1 /* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 58 /* #define SSE2 0 Is SSE2 is available? */ 59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ 61 62 /* ---------------------------------------------------------------------- */ 63 /* -- Global Includes --------------------------------------------------- */ 64 /* ---------------------------------------------------------------------- */ 65 66 #include <sys/types.h> 67 #include <endian.h> 68 #include <string.h> 69 #include <stdio.h> 70 #include <stdlib.h> 71 #include <stddef.h> 72 73 #include "xmalloc.h" 74 #include "umac.h" 75 #include "misc.h" 76 77 /* ---------------------------------------------------------------------- */ 78 /* --- Primitive Data Types --- */ 79 /* ---------------------------------------------------------------------- */ 80 81 /* The following assumptions may need change on your system */ 82 typedef u_int8_t UINT8; /* 1 byte */ 83 typedef u_int16_t UINT16; /* 2 byte */ 84 typedef u_int32_t UINT32; /* 4 byte */ 85 typedef u_int64_t UINT64; /* 8 bytes */ 86 typedef unsigned int UWORD; /* Register */ 87 88 /* ---------------------------------------------------------------------- */ 89 /* --- Constants -------------------------------------------------------- */ 90 /* ---------------------------------------------------------------------- */ 91 92 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 93 94 /* Message "words" are read from memory in an endian-specific manner. */ 95 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 96 /* be set true if the host computer is little-endian. */ 97 98 #if BYTE_ORDER == LITTLE_ENDIAN 99 #define __LITTLE_ENDIAN__ 1 100 #else 101 #define __LITTLE_ENDIAN__ 0 102 #endif 103 104 /* ---------------------------------------------------------------------- */ 105 /* ---------------------------------------------------------------------- */ 106 /* ----- Architecture Specific ------------------------------------------ */ 107 /* ---------------------------------------------------------------------- */ 108 /* ---------------------------------------------------------------------- */ 109 110 111 /* ---------------------------------------------------------------------- */ 112 /* ---------------------------------------------------------------------- */ 113 /* ----- Primitive Routines --------------------------------------------- */ 114 /* ---------------------------------------------------------------------- */ 115 /* ---------------------------------------------------------------------- */ 116 117 118 /* ---------------------------------------------------------------------- */ 119 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 120 /* ---------------------------------------------------------------------- */ 121 122 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 123 124 /* ---------------------------------------------------------------------- */ 125 /* --- Endian Conversion --- Forcing assembly on some platforms */ 126 /* ---------------------------------------------------------------------- */ 127 128 /* The following definitions use the above reversal-primitives to do the right 129 * thing on endian specific load and stores. 130 */ 131 132 #if BYTE_ORDER == LITTLE_ENDIAN 133 #define LOAD_UINT32_REVERSED(p) get_u32(p) 134 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 135 #else 136 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 137 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 138 #endif 139 140 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 141 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 142 143 144 145 /* ---------------------------------------------------------------------- */ 146 /* ---------------------------------------------------------------------- */ 147 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 148 /* ---------------------------------------------------------------------- */ 149 /* ---------------------------------------------------------------------- */ 150 151 /* UMAC uses AES with 16 byte block and key lengths */ 152 #define AES_BLOCK_LEN 16 153 154 #ifdef WITH_OPENSSL 155 #include <openssl/aes.h> 156 typedef AES_KEY aes_int_key[1]; 157 #define aes_encryption(in,out,int_key) \ 158 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 159 #define aes_key_setup(key,int_key) \ 160 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 161 #else 162 #include "rijndael.h" 163 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 164 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 165 #define aes_encryption(in,out,int_key) \ 166 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 167 #define aes_key_setup(key,int_key) \ 168 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 169 UMAC_KEY_LEN*8) 170 #endif 171 172 /* The user-supplied UMAC key is stretched using AES in a counter 173 * mode to supply all random bits needed by UMAC. The kdf function takes 174 * an AES internal key representation 'key' and writes a stream of 175 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct 176 * 'ndx' causes a distinct byte stream. 177 */ 178 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) 179 { 180 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 181 UINT8 out_buf[AES_BLOCK_LEN]; 182 UINT8 *dst_buf = (UINT8 *)buffer_ptr; 183 int i; 184 185 /* Setup the initial value */ 186 in_buf[AES_BLOCK_LEN-9] = ndx; 187 in_buf[AES_BLOCK_LEN-1] = i = 1; 188 189 while (nbytes >= AES_BLOCK_LEN) { 190 aes_encryption(in_buf, out_buf, key); 191 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 192 in_buf[AES_BLOCK_LEN-1] = ++i; 193 nbytes -= AES_BLOCK_LEN; 194 dst_buf += AES_BLOCK_LEN; 195 } 196 if (nbytes) { 197 aes_encryption(in_buf, out_buf, key); 198 memcpy(dst_buf,out_buf,nbytes); 199 } 200 } 201 202 /* The final UHASH result is XOR'd with the output of a pseudorandom 203 * function. Here, we use AES to generate random output and 204 * xor the appropriate bytes depending on the last bits of nonce. 205 * This scheme is optimized for sequential, increasing big-endian nonces. 206 */ 207 208 typedef struct { 209 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 210 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 211 aes_int_key prf_key; /* Expanded AES key for PDF */ 212 } pdf_ctx; 213 214 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 215 { 216 UINT8 buf[UMAC_KEY_LEN]; 217 218 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 219 aes_key_setup(buf, pc->prf_key); 220 221 /* Initialize pdf and cache */ 222 memset(pc->nonce, 0, sizeof(pc->nonce)); 223 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 224 } 225 226 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 227 { 228 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 229 * of the AES output. If last time around we returned the ndx-1st 230 * element, then we may have the result in the cache already. 