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
523 	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
524 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
525 #else
526 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
527 #endif
528 	{
529 
530 		/* any room in this bank? */
531 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
532 			continue;  /* nope */
533 
534 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
535 		vm_physmem[lcv].avail_start++;
536 		/* truncate! */
537 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
538 
539 		/* nothing left?   nuke it */
540 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
541 			if (vm_nphysseg == 1)
542 				panic("uvm_page_physget: out of memory!");
543 			vm_nphysseg--;
544 			for (x = lcv ; x < vm_nphysseg ; x++)
545 				/* structure copy */
546 				vm_physmem[x] = vm_physmem[x+1];
547 		}
548 		return (TRUE);
549 	}
550 
551 	return (FALSE);        /* whoops! */
552 }
553 
554 boolean_t
555 uvm_page_physget(paddr_t *paddrp)
556 {
557 	int i;
558 	UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
559 
560 	/* try in the order of freelist preference */
561 	for (i = 0; i < VM_NFREELIST; i++)
562 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
563 			return (TRUE);
564 	return (FALSE);
565 }
566 #endif /* PMAP_STEAL_MEMORY */
567 
568 /*
569  * uvm_page_physload: load physical memory into VM system
570  *
571  * => all args are PFs
572  * => all pages in start/end get vm_page structures
573  * => areas marked by avail_start/avail_end get added to the free page pool
574  * => we are limited to VM_PHYSSEG_MAX physical memory segments
575  */
576 
577 void
578 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
579     paddr_t avail_end, int free_list)
580 {
581 	int preload, lcv;
582 	psize_t npages;
583 	struct vm_page *pgs;
584 	struct vm_physseg *ps;
585 
586 	if (uvmexp.pagesize == 0)
587 		panic("uvm_page_physload: page size not set!");
588 
589 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
590 		panic("uvm_page_physload: bad free list %d", free_list);
591 
592 	if (start >= end)
593 		panic("uvm_page_physload: start >= end");
594 
595 	/*
596 	 * do we have room?
597 	 */
598 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
599 		printf("uvm_page_physload: unable to load physical memory "
600 		    "segment\n");
601 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
602 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
603 		printf("\tincrease VM_PHYSSEG_MAX\n");
604 		return;
605 	}
606 
607 	/*
608 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
609 	 * called yet, so malloc is not available).
610 	 */
611 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
612 		if (vm_physmem[lcv].pgs)
613 			break;
614 	}
615 	preload = (lcv == vm_nphysseg);
616 
617 	/*
618 	 * if VM is already running, attempt to malloc() vm_page structures
619 	 */
620 	if (!preload) {
621 #if defined(VM_PHYSSEG_NOADD)
622 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
623 #else
624 		/* XXXCDC: need some sort of lockout for this case */
625 		paddr_t paddr;
626 		npages = end - start;  /* # of pages */
627 		pgs = (vm_page *)uvm_km_zalloc(kernel_map,
628 		    sizeof(struct vm_page) * npages);
629 		if (pgs == NULL) {
630 			printf("uvm_page_physload: can not malloc vm_page "
631 			    "structs for segment\n");
632 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
633 			return;
634 		}
635 		/* init phys_addr and free_list, and free pages */
636 		for (lcv = 0, paddr = ptoa(start) ;
637 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
638 			pgs[lcv].phys_addr = paddr;
639 			pgs[lcv].free_list = free_list;
640 			if (atop(paddr) >= avail_start &&
641 			    atop(paddr) <= avail_end)
642 				uvm_pagefree(&pgs[lcv]);
643 		}
644 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
645 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
646 #endif
647 	} else {
648 
649 		/* gcc complains if these don't get init'd */
650 		pgs = NULL;
651 		npages = 0;
652 
653 	}
654 
655 	/*
656 	 * now insert us in the proper place in vm_physmem[]
657 	 */
658 
659 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
660 
661 	/* random: put it at the end (easy!) */
662 	ps = &vm_physmem[vm_nphysseg];
663 
664 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
665 
666 	{
667 		int x;
668 		/* sort by address for binary search */
669 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
670 			if (start < vm_physmem[lcv].start)
671 				break;
672 		ps = &vm_physmem[lcv];
673 		/* move back other entries, if necessary ... */
674 		for (x = vm_nphysseg ; x > lcv ; x--)
675 			/* structure copy */
676 			vm_physmem[x] = vm_physmem[x - 1];
677 	}
678 
679 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
680 
681 	{
682 		int x;
683 		/* sort by largest segment first */
684 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
685 			if ((end - start) >
686 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
687 				break;
688 		ps = &vm_physmem[lcv];
689 		/* move back other entries, if necessary ... */
690 		for (x = vm_nphysseg ; x > lcv ; x--)
691 			/* structure copy */
692 			vm_physmem[x] = vm_physmem[x - 1];
693 	}
694 
695 #else
696 
697 	panic("uvm_page_physload: unknown physseg strategy selected!");
698 
699 #endif
700 
701 	ps->start = start;
702 	ps->end = end;
703 	ps->avail_start = avail_start;
704 	ps->avail_end = avail_end;
705 	if (preload) {
706 		ps->pgs = NULL;
707 	} else {
708 		ps->pgs = pgs;
709 		ps->lastpg = pgs + npages - 1;
710 	}
711 	ps->free_list = free_list;
712 	vm_nphysseg++;
713 
714 	/*
715 	 * done!
