xref: /openbsd/sys/uvm/uvm_vnode.c (revision 55cc5ba3)
1 /*	$OpenBSD: uvm_vnode.c,v 1.108 2020/10/26 19:48:19 anton Exp $	*/
2 /*	$NetBSD: uvm_vnode.c,v 1.36 2000/11/24 20:34:01 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993
7  *      The Regents of the University of California.
8  * Copyright (c) 1990 University of Utah.
9  *
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      @(#)vnode_pager.c       8.8 (Berkeley) 2/13/94
41  * from: Id: uvm_vnode.c,v 1.1.2.26 1998/02/02 20:38:07 chuck Exp
42  */
43 
44 /*
45  * uvm_vnode.c: the vnode pager.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/vnode.h>
53 #include <sys/lock.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/conf.h>
57 #include <sys/rwlock.h>
58 #include <sys/dkio.h>
59 #include <sys/specdev.h>
60 
61 #include <uvm/uvm.h>
62 #include <uvm/uvm_vnode.h>
63 
64 /*
65  * private global data structure
66  *
67  * we keep a list of writeable active vnode-backed VM objects for sync op.
68  * we keep a simpleq of vnodes that are currently being sync'd.
69  */
70 
71 LIST_HEAD(uvn_list_struct, uvm_vnode);
72 struct uvn_list_struct uvn_wlist;	/* writeable uvns */
73 
74 SIMPLEQ_HEAD(uvn_sq_struct, uvm_vnode);
75 struct uvn_sq_struct uvn_sync_q;		/* sync'ing uvns */
76 struct rwlock uvn_sync_lock;			/* locks sync operation */
77 
78 extern int rebooting;
79 
80 /*
81  * functions
82  */
83 void		 uvn_cluster(struct uvm_object *, voff_t, voff_t *, voff_t *);
84 void		 uvn_detach(struct uvm_object *);
85 boolean_t	 uvn_flush(struct uvm_object *, voff_t, voff_t, int);
86 int		 uvn_get(struct uvm_object *, voff_t, vm_page_t *, int *, int,
87 		     vm_prot_t, int, int);
88 void		 uvn_init(void);
89 int		 uvn_io(struct uvm_vnode *, vm_page_t *, int, int, int);
90 int		 uvn_put(struct uvm_object *, vm_page_t *, int, boolean_t);
91 void		 uvn_reference(struct uvm_object *);
92 
93 int		 uvm_vnode_lock(struct uvm_vnode *);
94 void		 uvm_vnode_unlock(struct uvm_vnode *);
95 
96 /*
97  * master pager structure
98  */
99 const struct uvm_pagerops uvm_vnodeops = {
100 	.pgo_init = uvn_init,
101 	.pgo_reference = uvn_reference,
102 	.pgo_detach = uvn_detach,
103 	.pgo_flush = uvn_flush,
104 	.pgo_get = uvn_get,
105 	.pgo_put = uvn_put,
106 	.pgo_cluster = uvn_cluster,
107 	/* use generic version of this: see uvm_pager.c */
108 	.pgo_mk_pcluster = uvm_mk_pcluster,
109 };
110 
111 /*
112  * the ops!
113  */
114 /*
115  * uvn_init
116  *
117  * init pager private data structures.
118  */
119 void
120 uvn_init(void)
121 {
122 
123 	LIST_INIT(&uvn_wlist);
124 	/* note: uvn_sync_q init'd in uvm_vnp_sync() */
125 	rw_init_flags(&uvn_sync_lock, "uvnsync", RWL_IS_VNODE);
126 }
127 
128 /*
129  * uvn_attach
130  *
131  * attach a vnode structure to a VM object.  if the vnode is already
132  * attached, then just bump the reference count by one and return the
133  * VM object.   if not already attached, attach and return the new VM obj.
134  * the "accessprot" tells the max access the attaching thread wants to
135  * our pages.
136  *
137  * => in fact, nothing should be locked so that we can sleep here.
138  * => note that uvm_object is first thing in vnode structure, so their
139  *    pointers are equiv.
140  */
141 struct uvm_object *
142 uvn_attach(struct vnode *vp, vm_prot_t accessprot)
143 {
144 	struct uvm_vnode *uvn = vp->v_uvm;
145 	struct vattr vattr;
146 	int oldflags, result;
147 	struct partinfo pi;
148 	u_quad_t used_vnode_size = 0;
149 
150 	/* first get a lock on the uvn. */
151 	while (uvn->u_flags & UVM_VNODE_BLOCKED) {
152 		uvn->u_flags |= UVM_VNODE_WANTED;
153 		tsleep_nsec(uvn, PVM, "uvn_attach", INFSLP);
154 	}
155 
156 	/* if we're mapping a BLK device, make sure it is a disk. */
157 	if (vp->v_type == VBLK && bdevsw[major(vp->v_rdev)].d_type != D_DISK) {
158 		return(NULL);
159 	}
160 
161 	/*
162 	 * now uvn must not be in a blocked state.
163 	 * first check to see if it is already active, in which case
164 	 * we can bump the reference count, check to see if we need to
165 	 * add it to the writeable list, and then return.
166 	 */
167 	if (uvn->u_flags & UVM_VNODE_VALID) {	/* already active? */
168 
169 		/* regain vref if we were persisting */
170 		if (uvn->u_obj.uo_refs == 0) {
171 			vref(vp);
172 		}
173 		uvn->u_obj.uo_refs++;		/* bump uvn ref! */
174 
175 		/* check for new writeable uvn */
176 		if ((accessprot & PROT_WRITE) != 0 &&
177 		    (uvn->u_flags & UVM_VNODE_WRITEABLE) == 0) {
178 			LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
179 			/* we are now on wlist! */
180 			uvn->u_flags |= UVM_VNODE_WRITEABLE;
181 		}
182 
183 		return (&uvn->u_obj);
184 	}
185 
186 	/*
187 	 * need to call VOP_GETATTR() to get the attributes, but that could
188 	 * block (due to I/O), so we want to unlock the object before calling.
189 	 * however, we want to keep anyone else from playing with the object
190 	 * while it is unlocked.   to do this we set UVM_VNODE_ALOCK which
191 	 * prevents anyone from attaching to the vnode until we are done with
192 	 * it.
193 	 */
194 	uvn->u_flags = UVM_VNODE_ALOCK;
195 
196 	if (vp->v_type == VBLK) {
197 		/*
198 		 * We could implement this as a specfs getattr call, but:
199 		 *
200 		 *	(1) VOP_GETATTR() would get the file system
201 		 *	    vnode operation, not the specfs operation.
202 		 *
203 		 *	(2) All we want is the size, anyhow.