716 	 */
717 
718 	return;
719 }
720 
721 #ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
722 
723 void uvm_page_physdump(void); /* SHUT UP GCC */
724 
725 /* call from DDB */
726 void
727 uvm_page_physdump(void)
728 {
729 	int lcv;
730 
731 	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
732 	    vm_nphysseg, VM_PHYSSEG_MAX);
733 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
734 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
735 		    (long long)vm_physmem[lcv].start,
736 		    (long long)vm_physmem[lcv].end,
737 		    (long long)vm_physmem[lcv].avail_start,
738 		    (long long)vm_physmem[lcv].avail_end);
739 	printf("STRATEGY = ");
740 	switch (VM_PHYSSEG_STRAT) {
741 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
742 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
743 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
744 	default: printf("<<UNKNOWN>>!!!!\n");
745 	}
746 }
747 #endif
748 
749 void
750 uvm_shutdown(void)
751 {
752 #ifdef UVM_SWAP_ENCRYPT
753 	uvm_swap_finicrypt_all();
754 #endif
755 }
756 
757 /*
758  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
759  *
760  * => return null if no pages free
761  * => wake up pagedaemon if number of free pages drops below low water mark
762  * => if obj != NULL, obj must be locked (to put in tree)
763  * => if anon != NULL, anon must be locked (to put in anon)
764  * => only one of obj or anon can be non-null
765  * => caller must activate/deactivate page if it is not wired.
766  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
767  * => policy decision: it is more important to pull a page off of the
768  *	appropriate priority free list than it is to get a zero'd or
769  *	unknown contents page.  This is because we live with the
770  *	consequences of a bad free list decision for the entire
771  *	lifetime of the page, e.g. if the page comes from memory that
772  *	is slower to access.
773  */
774 
775 struct vm_page *
776 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
777     int flags, int strat, int free_list)
778 {
779 	int lcv, try1, try2, zeroit = 0;
780 	struct vm_page *pg;
781 	struct pglist *freeq;
782 	struct pgfreelist *pgfl;
783 	boolean_t use_reserve;
784 	UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
785 
786 	KASSERT(obj == NULL || anon == NULL);
787 	KASSERT(off == trunc_page(off));
788 
789 	uvm_lock_fpageq();
790 
791 	/*
792 	 * check to see if we need to generate some free pages waking
793 	 * the pagedaemon.
794 	 */
795 	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
796 	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
797 	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
798 		wakeup(&uvm.pagedaemon);
799 
800 	/*
801 	 * fail if any of these conditions is true:
802 	 * [1]  there really are no free pages, or
803 	 * [2]  only kernel "reserved" pages remain and
804 	 *        the page isn't being allocated to a kernel object.
805 	 * [3]  only pagedaemon "reserved" pages remain and
806 	 *        the requestor isn't the pagedaemon.
807 	 */
808 
809 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
810 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
811 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
812 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
813 	     !((curproc == uvm.pagedaemon_proc) ||
814 	      (curproc == syncerproc))))
815 		goto fail;
816 
817 #if PGFL_NQUEUES != 2
818 #error uvm_pagealloc_strat needs to be updated
819 #endif
820 
821 	/*
822 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
823 	 * we try the UNKNOWN queue first.
824 	 */
825 	if (flags & UVM_PGA_ZERO) {
826 		try1 = PGFL_ZEROS;
827 		try2 = PGFL_UNKNOWN;
828 	} else {
829 		try1 = PGFL_UNKNOWN;
830 		try2 = PGFL_ZEROS;
831 	}
832 
833 	UVMHIST_LOG(pghist, "obj=%p off=%lx anon=%p flags=%lx",
834 	    obj, (u_long)off, anon, flags);
835 	UVMHIST_LOG(pghist, "strat=%ld free_list=%ld", strat, free_list, 0, 0);
836  again:
837 	switch (strat) {
838 	case UVM_PGA_STRAT_NORMAL:
839 		/* Check all freelists in descending priority order. */
840 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
841 			pgfl = &uvm.page_free[lcv];
842 			if ((pg = TAILQ_FIRST((freeq =
843 			      &pgfl->pgfl_queues[try1]))) != NULL ||
844 			    (pg = TAILQ_FIRST((freeq =
845 			      &pgfl->pgfl_queues[try2]))) != NULL)
846 				goto gotit;
847 		}
848 
849 		/* No pages free! */
850 		goto fail;
851 
852 	case UVM_PGA_STRAT_ONLY:
853 	case UVM_PGA_STRAT_FALLBACK:
854 		/* Attempt to allocate from the specified free list. */
855 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
856 		pgfl = &uvm.page_free[free_list];
857 		if ((pg = TAILQ_FIRST((freeq =
858 		      &pgfl->pgfl_queues[try1]))) != NULL ||
859 		    (pg = TAILQ_FIRST((freeq =
860 		      &pgfl->pgfl_queues[try2]))) != NULL)
861 			goto gotit;
862 
863 		/* Fall back, if possible. */
864 		if (strat == UVM_PGA_STRAT_FALLBACK) {
865 			strat = UVM_PGA_STRAT_NORMAL;
866 			goto again;
867 		}
868 
869 		/* No pages free! */
870 		goto fail;
871 
872 	default:
873 		panic("uvm_pagealloc_strat: bad strat %d", strat);
874 		/* NOTREACHED */
875 	}
876 
877  gotit:
878 	TAILQ_REMOVE(freeq, pg, pageq);
879 	uvmexp.free--;
880 
881 	/* update zero'd page count */
882 	if (pg->pg_flags & PG_ZERO)
883 		uvmexp.zeropages--;
884 
885 	/*
886 	 * update allocation statistics and remember if we have to
887 	 * zero the page
888 	 */
889 	if (flags & UVM_PGA_ZERO) {
890 		if (pg->pg_flags & PG_ZERO) {
891 			uvmexp.pga_zerohit++;
892 			zeroit = 0;
893 		} else {
894 			uvmexp.pga_zeromiss++;
895 			zeroit = 1;
896 		}
897 	}
898 
899 	uvm_unlock_fpageq();		/* unlock free page queue */
900 
901 	pg->offset = off;
902 	pg->uobject = obj;
903 	pg->uanon = anon;
904 	pg->pg_flags = PG_BUSY|PG_CLEAN|PG_FAKE;
905 	pg->pg_version++;
906 	if (anon) {
907 		anon->an_page = pg;
908 		atomic_setbits_int(&pg->pg_flags, PQ_ANON);
909 #ifdef UBC
910 		uvm_pgcnt_anon++;
911 #endif
912 	} else {
913 		if (obj)
914 			uvm_pageinsert(pg);
915 	}
916 #if defined(UVM_PAGE_TRKOWN)
917 	pg->owner_tag = NULL;
918 #endif
919 	UVM_PAGE_OWN(pg, "new alloc");
920 
921 	if (flags & UVM_PGA_ZERO) {
922 		/*
923 		 * A zero'd page is not clean.  If we got a page not already
924 		 * zero'd, then we have to zero it ourselves.