204 		 */
205 		result = (*bdevsw[major(vp->v_rdev)].d_ioctl)(vp->v_rdev,
206 		    DIOCGPART, (caddr_t)&pi, FREAD, curproc);
207 		if (result == 0) {
208 			/* XXX should remember blocksize */
209 			used_vnode_size = (u_quad_t)pi.disklab->d_secsize *
210 			    (u_quad_t)DL_GETPSIZE(pi.part);
211 		}
212 	} else {
213 		result = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
214 		if (result == 0)
215 			used_vnode_size = vattr.va_size;
216 	}
217 
218 	if (result != 0) {
219 		if (uvn->u_flags & UVM_VNODE_WANTED)
220 			wakeup(uvn);
221 		uvn->u_flags = 0;
222 		return(NULL);
223 	}
224 
225 	/*
226 	 * make sure that the newsize fits within a vaddr_t
227 	 * XXX: need to revise addressing data types
228 	 */
229 #ifdef DEBUG
230 	if (vp->v_type == VBLK)
231 		printf("used_vnode_size = %llu\n", (long long)used_vnode_size);
232 #endif
233 
234 	/* now set up the uvn. */
235 	uvm_objinit(&uvn->u_obj, &uvm_vnodeops, 1);
236 	oldflags = uvn->u_flags;
237 	uvn->u_flags = UVM_VNODE_VALID|UVM_VNODE_CANPERSIST;
238 	uvn->u_nio = 0;
239 	uvn->u_size = used_vnode_size;
240 
241 	/* if write access, we need to add it to the wlist */
242 	if (accessprot & PROT_WRITE) {
243 		LIST_INSERT_HEAD(&uvn_wlist, uvn, u_wlist);
244 		uvn->u_flags |= UVM_VNODE_WRITEABLE;	/* we are on wlist! */
245 	}
246 
247 	/*
248 	 * add a reference to the vnode.   this reference will stay as long
249 	 * as there is a valid mapping of the vnode.   dropped when the
250 	 * reference count goes to zero [and we either free or persist].
251 	 */
252 	vref(vp);
253 	if (oldflags & UVM_VNODE_WANTED)
254 		wakeup(uvn);
255 
256 	return(&uvn->u_obj);
257 }
258 
259 
260 /*
261  * uvn_reference
262  *
263  * duplicate a reference to a VM object.  Note that the reference
264  * count must already be at least one (the passed in reference) so
265  * there is no chance of the uvn being killed out here.
266  *
267  * => caller must be using the same accessprot as was used at attach time
268  */
269 
270 
271 void
272 uvn_reference(struct uvm_object *uobj)
273 {
274 #ifdef DEBUG
275 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
276 #endif
277 
278 #ifdef DEBUG
279 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
280 		printf("uvn_reference: ref=%d, flags=0x%x\n", uvn->u_flags,
281 		    uobj->uo_refs);
282 		panic("uvn_reference: invalid state");
283 	}
284 #endif
285 	KERNEL_ASSERT_LOCKED();
286 	uobj->uo_refs++;
287 }
288 
289 /*
290  * uvn_detach
291  *
292  * remove a reference to a VM object.
293  *
294  * => caller must call with map locked.
295  * => this starts the detach process, but doesn't have to finish it
296  *    (async i/o could still be pending).
297  */
298 void
299 uvn_detach(struct uvm_object *uobj)
300 {
301 	struct uvm_vnode *uvn;
302 	struct vnode *vp;
303 	int oldflags;
304 
305 	KERNEL_ASSERT_LOCKED();
306 	uobj->uo_refs--;			/* drop ref! */
307 	if (uobj->uo_refs) {			/* still more refs */
308 		return;
309 	}
310 
311 	/* get other pointers ... */
312 	uvn = (struct uvm_vnode *) uobj;
313 	vp = uvn->u_vnode;
314 
315 	/*
316 	 * clear VTEXT flag now that there are no mappings left (VTEXT is used
317 	 * to keep an active text file from being overwritten).
318 	 */
319 	vp->v_flag &= ~VTEXT;
320 
321 	/*
322 	 * we just dropped the last reference to the uvn.   see if we can
323 	 * let it "stick around".
324 	 */
325 	if (uvn->u_flags & UVM_VNODE_CANPERSIST) {
326 		/* won't block */
327 		uvn_flush(uobj, 0, 0, PGO_DEACTIVATE|PGO_ALLPAGES);
328 		vrele(vp);			/* drop vnode reference */
329 		return;
330 	}
331 
332 	/* its a goner! */
333 	uvn->u_flags |= UVM_VNODE_DYING;
334 
335 	/*
336 	 * even though we may unlock in flush, no one can gain a reference
337 	 * to us until we clear the "dying" flag [because it blocks
338 	 * attaches].  we will not do that until after we've disposed of all
339 	 * the pages with uvn_flush().  note that before the flush the only
340 	 * pages that could be marked PG_BUSY are ones that are in async
341 	 * pageout by the daemon.  (there can't be any pending "get"'s
342 	 * because there are no references to the object).
343 	 */
344 	(void) uvn_flush(uobj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
345 
346 	/*
347 	 * given the structure of this pager, the above flush request will
348 	 * create the following state: all the pages that were in the object
349 	 * have either been free'd or they are marked PG_BUSY and in the
350 	 * middle of an async io. If we still have pages we set the "relkill"
351 	 * state, so that in the case the vnode gets terminated we know
352 	 * to leave it alone. Otherwise we'll kill the vnode when it's empty.
353 	 */
354 	uvn->u_flags |= UVM_VNODE_RELKILL;
355 	/* wait on any outstanding io */
356 	while (uobj->uo_npages && uvn->u_flags & UVM_VNODE_RELKILL) {
357 		uvn->u_flags |= UVM_VNODE_IOSYNC;
358 		tsleep_nsec(&uvn->u_nio, PVM, "uvn_term", INFSLP);
359 	}
360 
361 	if ((uvn->u_flags & UVM_VNODE_RELKILL) == 0)
362 		return;
363 
364 	/*
365 	 * kill object now.   note that we can't be on the sync q because
366 	 * all references are gone.
367 	 */
368 	if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
369 		LIST_REMOVE(uvn, u_wlist);
370 	}
371 	KASSERT(RBT_EMPTY(uvm_objtree, &uobj->memt));
372 	oldflags = uvn->u_flags;
373 	uvn->u_flags = 0;
374 
375 	/* wake up any sleepers */
376 	if (oldflags & UVM_VNODE_WANTED)
377 		wakeup(uvn);
378 
379 	/* drop our reference to the vnode. */
380 	vrele(vp);
381 
382 	return;
383 }
384 
385 /*
386  * uvm_vnp_terminate: external hook to clear out a vnode's VM
387  *
388  * called in two cases:
389  *  [1] when a persisting vnode vm object (i.e. one with a zero reference
390  *      count) needs to be freed so that a vnode can be reused.  this
391  *      happens under "getnewvnode" in vfs_subr.c.   if the vnode from
392  *      the free list is still attached (i.e. not VBAD) then vgone is
393  *	called.   as part of the vgone trace this should get called to
394  *	free the vm object.   this is the common case.
395  *  [2] when a filesystem is being unmounted by force (MNT_FORCE,
396  *	"umount -f") the vgone() function is called on active vnodes
397  *	on the mounted file systems to kill their data (the vnodes become
398  *	"dead" ones [see src/sys/miscfs/deadfs/...]).  that results in a
399  *	call here (even if the uvn is still in use -- i.e. has a non-zero
400  *	reference count).  this case happens at "umount -f" and during a
401  *	"reboot/halt" operation.
402  *
403  * => the caller must XLOCK and VOP_LOCK the vnode before calling us
404  *	[protects us from getting a vnode that is already in the DYING
405  *	 state...]
406  * => in case [2] the uvn is still alive after this call, but all I/O
407  *	ops will fail (due to the backing vnode now being "dead").  this
408  *	will prob. kill any process using the uvn due to pgo_get failing.
409  */
410 void
411 uvm_vnp_terminate(struct vnode *vp)
412 {
413 	struct uvm_vnode *uvn = vp->v_uvm;
414 	int oldflags;
415 
416 	/* check if it is valid */
417 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0) {
418 		return;
419 	}
420 
421 	/*
422 	 * must be a valid uvn that is not already dying (because XLOCK
423 	 * protects us from that).   the uvn can't in the ALOCK state
424 	 * because it is valid, and uvn's that are in the ALOCK state haven't
425 	 * been marked valid yet.