925 		 */
926 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
927 		if (zeroit)
928 			pmap_zero_page(pg);
929 	}
930 
931 	UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
932 	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
933 	return(pg);
934 
935  fail:
936 	uvm_unlock_fpageq();
937 	UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
938 	return (NULL);
939 }
940 
941 /*
942  * uvm_pagerealloc: reallocate a page from one object to another
943  *
944  * => both objects must be locked
945  */
946 
947 void
948 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
949 {
950 
951 	UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
952 
953 	/*
954 	 * remove it from the old object
955 	 */
956 
957 	if (pg->uobject) {
958 		uvm_pageremove(pg);
959 	}
960 
961 	/*
962 	 * put it in the new object
963 	 */
964 
965 	if (newobj) {
966 		pg->uobject = newobj;
967 		pg->offset = newoff;
968 		pg->pg_version++;
969 		uvm_pageinsert(pg);
970 	}
971 }
972 
973 
974 /*
975  * uvm_pagefree: free page
976  *
977  * => erase page's identity (i.e. remove from object)
978  * => put page on free list
979  * => caller must lock owning object (either anon or uvm_object)
980  * => caller must lock page queues
981  * => assumes all valid mappings of pg are gone
982  */
983 
984 void
985 uvm_pagefree(struct vm_page *pg)
986 {
987 	int saved_loan_count = pg->loan_count;
988 	UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
989 
990 #ifdef DEBUG
991 	if (pg->uobject == (void *)0xdeadbeef &&
992 	    pg->uanon == (void *)0xdeadbeef) {
993 		panic("uvm_pagefree: freeing free page %p", pg);
994 	}
995 #endif
996 
997 	UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
998 	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
999 
1000 	/*
1001 	 * if the page was an object page (and thus "TABLED"), remove it
1002 	 * from the object.
1003 	 */
1004 
1005 	if (pg->pg_flags & PG_TABLED) {
1006 
1007 		/*
1008 		 * if the object page is on loan we are going to drop ownership.
1009 		 * it is possible that an anon will take over as owner for this
1010 		 * page later on.   the anon will want a !PG_CLEAN page so that
1011 		 * it knows it needs to allocate swap if it wants to page the
1012 		 * page out.
1013 		 */
1014 
1015 		/* in case an anon takes over */
1016 		if (saved_loan_count)
1017 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1018 		uvm_pageremove(pg);
1019 
1020 		/*
1021 		 * if our page was on loan, then we just lost control over it
1022 		 * (in fact, if it was loaned to an anon, the anon may have
1023 		 * already taken over ownership of the page by now and thus
1024 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1025 		 * return (when the last loan is dropped, then the page can be
1026 		 * freed by whatever was holding the last loan).
1027 		 */
1028 
1029 		if (saved_loan_count)
1030 			return;
1031 	} else if (saved_loan_count && pg->uanon) {
1032 		/*
1033 		 * if our page is owned by an anon and is loaned out to the
1034 		 * kernel then we just want to drop ownership and return.
1035 		 * the kernel must free the page when all its loans clear ...
1036 		 * note that the kernel can't change the loan status of our
1037 		 * page as long as we are holding PQ lock.
1038 		 */
1039 		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1040 		pg->uanon->an_page = NULL;
1041 		pg->uanon = NULL;
1042 		return;
1043 	}
1044 	KASSERT(saved_loan_count == 0);
1045 
1046 	/*
1047 	 * now remove the page from the queues
1048 	 */
1049 
1050 	if (pg->pg_flags & PQ_ACTIVE) {
1051 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1052 		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1053 		uvmexp.active--;
1054 	}
1055 	if (pg->pg_flags & PQ_INACTIVE) {
1056 		if (pg->pg_flags & PQ_SWAPBACKED)
1057 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1058 		else
1059 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1060 		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1061 		uvmexp.inactive--;
1062 	}
1063 
1064 	/*
1065 	 * if the page was wired, unwire it now.
1066 	 */
1067 
1068 	if (pg->wire_count) {
1069 		pg->wire_count = 0;
1070 		uvmexp.wired--;
1071 	}
1072 	if (pg->uanon) {
1073 		pg->uanon->an_page = NULL;
1074 #ifdef UBC
1075 		uvm_pgcnt_anon--;
1076 #endif
1077 	}
1078 
1079 	/*
1080 	 * and put on free queue
1081 	 */
1082 
1083 	atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
1084 
1085 	uvm_lock_fpageq();
1086 #ifdef PAGEFASTRECYCLE
1087 	TAILQ_INSERT_HEAD(&uvm.page_free[
1088 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1089 #else
1090 	TAILQ_INSERT_TAIL(&uvm.page_free[
1091 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1092 #endif
1093 	atomic_clearbits_int(&pg->pg_flags, PQ_MASK);
1094 	atomic_setbits_int(&pg->pg_flags, PQ_FREE);
1095 #ifdef DEBUG
1096 	pg->uobject = (void *)0xdeadbeef;
1097 	pg->offset = 0xdeadbeef;
1098 	pg->uanon = (void *)0xdeadbeef;
1099 #endif
1100 	uvmexp.free++;
1101 
1102 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1103 		uvm.page_idle_zero = vm_page_zero_enable;
1104 
1105 	uvm_unlock_fpageq();
1106 }
1107 
1108 /*
1109  * uvm_page_unbusy: unbusy an array of pages.
1110  *
1111  * => pages must either all belong to the same object, or all belong to anons.
1112  * => if pages are object-owned, object must be locked.
1113  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1114  */
1115 
1116 void
1117 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1118 {
1119 	struct vm_page *pg;
1120 	struct uvm_object *uobj;
1121 	int i;
1122 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1123 
1124 	for (i = 0; i < npgs; i++) {
1125 		pg = pgs[i];
1126 
1127 		if (pg == NULL || pg == PGO_DONTCARE) {
1128 			continue;
1129 		}
1130 		if (pg->pg_flags & PG_WANTED) {
1131 			wakeup(pg);
1132 		}
1133 		if (pg->pg_flags & PG_RELEASED) {
1134 			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1135 			uobj = pg->uobject;
1136 			if (uobj != NULL) {
1137 				uvm_lock_pageq();
1138 				pmap_page_protect(pg, VM_PROT_NONE);
1139 				/* XXX won't happen right now */
1140 				if (pg->pg_flags & PQ_ANON)
1141 					uao_dropswap(uobj,
1142 					    pg->offset >> PAGE_SHIFT);
1143 				uvm_pagefree(pg);
1144 				uvm_unlock_pageq();
1145 			} else {
1146 				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1147 				UVM_PAGE_OWN(pg, NULL);
1148 				uvm_anfree(pg->uanon);
1149 			}
1150 		} else {
1151 			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1152 			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1153 			UVM_PAGE_OWN(pg, NULL);
1154 		}
1155 	}
1156 }
1157 
1158 #if defined(UVM_PAGE_TRKOWN)
1159 /*
1160  * uvm_page_own: set or release page ownership
1161  *
1162  * => this is a debugging function that keeps track of who sets PG_BUSY
1163  *	and where they do it.   it can be used to track down problems
1164  *	such a process setting "PG_BUSY" and never releasing it.
1165  * => page's object [if any] must be locked
1166  * => if "tag" is NULL then we are releasing page ownership
1167  */
1168 void
1169 uvm_page_own(struct vm_page *pg, char *tag)
1170 {
1171 	/* gain ownership? */
1172 	if (tag) {
1173 		if (pg->owner_tag) {
1174 			printf("uvm_page_own: page %p already owned "
1175 			    "by proc %d [%s]\n", pg,
1176 			     pg->owner, pg->owner_tag);
1177 			panic("uvm_page_own");
1178 		}
1179 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1180 		pg->owner_tag = tag;
1181 		return;
1182 	}
1183 
1184 	/* drop ownership */
1185 	if (pg->owner_tag == NULL) {
1186 		printf("uvm_page_own: dropping ownership of an non-owned "
1187 		    "page (%p)\n", pg);
1188 		panic("uvm_page_own");
1189 	}
1190 	pg->owner_tag = NULL;
1191 	return;
1192 }
1193 #endif
1194 
1195 /*
1196  * uvm_pageidlezero: zero free pages while the system is idle.
1197  *
1198  * => we do at least one iteration per call, if we are below the target.
1199  * => we loop until we either reach the target or whichqs indicates that
1200  *	there is a process ready to run.
1201  */
1202 void
1203 uvm_pageidlezero(void)
1204 {
1205 	struct vm_page *pg;
1206 	struct pgfreelist *pgfl;
1207 	int free_list;
1208 	UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
1209 
1210 	do {
1211 		uvm_lock_fpageq();
1212 
1213 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1214 			uvm.page_idle_zero = FALSE;
1215 			uvm_unlock_fpageq();
1216 			return;
1217 		}
1218 
1219 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1220 			pgfl = &uvm.page_free[free_list];
1221 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1222 			    PGFL_UNKNOWN])) != NULL)
1223 				break;
1224 		}
1225 
1226 		if (pg == NULL) {
1227 			/*
1228 			 * No non-zero'd pages; don't bother trying again
1229 			 * until we know we have non-zero'd pages free.