426 	 */
427 #ifdef DEBUG
428 	/*
429 	 * debug check: are we yanking the vnode out from under our uvn?
430 	 */
431 	if (uvn->u_obj.uo_refs) {
432 		printf("uvm_vnp_terminate(%p): terminating active vnode "
433 		    "(refs=%d)\n", uvn, uvn->u_obj.uo_refs);
434 	}
435 #endif
436 
437 	/*
438 	 * it is possible that the uvn was detached and is in the relkill
439 	 * state [i.e. waiting for async i/o to finish].
440 	 * we take over the vnode now and cancel the relkill.
441 	 * we want to know when the i/o is done so we can recycle right
442 	 * away.   note that a uvn can only be in the RELKILL state if it
443 	 * has a zero reference count.
444 	 */
445 	if (uvn->u_flags & UVM_VNODE_RELKILL)
446 		uvn->u_flags &= ~UVM_VNODE_RELKILL;	/* cancel RELKILL */
447 
448 	/*
449 	 * block the uvn by setting the dying flag, and then flush the
450 	 * pages.
451 	 *
452 	 * also, note that we tell I/O that we are already VOP_LOCK'd so
453 	 * that uvn_io doesn't attempt to VOP_LOCK again.
454 	 *
455 	 * XXXCDC: setting VNISLOCKED on an active uvn which is being terminated
456 	 *	due to a forceful unmount might not be a good idea.  maybe we
457 	 *	need a way to pass in this info to uvn_flush through a
458 	 *	pager-defined PGO_ constant [currently there are none].
459 	 */
460 	uvn->u_flags |= UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED;
461 
462 	(void) uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_FREE|PGO_ALLPAGES);
463 
464 	/*
465 	 * as we just did a flush we expect all the pages to be gone or in
466 	 * the process of going.  sleep to wait for the rest to go [via iosync].
467 	 */
468 	while (uvn->u_obj.uo_npages) {
469 #ifdef DEBUG
470 		struct vm_page *pp;
471 		RBT_FOREACH(pp, uvm_objtree, &uvn->u_obj.memt) {
472 			if ((pp->pg_flags & PG_BUSY) == 0)
473 				panic("uvm_vnp_terminate: detected unbusy pg");
474 		}
475 		if (uvn->u_nio == 0)
476 			panic("uvm_vnp_terminate: no I/O to wait for?");
477 		printf("uvm_vnp_terminate: waiting for I/O to fin.\n");
478 		/*
479 		 * XXXCDC: this is unlikely to happen without async i/o so we
480 		 * put a printf in just to keep an eye on it.
481 		 */
482 #endif
483 		uvn->u_flags |= UVM_VNODE_IOSYNC;
484 		tsleep_nsec(&uvn->u_nio, PVM, "uvn_term", INFSLP);
485 	}
486 
487 	/*
488 	 * done.   now we free the uvn if its reference count is zero
489 	 * (true if we are zapping a persisting uvn).   however, if we are
490 	 * terminating a uvn with active mappings we let it live ... future
491 	 * calls down to the vnode layer will fail.
492 	 */
493 	oldflags = uvn->u_flags;
494 	if (uvn->u_obj.uo_refs) {
495 		/*
496 		 * uvn must live on it is dead-vnode state until all references
497 		 * are gone.   restore flags.    clear CANPERSIST state.
498 		 */
499 		uvn->u_flags &= ~(UVM_VNODE_DYING|UVM_VNODE_VNISLOCKED|
500 		      UVM_VNODE_WANTED|UVM_VNODE_CANPERSIST);
501 	} else {
502 		/*
503 		 * free the uvn now.   note that the vref reference is already
504 		 * gone [it is dropped when we enter the persist state].
505 		 */
506 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
507 			panic("uvm_vnp_terminate: io sync wanted bit set");
508 
509 		if (uvn->u_flags & UVM_VNODE_WRITEABLE) {
510 			LIST_REMOVE(uvn, u_wlist);
511 		}
512 		uvn->u_flags = 0;	/* uvn is history, clear all bits */
513 	}
514 
515 	if (oldflags & UVM_VNODE_WANTED)
516 		wakeup(uvn);
517 }
518 
519 /*
520  * NOTE: currently we have to use VOP_READ/VOP_WRITE because they go
521  * through the buffer cache and allow I/O in any size.  These VOPs use
522  * synchronous i/o.  [vs. VOP_STRATEGY which can be async, but doesn't
523  * go through the buffer cache or allow I/O sizes larger than a
524  * block].  we will eventually want to change this.
525  *
526  * issues to consider:
527  *   uvm provides the uvm_aiodesc structure for async i/o management.
528  * there are two tailq's in the uvm. structure... one for pending async
529  * i/o and one for "done" async i/o.   to do an async i/o one puts
530  * an aiodesc on the "pending" list (protected by splbio()), starts the
531  * i/o and returns VM_PAGER_PEND.    when the i/o is done, we expect
532  * some sort of "i/o done" function to be called (at splbio(), interrupt
533  * time).   this function should remove the aiodesc from the pending list
534  * and place it on the "done" list and wakeup the daemon.   the daemon
535  * will run at normal spl() and will remove all items from the "done"
536  * list and call the "aiodone" hook for each done request (see uvm_pager.c).
537  * [in the old vm code, this was done by calling the "put" routine with
538  * null arguments which made the code harder to read and understand because
539  * you had one function ("put") doing two things.]
540  *
541  * so the current pager needs:
542  *   int uvn_aiodone(struct uvm_aiodesc *)
543  *
544  * => return 0 (aio finished, free it). otherwise requeue for later collection.
545  * => called with pageq's locked by the daemon.
546  *
547  * general outline:
548  * - drop "u_nio" (this req is done!)
549  * - if (object->iosync && u_naio == 0) { wakeup &uvn->u_naio }
550  * - get "page" structures (atop?).
551  * - handle "wanted" pages
552  * dont forget to look at "object" wanted flag in all cases.
553  */
554 
555 /*
556  * uvn_flush: flush pages out of a uvm object.
557  *
558  * => if PGO_CLEANIT is set, we may block (due to I/O).   thus, a caller
559  *	might want to unlock higher level resources (e.g. vm_map)
560  *	before calling flush.
561  * => if PGO_CLEANIT is not set, then we will not block
562  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
563  *	for flushing.
564  * => NOTE: we are allowed to lock the page queues, so the caller
565  *	must not be holding the lock on them [e.g. pagedaemon had
566  *	better not call us with the queues locked]
567  * => we return TRUE unless we encountered some sort of I/O error
568  *
569  * comment on "cleaning" object and PG_BUSY pages:
570  *	this routine is holding the lock on the object.   the only time
571  *	that it can run into a PG_BUSY page that it does not own is if
572  *	some other process has started I/O on the page (e.g. either
573  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
574  *	in, then it can not be dirty (!PG_CLEAN) because no one has
575  *	had a chance to modify it yet.    if the PG_BUSY page is being
576  *	paged out then it means that someone else has already started
577  *	cleaning the page for us (how nice!).    in this case, if we
578  *	have syncio specified, then after we make our pass through the
579  *	object we need to wait for the other PG_BUSY pages to clear
580  *	off (i.e. we need to do an iosync).   also note that once a
581  *	page is PG_BUSY it must stay in its object until it is un-busyed.