1230 			 */
1231 			uvm.page_idle_zero = FALSE;
1232 			uvm_unlock_fpageq();
1233 			return;
1234 		}
1235 
1236 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1237 		uvmexp.free--;
1238 		uvm_unlock_fpageq();
1239 
1240 #ifdef PMAP_PAGEIDLEZERO
1241 		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1242 			/*
1243 			 * The machine-dependent code detected some
1244 			 * reason for us to abort zeroing pages,
1245 			 * probably because there is a process now
1246 			 * ready to run.
1247 			 */
1248 			uvm_lock_fpageq();
1249 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1250 			    pg, pageq);
1251 			uvmexp.free++;
1252 			uvmexp.zeroaborts++;
1253 			uvm_unlock_fpageq();
1254 			return;
1255 		}
1256 #else
1257 		/*
1258 		 * XXX This will toast the cache unless the pmap_zero_page()
1259 		 * XXX implementation does uncached access.
1260 		 */
1261 		pmap_zero_page(pg);
1262 #endif
1263 		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1264 
1265 		uvm_lock_fpageq();
1266 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1267 		uvmexp.free++;
1268 		uvmexp.zeropages++;
1269 		uvm_unlock_fpageq();
1270 	} while (curcpu_is_idle());
1271 }
1272 
1273 /*
1274  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1275  */
1276 
1277 #if VM_PHYSSEG_MAX > 1
1278 /*
1279  * vm_physseg_find: find vm_physseg structure that belongs to a PA
1280  */
1281 int
1282 vm_physseg_find(paddr_t pframe, int *offp)
1283 {
1284 
1285 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1286 	/* binary search for it */
1287 	int	start, len, try;
1288 
1289 	/*
1290 	 * if try is too large (thus target is less than than try) we reduce
1291 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1292 	 *
1293 	 * if the try is too small (thus target is greater than try) then
1294 	 * we set the new start to be (try + 1).   this means we need to
1295 	 * reduce the length to (round(len/2) - 1).
1296 	 *
1297 	 * note "adjust" below which takes advantage of the fact that
1298 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1299 	 * for any value of len we may have
1300 	 */
1301 
1302 	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1303 		try = start + (len / 2);	/* try in the middle */
1304 
1305 		/* start past our try? */
1306 		if (pframe >= vm_physmem[try].start) {
1307 			/* was try correct? */
1308 			if (pframe < vm_physmem[try].end) {
1309 				if (offp)
1310 					*offp = pframe - vm_physmem[try].start;
1311 				return(try);            /* got it */
1312 			}
1313 			start = try + 1;	/* next time, start here */
1314 			len--;			/* "adjust" */
1315 		} else {
1316 			/*
1317 			 * pframe before try, just reduce length of
1318 			 * region, done in "for" loop
1319 			 */
1320 		}
1321 	}
1322 	return(-1);
1323 
1324 #else
1325 	/* linear search for it */
1326 	int	lcv;
1327 
1328 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1329 		if (pframe >= vm_physmem[lcv].start &&
1330 		    pframe < vm_physmem[lcv].end) {
1331 			if (offp)
1332 				*offp = pframe - vm_physmem[lcv].start;
1333 			return(lcv);		   /* got it */
1334 		}
1335 	}
1336 	return(-1);
1337 
1338 #endif
1339 }
1340 
1341 /*
1342  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1343  * back from an I/O mapping (ugh!).   used in some MD code as well.
1344  */
1345 struct vm_page *
1346 PHYS_TO_VM_PAGE(paddr_t pa)
1347 {
1348 	paddr_t pf = atop(pa);
1349 	int	off;
1350 	int	psi;
1351 
1352 	psi = vm_physseg_find(pf, &off);
1353 
1354 	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1355 }
1356 #endif /* VM_PHYSSEG_MAX > 1 */
1357 
1358 /*
1359  * uvm_pagelookup: look up a page
1360  *
1361  * => caller should lock object to keep someone from pulling the page
1362  *	out from under it
1363  */
1364 struct vm_page *
1365 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1366 {
1367 	/* XXX if stack is too much, handroll */
1368 	struct vm_page pg;
1369 
1370 	pg.offset = off;
1371 	return (RB_FIND(uvm_objtree, &obj->memt, &pg));
1372 }
1373 
1374 /*
1375  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1376  *
1377  * => caller must lock page queues
1378  */
1379 void
1380 uvm_pagewire(struct vm_page *pg)
1381 {
1382 	if (pg->wire_count == 0) {
1383 		if (pg->pg_flags & PQ_ACTIVE) {
1384 			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1385 			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1386 			uvmexp.active--;
1387 		}
1388 		if (pg->pg_flags & PQ_INACTIVE) {
1389 			if (pg->pg_flags & PQ_SWAPBACKED)
1390 				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1391 			else
1392 				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1393 			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1394 			uvmexp.inactive--;
1395 		}
1396 		uvmexp.wired++;
1397 	}
1398 	pg->wire_count++;
1399 }
1400 
1401 /*
1402  * uvm_pageunwire: unwire the page.