582  */
583 boolean_t
584 uvn_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
585 {
586 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
587 	struct vm_page *pp, *ptmp;
588 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
589 	struct pglist dead;
590 	int npages, result, lcv;
591 	boolean_t retval, need_iosync, needs_clean;
592 	voff_t curoff;
593 
594 	KERNEL_ASSERT_LOCKED();
595 	TAILQ_INIT(&dead);
596 
597 	/* get init vals and determine how we are going to traverse object */
598 	need_iosync = FALSE;
599 	retval = TRUE;		/* return value */
600 	if (flags & PGO_ALLPAGES) {
601 		start = 0;
602 		stop = round_page(uvn->u_size);
603 	} else {
604 		start = trunc_page(start);
605 		stop = MIN(round_page(stop), round_page(uvn->u_size));
606 	}
607 
608 	/*
609 	 * PG_CLEANCHK: this bit is used by the pgo_mk_pcluster function as
610 	 * a _hint_ as to how up to date the PG_CLEAN bit is.   if the hint
611 	 * is wrong it will only prevent us from clustering... it won't break
612 	 * anything.   we clear all PG_CLEANCHK bits here, and pgo_mk_pcluster
613 	 * will set them as it syncs PG_CLEAN.   This is only an issue if we
614 	 * are looking at non-inactive pages (because inactive page's PG_CLEAN
615 	 * bit is always up to date since there are no mappings).
616 	 * [borrowed PG_CLEANCHK idea from FreeBSD VM]
617 	 */
618 	if ((flags & PGO_CLEANIT) != 0) {
619 		KASSERT(uobj->pgops->pgo_mk_pcluster != 0);
620 		for (curoff = start ; curoff < stop; curoff += PAGE_SIZE) {
621 			if ((pp = uvm_pagelookup(uobj, curoff)) != NULL)
622 				atomic_clearbits_int(&pp->pg_flags,
623 				    PG_CLEANCHK);
624 		}
625 	}
626 
627 	ppsp = NULL;		/* XXX: shut up gcc */
628 	uvm_lock_pageq();
629 	/* locked: both page queues */
630 	for (curoff = start; curoff < stop; curoff += PAGE_SIZE) {
631 		if ((pp = uvm_pagelookup(uobj, curoff)) == NULL)
632 			continue;
633 		/*
634 		 * handle case where we do not need to clean page (either
635 		 * because we are not clean or because page is not dirty or
636 		 * is busy):
637 		 *
638 		 * NOTE: we are allowed to deactivate a non-wired active
639 		 * PG_BUSY page, but once a PG_BUSY page is on the inactive
640 		 * queue it must stay put until it is !PG_BUSY (so as not to
641 		 * confuse pagedaemon).
642 		 */
643 		if ((flags & PGO_CLEANIT) == 0 || (pp->pg_flags & PG_BUSY) != 0) {
644 			needs_clean = FALSE;
645 			if ((pp->pg_flags & PG_BUSY) != 0 &&
646 			    (flags & (PGO_CLEANIT|PGO_SYNCIO)) ==
647 			             (PGO_CLEANIT|PGO_SYNCIO))
648 				need_iosync = TRUE;
649 		} else {
650 			/*
651 			 * freeing: nuke all mappings so we can sync
652 			 * PG_CLEAN bit with no race
653 			 */
654 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
655 			    (flags & PGO_FREE) != 0 &&
656 			    (pp->pg_flags & PQ_ACTIVE) != 0)
657 				pmap_page_protect(pp, PROT_NONE);
658 			if ((pp->pg_flags & PG_CLEAN) != 0 &&
659 			    pmap_is_modified(pp))
660 				atomic_clearbits_int(&pp->pg_flags, PG_CLEAN);
661 			atomic_setbits_int(&pp->pg_flags, PG_CLEANCHK);
662 
663 			needs_clean = ((pp->pg_flags & PG_CLEAN) == 0);
664 		}
665 
666 		/* if we don't need a clean, deactivate/free pages then cont. */
667 		if (!needs_clean) {
668 			if (flags & PGO_DEACTIVATE) {
669 				if (pp->wire_count == 0) {
670 					pmap_page_protect(pp, PROT_NONE);
671 					uvm_pagedeactivate(pp);
672 				}
673 			} else if (flags & PGO_FREE) {
674 				if (pp->pg_flags & PG_BUSY) {
675 					atomic_setbits_int(&pp->pg_flags,
676 					    PG_WANTED);
677 					uvm_unlock_pageq();
678 					tsleep_nsec(pp, PVM, "uvn_flsh",
679 					    INFSLP);
680 					uvm_lock_pageq();
681 					curoff -= PAGE_SIZE;
682 					continue;
683 				} else {
684 					pmap_page_protect(pp, PROT_NONE);
685 					/* removed page from object */
686 					uvm_pageclean(pp);
687 					TAILQ_INSERT_HEAD(&dead, pp, pageq);
688 				}
689 			}
690 			continue;
691 		}
692 
693 		/*
694 		 * pp points to a page in the object that we are
695 		 * working on.  if it is !PG_CLEAN,!PG_BUSY and we asked
696 		 * for cleaning (PGO_CLEANIT).  we clean it now.
697 		 *
698 		 * let uvm_pager_put attempted a clustered page out.
699 		 * note: locked: page queues.
700 		 */
701 		atomic_setbits_int(&pp->pg_flags, PG_BUSY);
702 		UVM_PAGE_OWN(pp, "uvn_flush");
703 		pmap_page_protect(pp, PROT_READ);
704 		/* if we're async, free the page in aiodoned */
705 		if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
706 			atomic_setbits_int(&pp->pg_flags, PG_RELEASED);
707 ReTry:
708 		ppsp = pps;
709 		npages = sizeof(pps) / sizeof(struct vm_page *);
710 
711 		result = uvm_pager_put(uobj, pp, &ppsp, &npages,
712 			   flags | PGO_DOACTCLUST, start, stop);
713 
714 		/*
715 		 * if we did an async I/O it is remotely possible for the
716 		 * async i/o to complete and the page "pp" be freed or what
717 		 * not before we get a chance to relock the object. Therefore,
718 		 * we only touch it when it won't be freed, RELEASED took care
719 		 * of the rest.
720 		 */
721 		uvm_lock_pageq();
722 
723 		/*
724 		 * VM_PAGER_AGAIN: given the structure of this pager, this
725 		 * can only happen when we are doing async I/O and can't
726 		 * map the pages into kernel memory (pager_map) due to lack
727 		 * of vm space.   if this happens we drop back to sync I/O.
728 		 */
729 		if (result == VM_PAGER_AGAIN) {
730 			/*
731 			 * it is unlikely, but page could have been released
732 			 * we ignore this now and retry the I/O.
733 			 * we will detect and
734 			 * handle the released page after the syncio I/O
735 			 * completes.
736 			 */
737 #ifdef DIAGNOSTIC
738 			if (flags & PGO_SYNCIO)
739 	panic("uvn_flush: PGO_SYNCIO return 'try again' error (impossible)");
740 #endif
741 			flags |= PGO_SYNCIO;
742 			if (flags & PGO_FREE)
743 				atomic_clearbits_int(&pp->pg_flags,
744 				    PG_RELEASED);
745 
746 			goto ReTry;
747 		}
748 
749 		/*
750 		 * the cleaning operation is now done.   finish up.  note that
751 		 * on error (!OK, !PEND) uvm_pager_put drops the cluster for us.
752 		 * if success (OK, PEND) then uvm_pager_put returns the cluster
753 		 * to us in ppsp/npages.
754 		 */
755 		/*
756 		 * for pending async i/o if we are not deactivating
757 		 * we can move on to the next page. aiodoned deals with
758 		 * the freeing case for us.
759 		 */
760 		if (result == VM_PAGER_PEND && (flags & PGO_DEACTIVATE) == 0)
761 			continue;
762 
763 		/*
764 		 * need to look at each page of the I/O operation, and do what
765 		 * we gotta do.