1403  *
1404  * => activate if wire count goes to zero.
1405  * => caller must lock page queues
1406  */
1407 void
1408 uvm_pageunwire(struct vm_page *pg)
1409 {
1410 	pg->wire_count--;
1411 	if (pg->wire_count == 0) {
1412 		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1413 		uvmexp.active++;
1414 		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1415 		uvmexp.wired--;
1416 	}
1417 }
1418 
1419 /*
1420  * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1421  *
1422  * => caller must lock page queues
1423  * => caller must check to make sure page is not wired
1424  * => object that page belongs to must be locked (so we can adjust pg->flags)
1425  */
1426 void
1427 uvm_pagedeactivate(struct vm_page *pg)
1428 {
1429 	if (pg->pg_flags & PQ_ACTIVE) {
1430 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1431 		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1432 		uvmexp.active--;
1433 	}
1434 	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1435 		KASSERT(pg->wire_count == 0);
1436 		if (pg->pg_flags & PQ_SWAPBACKED)
1437 			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1438 		else
1439 			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1440 		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1441 		uvmexp.inactive++;
1442 		pmap_clear_reference(pg);
1443 		/*
1444 		 * update the "clean" bit.  this isn't 100%
1445 		 * accurate, and doesn't have to be.  we'll
1446 		 * re-sync it after we zap all mappings when
1447 		 * scanning the inactive list.
1448 		 */
1449 		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1450 		    pmap_is_modified(pg))
1451 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1452 	}
1453 }
1454 
1455 /*
1456  * uvm_pageactivate: activate page
1457  *
1458  * => caller must lock page queues
1459  */
1460 void
1461 uvm_pageactivate(struct vm_page *pg)
1462 {
1463 	if (pg->pg_flags & PQ_INACTIVE) {
1464 		if (pg->pg_flags & PQ_SWAPBACKED)
1465 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1466 		else
1467 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1468 		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1469 		uvmexp.inactive--;
1470 	}
1471 	if (pg->wire_count == 0) {
1472 
1473 		/*
1474 		 * if page is already active, remove it from list so we
1475 		 * can put it at tail.  if it wasn't active, then mark
1476 		 * it active and bump active count
1477 		 */
1478 		if (pg->pg_flags & PQ_ACTIVE)
1479 			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1480 		else {
1481 			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1482 			uvmexp.active++;
1483 		}
1484 
1485 		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1486 	}
1487 }
1488 
1489 /*
1490  * uvm_pagezero: zero fill a page
1491  *
1492  * => if page is part of an object then the object should be locked
1493  *	to protect pg->flags.
1494  */
1495 void
1496 uvm_pagezero(struct vm_page *pg)
1497 {
1498 	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1499 	pmap_zero_page(pg);
1500 }
1501 
1502 /*
1503  * uvm_pagecopy: copy a page
1504  *
1505  * => if page is part of an object then the object should be locked
1506  *	to protect pg->flags.
1507  */
1508 void
1509 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1510 {
1511 	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1512 	pmap_copy_page(src, dst);
1513 }
1514 
1515 /*
1516  * uvm_page_lookup_freelist: look up the free list for the specified page
1517  */
1518 int
1519 uvm_page_lookup_freelist(struct vm_page *pg)
1520 {
1521 #if VM_PHYSSEG_MAX == 1
1522 	return (vm_physmem[0].free_list);
1523 #else
1524 	int lcv;
1525 
1526 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1527 	KASSERT(lcv != -1);
1528 	return (vm_physmem[lcv].free_list);
1529 #endif
1530 }
1531