766 		 */
767 		for (lcv = 0 ; lcv < npages; lcv++) {
768 			ptmp = ppsp[lcv];
769 			/*
770 			 * verify the page didn't get moved
771 			 */
772 			if (result == VM_PAGER_PEND && ptmp->uobject != uobj)
773 				continue;
774 
775 			/*
776 			 * unbusy the page if I/O is done.   note that for
777 			 * pending I/O it is possible that the I/O op
778 			 * finished
779 			 * (in which case the page is no longer busy).
780 			 */
781 			if (result != VM_PAGER_PEND) {
782 				if (ptmp->pg_flags & PG_WANTED)
783 					wakeup(ptmp);
784 
785 				atomic_clearbits_int(&ptmp->pg_flags,
786 				    PG_WANTED|PG_BUSY);
787 				UVM_PAGE_OWN(ptmp, NULL);
788 				atomic_setbits_int(&ptmp->pg_flags,
789 				    PG_CLEAN|PG_CLEANCHK);
790 				if ((flags & PGO_FREE) == 0)
791 					pmap_clear_modify(ptmp);
792 			}
793 
794 			/* dispose of page */
795 			if (flags & PGO_DEACTIVATE) {
796 				if (ptmp->wire_count == 0) {
797 					pmap_page_protect(ptmp, PROT_NONE);
798 					uvm_pagedeactivate(ptmp);
799 				}
800 			} else if (flags & PGO_FREE &&
801 			    result != VM_PAGER_PEND) {
802 				if (result != VM_PAGER_OK) {
803 					printf("uvn_flush: obj=%p, "
804 					   "offset=0x%llx.  error "
805 					   "during pageout.\n",
806 					    pp->uobject,
807 					    (long long)pp->offset);
808 					printf("uvn_flush: WARNING: "
809 					    "changes to page may be "
810 					    "lost!\n");
811 					retval = FALSE;
812 				}
813 				pmap_page_protect(ptmp, PROT_NONE);
814 				uvm_pageclean(ptmp);
815 				TAILQ_INSERT_TAIL(&dead, ptmp, pageq);
816 			}
817 
818 		}		/* end of "lcv" for loop */
819 
820 	}		/* end of "pp" for loop */
821 
822 	/* done with pagequeues: unlock */
823 	uvm_unlock_pageq();
824 
825 	/* now wait for all I/O if required. */
826 	if (need_iosync) {
827 		while (uvn->u_nio != 0) {
828 			uvn->u_flags |= UVM_VNODE_IOSYNC;
829 			tsleep_nsec(&uvn->u_nio, PVM, "uvn_flush", INFSLP);
830 		}
831 		if (uvn->u_flags & UVM_VNODE_IOSYNCWANTED)
832 			wakeup(&uvn->u_flags);
833 		uvn->u_flags &= ~(UVM_VNODE_IOSYNC|UVM_VNODE_IOSYNCWANTED);
834 	}
835 
836 	uvm_pglistfree(&dead);
837 
838 	return(retval);
839 }
840 
841 /*
842  * uvn_cluster
843  *
844  * we are about to do I/O in an object at offset.   this function is called
845  * to establish a range of offsets around "offset" in which we can cluster
846  * I/O.
847  */
848 
849 void
850 uvn_cluster(struct uvm_object *uobj, voff_t offset, voff_t *loffset,
851     voff_t *hoffset)
852 {
853 	struct uvm_vnode *uvn = (struct uvm_vnode *) uobj;
854 	*loffset = offset;
855 
856 	if (*loffset >= uvn->u_size)
857 		panic("uvn_cluster: offset out of range");
858 
859 	/*
860 	 * XXX: old pager claims we could use VOP_BMAP to get maxcontig value.
861 	 */
862 	*hoffset = *loffset + MAXBSIZE;
863 	if (*hoffset > round_page(uvn->u_size))	/* past end? */
864 		*hoffset = round_page(uvn->u_size);
865 
866 	return;
867 }
868 
869 /*
870  * uvn_put: flush page data to backing store.
871  *
872  * => prefer map unlocked (not required)
873  * => flags: PGO_SYNCIO -- use sync. I/O
874  * => note: caller must set PG_CLEAN and pmap_clear_modify (if needed)
875  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
876  *	[thus we never do async i/o!  see iodone comment]
877  */
878 int
879 uvn_put(struct uvm_object *uobj, struct vm_page **pps, int npages, int flags)
880 {
881 	struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
882 	int retval;
883 
884 	KERNEL_ASSERT_LOCKED();
885 
886 	retval = uvm_vnode_lock(uvn);
887 	if (retval)
888 		return(retval);
889 	retval = uvn_io(uvn, pps, npages, flags, UIO_WRITE);
890 	uvm_vnode_unlock(uvn);
891 
892 	return(retval);
893 }
894 
895 /*
896  * uvn_get: get pages (synchronously) from backing store
897  *
898  * => prefer map unlocked (not required)
899  * => flags: PGO_ALLPAGES: get all of the pages
900  *           PGO_LOCKED: fault data structures are locked
901  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
902  * => NOTE: caller must check for released pages!!
903  */
904 int
905 uvn_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
906     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
907 {
908 	struct uvm_vnode *uvn = (struct uvm_vnode *)uobj;
909 	voff_t current_offset;
910 	struct vm_page *ptmp;
911 	int lcv, result, gotpages, retval;
912 	boolean_t done;
913 
914 	KERNEL_ASSERT_LOCKED();
915 
916 	/* step 1: handled the case where fault data structures are locked. */
917 	if (flags & PGO_LOCKED) {
918 		/*
919 		 * gotpages is the current number of pages we've gotten (which
920 		 * we pass back up to caller via *npagesp.
921 		 */
922 		gotpages = 0;
923 
924 		/*
925 		 * step 1a: get pages that are already resident.   only do this
926 		 * if the data structures are locked (i.e. the first time
927 		 * through).
928 		 */
929 		done = TRUE;	/* be optimistic */
930 
931 		for (lcv = 0, current_offset = offset ; lcv < *npagesp ;
932 		    lcv++, current_offset += PAGE_SIZE) {
933 
934 			/* do we care about this page?  if not, skip it */
935 			if (pps[lcv] == PGO_DONTCARE)
936 				continue;
937 
938 			/* lookup page */
939 			ptmp = uvm_pagelookup(uobj, current_offset);
940 
941 			/* to be useful must get a non-busy, non-released pg */
942 			if (ptmp == NULL ||
943 			    (ptmp->pg_flags & PG_BUSY) != 0) {
944 				if (lcv == centeridx || (flags & PGO_ALLPAGES)
945 				    != 0)
946 					done = FALSE;	/* need to do a wait or I/O! */
947 				continue;
948 			}
949 
950 			/*
951 			 * useful page: busy it and plug it in our
952 			 * result array
953 			 */
954 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
955 			UVM_PAGE_OWN(ptmp, "uvn_get1");
956 			pps[lcv] = ptmp;
957 			gotpages++;
958 
959 		}
960 
961 		/*
962 		 * XXX: given the "advice", should we consider async read-ahead?
963 		 * XXX: fault current does deactive of pages behind us.  is
964 		 * this good (other callers might now).
965 		 */
966 		/*
967 		 * XXX: read-ahead currently handled by buffer cache (bread)
968 		 * level.
969 		 * XXX: no async i/o available.
970 		 * XXX: so we don't do anything now.
971 		 */
972 
973 		/*
974 		 * step 1c: now we've either done everything needed or we to
975 		 * unlock and do some waiting or I/O.
976 		 */
977 
978 		*npagesp = gotpages;		/* let caller know */
979 		if (done)
980 			return(VM_PAGER_OK);		/* bingo! */
981 		else
982 			return(VM_PAGER_UNLOCK);
983 	}
984 
985 	/*
986 	 * Before getting non-resident pages which must be populate with data
987 	 * using I/O on the backing vnode, lock the same vnode. Such pages are
988 	 * about to be allocated and busied (i.e. PG_BUSY) by the current
989 	 * thread. Allocating and busying the page(s) before acquiring the
990 	 * vnode lock could cause a deadlock with uvn_flush() which acquires the
991 	 * vnode lock before waiting on pages to become unbusy and then flushed.
992 	 */
993 	retval = uvm_vnode_lock(uvn);
994 	if (retval)
995 		return(retval);
996 
997 	/*
998 	 * step 2: get non-resident or busy pages.
999 	 * data structures are unlocked.
1000 	 *
1001 	 * XXX: because we can't do async I/O at this level we get things
1002 	 * page at a time (otherwise we'd chunk).   the VOP_READ() will do
1003 	 * async-read-ahead for us at a lower level.
1004 	 */
1005 	for (lcv = 0, current_offset = offset;
1006 			 lcv < *npagesp ; lcv++, current_offset += PAGE_SIZE) {
1007 
1008 		/* skip over pages we've already gotten or don't want */
1009 		/* skip over pages we don't _have_ to get */
1010 		if (pps[lcv] != NULL || (lcv != centeridx &&
1011 		    (flags & PGO_ALLPAGES) == 0))
1012 			continue;
1013 
1014 		/*
1015 		 * we have yet to locate the current page (pps[lcv]).   we first
1016 		 * look for a page that is already at the current offset.   if
1017 		 * we fine a page, we check to see if it is busy or released.
1018 		 * if that is the case, then we sleep on the page until it is
1019 		 * no longer busy or released and repeat the lookup.    if the
1020 		 * page we found is neither busy nor released, then we busy it
1021 		 * (so we own it) and plug it into pps[lcv].   this breaks the
1022 		 * following while loop and indicates we are ready to move on
1023 		 * to the next page in the "lcv" loop above.
1024 		 *
1025 		 * if we exit the while loop with pps[lcv] still set to NULL,
1026 		 * then it means that we allocated a new busy/fake/clean page
1027 		 * ptmp in the object and we need to do I/O to fill in the data.
1028 		 */
1029 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
1030 			/* look for a current page */
1031 			ptmp = uvm_pagelookup(uobj, current_offset);
1032 
1033 			/* nope?   allocate one now (if we can) */
1034 			if (ptmp == NULL) {
1035 				ptmp = uvm_pagealloc(uobj, current_offset,
1036 				    NULL, 0);
1037 
1038 				/* out of RAM? */
1039 				if (ptmp == NULL) {
1040 					uvm_wait("uvn_getpage");
1041 
1042 					/* goto top of pps while loop */
1043 					continue;
1044 				}
1045 
1046 				/*
1047 				 * got new page ready for I/O.  break pps
1048 				 * while loop.  pps[lcv] is still NULL.
1049 				 */
1050 				break;
1051 			}
1052 
1053 			/* page is there, see if we need to wait on it */
1054 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1055 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1056 				tsleep_nsec(ptmp, PVM, "uvn_get", INFSLP);
1057 				continue;	/* goto top of pps while loop */
1058 			}
1059 
1060 			/*
1061 			 * if we get here then the page has become resident
1062 			 * and unbusy between steps 1 and 2.  we busy it
1063 			 * now (so we own it) and set pps[lcv] (so that we
1064 			 * exit the while loop).
1065 			 */
1066 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1067 			UVM_PAGE_OWN(ptmp, "uvn_get2");
1068 			pps[lcv] = ptmp;
1069 		}
1070 
1071 		/*
1072 		 * if we own the a valid page at the correct offset, pps[lcv]
1073 		 * will point to it.   nothing more to do except go to the
1074 		 * next page.
1075 		 */
1076 		if (pps[lcv])
1077 			continue;			/* next lcv */
1078 
1079 		/*
1080 		 * we have a "fake/busy/clean" page that we just allocated.  do
1081 		 * I/O to fill it with valid data.
1082 		 */
1083 		result = uvn_io(uvn, &ptmp, 1, PGO_SYNCIO, UIO_READ);
1084 
1085 		/*
1086 		 * I/O done.  because we used syncio the result can not be
1087 		 * PEND or AGAIN.
1088 		 */
1089 		if (result != VM_PAGER_OK) {
1090 			uvm_vnode_unlock(uvn);
1091 
1092 			if (ptmp->pg_flags & PG_WANTED)
1093 				wakeup(ptmp);
1094 
1095 			atomic_clearbits_int(&ptmp->pg_flags,
1096 			    PG_WANTED|PG_BUSY);
1097 			UVM_PAGE_OWN(ptmp, NULL);
1098 			uvm_lock_pageq();
1099 			uvm_pagefree(ptmp);
1100 			uvm_unlock_pageq();
1101 			return(result);
1102 		}
1103 
1104 		/*
1105 		 * we got the page!   clear the fake flag (indicates valid
1106 		 * data now in page) and plug into our result array.   note
1107 		 * that page is still busy.
1108 		 *
1109 		 * it is the callers job to:
1110 		 * => check if the page is released
1111 		 * => unbusy the page
1112 		 * => activate the page
1113 		 */
1114 
1115 		/* data is valid ... */
1116 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1117 		pmap_clear_modify(ptmp);		/* ... and clean */
1118 		pps[lcv] = ptmp;
1119 
1120 	}
1121 
1122 	uvm_vnode_unlock(uvn);
1123 
1124 	return (VM_PAGER_OK);
1125 }
1126 
1127 /*
1128  * uvn_io: do I/O to a vnode
1129  *
1130  * => uvn: the backing vnode must be locked
1131  * => prefer map unlocked (not required)
1132  * => flags: PGO_SYNCIO -- use sync. I/O
1133  * => XXX: currently we use VOP_READ/VOP_WRITE which are only sync.
1134  *	[thus we never do async i/o!  see iodone comment]
1135  */
1136 
1137 int
1138 uvn_io(struct uvm_vnode *uvn, vm_page_t *pps, int npages, int flags, int rw)
1139 {
1140 	struct vnode *vn;
1141 	struct uio uio;
1142 	struct iovec iov;
1143 	vaddr_t kva;
1144 	off_t file_offset;
1145 	int waitf, result, mapinflags;
1146 	size_t got, wanted;
1147 	int netunlocked = 0;
1148 
1149 	/* init values */
1150 	waitf = (flags & PGO_SYNCIO) ? M_WAITOK : M_NOWAIT;
1151 	vn = uvn->u_vnode;
1152 	file_offset = pps[0]->offset;
1153 
1154 	/* check for sync'ing I/O. */
1155 	while (uvn->u_flags & UVM_VNODE_IOSYNC) {
1156 		if (waitf == M_NOWAIT) {
1157 			return(VM_PAGER_AGAIN);
1158 		}
1159 		uvn->u_flags |= UVM_VNODE_IOSYNCWANTED;
1160 		tsleep_nsec(&uvn->u_flags, PVM, "uvn_iosync", INFSLP);
1161 	}
1162 
1163 	/* check size */
1164 	if (file_offset >= uvn->u_size) {
1165 		return(VM_PAGER_BAD);
1166 	}
1167 
1168 	/* first try and map the pages in (without waiting) */
1169 	mapinflags = (rw == UIO_READ) ?
1170 	    UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1171 
1172 	kva = uvm_pagermapin(pps, npages, mapinflags);
1173 	if (kva == 0 && waitf == M_NOWAIT) {
1174 		return(VM_PAGER_AGAIN);
1175 	}
1176 
1177 	/*
1178 	 * ok, now bump u_nio up.   at this point we are done with uvn
1179 	 * and can unlock it.   if we still don't have a kva, try again
1180 	 * (this time with sleep ok).
1181 	 */
1182 	uvn->u_nio++;			/* we have an I/O in progress! */
1183 	if (kva == 0)
1184 		kva = uvm_pagermapin(pps, npages,
1185 		    mapinflags | UVMPAGER_MAPIN_WAITOK);
1186 
1187 	/*
1188 	 * ok, mapped in.  our pages are PG_BUSY so they are not going to
1189 	 * get touched (so we can look at "offset" without having to lock
1190 	 * the object).  set up for I/O.
1191 	 */
1192 	/* fill out uio/iov */
1193 	iov.iov_base = (caddr_t) kva;
1194 	wanted = (size_t)npages << PAGE_SHIFT;
1195 	if (file_offset + wanted > uvn->u_size)
1196 		wanted = uvn->u_size - file_offset;	/* XXX: needed? */
1197 	iov.iov_len = wanted;
1198 	uio.uio_iov = &iov;
1199 	uio.uio_iovcnt = 1;
1200 	uio.uio_offset = file_offset;
1201 	uio.uio_segflg = UIO_SYSSPACE;
1202 	uio.uio_rw = rw;
1203 	uio.uio_resid = wanted;
1204 	uio.uio_procp = curproc;
1205 
1206 	/*
1207 	 * This process may already have the NET_LOCK(), if we
1208 	 * faulted in copyin() or copyout() in the network stack.
1209 	 */
1210 	if (rw_status(&netlock) == RW_WRITE) {
1211 		NET_UNLOCK();
1212 		netunlocked = 1;
1213 	}
1214 
1215 	/* do the I/O!  (XXX: curproc?) */
1216 	if (rw == UIO_READ)
1217 		result = VOP_READ(vn, &uio, 0, curproc->p_ucred);
1218 	else
1219 		result = VOP_WRITE(vn, &uio,
1220 		    (flags & PGO_PDFREECLUST) ? IO_NOCACHE : 0,
1221 		    curproc->p_ucred);
1222 
1223 	if (netunlocked)
1224 		NET_LOCK();
1225 
1226 	/* zero out rest of buffer (if needed) */
1227 	if (result == 0) {
1228 		got = wanted - uio.uio_resid;
1229 
1230 		if (wanted && got == 0) {
1231 			result = EIO;		/* XXX: error? */
1232 		} else if (got < PAGE_SIZE * npages && rw == UIO_READ) {
1233 			memset((void *) (kva + got), 0,
1234 			       ((size_t)npages << PAGE_SHIFT) - got);
1235 		}
1236 	}
1237 
1238 	/* now remove pager mapping */
1239 	uvm_pagermapout(kva, npages);
1240 
1241 	/* now clean up the object (i.e. drop I/O count) */
1242 	uvn->u_nio--;			/* I/O DONE! */
1243 	if ((uvn->u_flags & UVM_VNODE_IOSYNC) != 0 && uvn->u_nio == 0) {
1244 		wakeup(&uvn->u_nio);
1245 	}
1246 
1247 	if (result == 0)
1248 		return(VM_PAGER_OK);
1249 
1250 	if (result == EIO) {
1251 		/* Signal back to uvm_vnode_unlock(). */
1252 		uvn->u_flags |= UVM_VNODE_IOERROR;
1253 	}
1254 	return(VM_PAGER_ERROR);
1255 }
1256 
1257 /*
1258  * uvm_vnp_uncache: disable "persisting" in a vnode... when last reference
1259  * is gone we will kill the object (flushing dirty pages back to the vnode
1260  * if needed).
1261  *
1262  * => returns TRUE if there was no uvm_object attached or if there was
1263  *	one and we killed it [i.e. if there is no active uvn]
1264  * => called with the vnode VOP_LOCK'd [we will unlock it for I/O, if
1265  *	needed]
1266  *
1267  * => XXX: given that we now kill uvn's when a vnode is recycled (without
1268  *	having to hold a reference on the vnode) and given a working
1269  *	uvm_vnp_sync(), how does that effect the need for this function?
1270  *      [XXXCDC: seems like it can die?]
1271  *
1272  * => XXX: this function should DIE once we merge the VM and buffer
1273  *	cache.
1274  *
1275  * research shows that this is called in the following places:
1276  * ext2fs_truncate, ffs_truncate, detrunc[msdosfs]: called when vnode
1277  *	changes sizes
1278  * ext2fs_write, WRITE [ufs_readwrite], msdosfs_write: called when we
1279  *	are written to
1280  * ex2fs_chmod, ufs_chmod: called if VTEXT vnode and the sticky bit
1281  *	is off
1282  * ffs_realloccg: when we can't extend the current block and have
1283  *	to allocate a new one we call this [XXX: why?]
1284  * nfsrv_rename, rename_files: called when the target filename is there
1285  *	and we want to remove it
1286  * nfsrv_remove, sys_unlink: called on file we are removing
1287  * nfsrv_access: if VTEXT and we want WRITE access and we don't uncache
1288  *	then return "text busy"
1289  * nfs_open: seems to uncache any file opened with nfs
1290  * vn_writechk: if VTEXT vnode and can't uncache return "text busy"
1291  * fusefs_open: uncaches any file that is opened
1292  * fusefs_write: uncaches on every write
1293  */
1294 
1295 int
1296 uvm_vnp_uncache(struct vnode *vp)
1297 {
1298 	struct uvm_vnode *uvn = vp->v_uvm;
1299 
1300 	/* lock uvn part of the vnode and check if we need to do anything */
1301 
1302 	if ((uvn->u_flags & UVM_VNODE_VALID) == 0 ||
1303 			(uvn->u_flags & UVM_VNODE_BLOCKED) != 0) {
1304 		return(TRUE);
1305 	}
1306 
1307 	/*
1308 	 * we have a valid, non-blocked uvn.   clear persist flag.
1309 	 * if uvn is currently active we can return now.
1310 	 */
1311 	uvn->u_flags &= ~UVM_VNODE_CANPERSIST;
1312 	if (uvn->u_obj.uo_refs) {
1313 		return(FALSE);
1314 	}
1315 
1316 	/*
1317 	 * uvn is currently persisting!   we have to gain a reference to
1318 	 * it so that we can call uvn_detach to kill the uvn.
1319 	 */
1320 	vref(vp);			/* seems ok, even with VOP_LOCK */
1321 	uvn->u_obj.uo_refs++;		/* value is now 1 */
1322 
1323 #ifdef VFSLCKDEBUG
1324 	/*
1325 	 * carry over sanity check from old vnode pager: the vnode should
1326 	 * be VOP_LOCK'd, and we confirm it here.
1327 	 */
1328 	if ((vp->v_flag & VLOCKSWORK) && !VOP_ISLOCKED(vp))
1329 		panic("uvm_vnp_uncache: vnode not locked!");
1330 #endif
1331 
1332 	/*
1333 	 * now drop our reference to the vnode.   if we have the sole
1334 	 * reference to the vnode then this will cause it to die [as we
1335 	 * just cleared the persist flag].   we have to unlock the vnode
1336 	 * while we are doing this as it may trigger I/O.
1337 	 *
1338 	 * XXX: it might be possible for uvn to get reclaimed while we are
1339 	 * unlocked causing us to return TRUE when we should not.   we ignore
1340 	 * this as a false-positive return value doesn't hurt us.
1341 	 */
1342 	VOP_UNLOCK(vp);
1343 	uvn_detach(&uvn->u_obj);
1344 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1345 
1346 	return(TRUE);
1347 }
1348 
1349 /*
1350  * uvm_vnp_setsize: grow or shrink a vnode uvn
1351  *
1352  * grow   => just update size value
1353  * shrink => toss un-needed pages
1354  *
1355  * => we assume that the caller has a reference of some sort to the
1356  *	vnode in question so that it will not be yanked out from under
1357  *	us.
1358  *
1359  * called from:
1360  *  => truncate fns (ext2fs_truncate, ffs_truncate, detrunc[msdos],
1361  *     fusefs_setattr)
1362  *  => "write" fns (ext2fs_write, WRITE [ufs/ufs], msdosfs_write, nfs_write
1363  *     fusefs_write)
1364  *  => ffs_balloc [XXX: why? doesn't WRITE handle?]
1365  *  => NFS: nfs_loadattrcache, nfs_getattrcache, nfs_setattr
1366  *  => union fs: union_newsize
1367  */
1368 
1369 void
1370 uvm_vnp_setsize(struct vnode *vp, off_t newsize)
1371 {
1372 	struct uvm_vnode *uvn = vp->v_uvm;
1373 
1374 	/* lock uvn and check for valid object, and if valid: do it! */
1375 	if (uvn->u_flags & UVM_VNODE_VALID) {
1376 
1377 		/*
1378 		 * now check if the size has changed: if we shrink we had better
1379 		 * toss some pages...
1380 		 */
1381 
1382 		if (uvn->u_size > newsize) {
1383 			(void)uvn_flush(&uvn->u_obj, newsize,
1384 			    uvn->u_size, PGO_FREE);
1385 		}
1386 		uvn->u_size = newsize;
1387 	}
1388 }
1389 
1390 /*
1391  * uvm_vnp_sync: flush all dirty VM pages back to their backing vnodes.
1392  *
1393  * => called from sys_sync with no VM structures locked
1394  * => only one process can do a sync at a time (because the uvn
1395  *    structure only has one queue for sync'ing).  we ensure this
1396  *    by holding the uvn_sync_lock while the sync is in progress.
1397  *    other processes attempting a sync will sleep on this lock
1398  *    until we are done.
1399  */
1400 void
1401 uvm_vnp_sync(struct mount *mp)
1402 {
1403 	struct uvm_vnode *uvn;
1404 	struct vnode *vp;
1405 
1406 	/*
1407 	 * step 1: ensure we are only ones using the uvn_sync_q by locking
1408 	 * our lock...
1409 	 */
1410 	rw_enter_write(&uvn_sync_lock);
1411 
1412 	/*
1413 	 * step 2: build up a simpleq of uvns of interest based on the
1414 	 * write list.   we gain a reference to uvns of interest.
1415 	 */
1416 	SIMPLEQ_INIT(&uvn_sync_q);
1417 	LIST_FOREACH(uvn, &uvn_wlist, u_wlist) {
1418 		vp = uvn->u_vnode;
1419 		if (mp && vp->v_mount != mp)
1420 			continue;
1421 
1422 		/*
1423 		 * If the vnode is "blocked" it means it must be dying, which
1424 		 * in turn means its in the process of being flushed out so
1425 		 * we can safely skip it.
1426 		 *
1427 		 * note that uvn must already be valid because we found it on
1428 		 * the wlist (this also means it can't be ALOCK'd).
1429 		 */
1430 		if ((uvn->u_flags & UVM_VNODE_BLOCKED) != 0)
1431 			continue;
1432 
1433 		/*
1434 		 * gain reference.   watch out for persisting uvns (need to
1435 		 * regain vnode REF).
1436 		 */
1437 		if (uvn->u_obj.uo_refs == 0)
1438 			vref(vp);
1439 		uvn->u_obj.uo_refs++;
1440 
1441 		SIMPLEQ_INSERT_HEAD(&uvn_sync_q, uvn, u_syncq);
1442 	}
1443 
1444 	/* step 3: we now have a list of uvn's that may need cleaning. */
1445 	SIMPLEQ_FOREACH(uvn, &uvn_sync_q, u_syncq) {
1446 #ifdef DEBUG
1447 		if (uvn->u_flags & UVM_VNODE_DYING) {
1448 			printf("uvm_vnp_sync: dying vnode on sync list\n");
1449 		}
1450 #endif
1451 		uvn_flush(&uvn->u_obj, 0, 0, PGO_CLEANIT|PGO_ALLPAGES|PGO_DOACTCLUST);
1452 
1453 		/*
1454 		 * if we have the only reference and we just cleaned the uvn,
1455 		 * then we can pull it out of the UVM_VNODE_WRITEABLE state
1456 		 * thus allowing us to avoid thinking about flushing it again
1457 		 * on later sync ops.
1458 		 */
1459 		if (uvn->u_obj.uo_refs == 1 &&
1460 		    (uvn->u_flags & UVM_VNODE_WRITEABLE)) {
1461 			LIST_REMOVE(uvn, u_wlist);
1462 			uvn->u_flags &= ~UVM_VNODE_WRITEABLE;
1463 		}
1464 
1465 		/* now drop our reference to the uvn */
1466 		uvn_detach(&uvn->u_obj);
1467 	}
1468 
1469 	rw_exit_write(&uvn_sync_lock);
1470 }
1471 
1472 int
1473 uvm_vnode_lock(struct uvm_vnode *uvn)
1474 {
1475 	int error;
1476 	int netunlocked = 0;
1477 
1478 	if (uvn->u_flags & UVM_VNODE_VNISLOCKED)
1479 		return(VM_PAGER_OK);
1480 
1481 	/*
1482 	 * This thread may already have the net lock, if we faulted in copyin()
1483 	 * or copyout() in the network stack.
1484 	 */
1485 	if (rw_status(&netlock) == RW_WRITE) {
1486 		NET_UNLOCK();
1487 		netunlocked = 1;
1488 	}
1489 
1490 	/*
1491 	 * This thread may already have this vnode locked, if we faulted in
1492 	 * copyin() or copyout() on a region backed by this vnode
1493 	 * while doing I/O to the vnode. If this is the case, don't panic but
1494 	 * instead return an error; as dictated by the LK_RECURSEFAIL flag.
1495 	 *
1496 	 * XXX this is a stopgap to prevent a panic.
1497 	 * Ideally, this kind of operation *should* work.
1498 	 */
1499 	error = vn_lock(uvn->u_vnode, LK_EXCLUSIVE | LK_RECURSEFAIL);
1500 	if (netunlocked)
1501 		NET_LOCK();
1502 	return(error ? VM_PAGER_ERROR : VM_PAGER_OK);
1503 }
1504 
1505 void
1506 uvm_vnode_unlock(struct uvm_vnode *uvn)
1507 {
1508 	int error;
1509 
1510 	if ((uvn->u_flags & UVM_VNODE_VNISLOCKED) == 0)
1511 		VOP_UNLOCK(uvn->u_vnode);
1512 
1513 	error = uvn->u_flags & UVM_VNODE_IOERROR;
1514 	uvn->u_flags &= ~UVM_VNODE_IOERROR;
1515 	if (error) {
1516 		while (rebooting)
1517 			tsleep_nsec(&rebooting, PVM, "uvndead", INFSLP);
1518 	}
1519 }
1520