231 */ 232 233 #if (UMAC_OUTPUT_LEN == 4) 234 #define LOW_BIT_MASK 3 235 #elif (UMAC_OUTPUT_LEN == 8) 236 #define LOW_BIT_MASK 1 237 #elif (UMAC_OUTPUT_LEN > 8) 238 #define LOW_BIT_MASK 0 239 #endif 240 union { 241 UINT8 tmp_nonce_lo[4]; 242 UINT32 align; 243 } t; 244 #if LOW_BIT_MASK != 0 245 int ndx = nonce[7] & LOW_BIT_MASK; 246 #endif 247 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 248 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 249 250 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 251 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 252 { 253 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 254 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 255 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 256 } 257 258 #if (UMAC_OUTPUT_LEN == 4) 259 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 260 #elif (UMAC_OUTPUT_LEN == 8) 261 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 262 #elif (UMAC_OUTPUT_LEN == 12) 263 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 264 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 265 #elif (UMAC_OUTPUT_LEN == 16) 266 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 267 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 268 #endif 269 } 270 271 /* ---------------------------------------------------------------------- */ 272 /* ---------------------------------------------------------------------- */ 273 /* ----- Begin NH Hash Section ------------------------------------------ */ 274 /* ---------------------------------------------------------------------- */ 275 /* ---------------------------------------------------------------------- */ 276 277 /* The NH-based hash functions used in UMAC are described in the UMAC paper 278 * and specification, both of which can be found at the UMAC website. 279 * The interface to this implementation has two 280 * versions, one expects the entire message being hashed to be passed 281 * in a single buffer and returns the hash result immediately. The second 282 * allows the message to be passed in a sequence of buffers. In the 283 * muliple-buffer interface, the client calls the routine nh_update() as 284 * many times as necessary. When there is no more data to be fed to the 285 * hash, the client calls nh_final() which calculates the hash output. 286 * Before beginning another hash calculation the nh_reset() routine 287 * must be called. The single-buffer routine, nh(), is equivalent to 288 * the sequence of calls nh_update() and nh_final(); however it is 289 * optimized and should be prefered whenever the multiple-buffer interface 290 * is not necessary. When using either interface, it is the client's 291 * responsability to pass no more than L1_KEY_LEN bytes per hash result. 292 * 293 * The routine nh_init() initializes the nh_ctx data structure and 294 * must be called once, before any other PDF routine. 295 */ 296 297 /* The "nh_aux" routines do the actual NH hashing work. They 298 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 299 * produce output for all STREAMS NH iterations in one call, 300 * allowing the parallel implementation of the streams. 301 */ 302 303 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 304 #define L1_KEY_LEN 1024 /* Internal key bytes */ 305 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 306 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 307 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 308 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 309 310 typedef struct { 311 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 312 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 313 int next_data_empty; /* Bookeeping variable for data buffer. */ 314 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ 315 UINT64 state[STREAMS]; /* on-line state */ 316 } nh_ctx; 317 318 319 #if (UMAC_OUTPUT_LEN == 4) 320 321 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 322 /* NH hashing primitive. Previous (partial) hash result is loaded and 323 * then stored via hp pointer. The length of the data pointed at by "dp", 324 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 325 * is expected to be endian compensated in memory at key setup. 326 */ 327 { 328 UINT64 h; 329 UWORD c = dlen / 32; 330 UINT32 *k = (UINT32 *)kp; 331 const UINT32 *d = (const UINT32 *)dp; 332 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 333 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 334 335 h = *((UINT64 *)hp); 336 do { 337 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 338 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 339 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 340 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 341 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 342 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 343 h += MUL64((k0 + d0), (k4 + d4)); 344 h += MUL64((k1 + d1), (k5 + d5)); 345 h += MUL64((k2 + d2), (k6 + d6)); 346 h += MUL64((k3 + d3), (k7 + d7)); 347 348 d += 8; 349 k += 8; 350 } while (--c); 351 *((UINT64 *)hp) = h; 352 } 353 354 #elif (UMAC_OUTPUT_LEN == 8) 355 356 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 357 /* Same as previous nh_aux, but two streams are handled in one pass, 358 * reading and writing 16 bytes of hash-state per call. 359 */ 360 { 361 UINT64 h1,h2; 362 UWORD c = dlen / 32; 363 UINT32 *k = (UINT32 *)kp; 364 const UINT32 *d = (const UINT32 *)dp; 365 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 366 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 367 k8,k9,k10,k11; 368 369 h1 = *((UINT64 *)hp); 370 h2 = *((UINT64 *)hp + 1); 371 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 372 do { 373 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 374 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 375 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 376 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 377 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 378 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 379 380 h1 += MUL64((k0 + d0), (k4 + d4)); 381 h2 += MUL64((k4 + d0), (k8 + d4)); 382 383 h1 += MUL64((k1 + d1), (k5 + d5)); 384 h2 += MUL64((k5 + d1), (k9 + d5)); 385 386 h1 += MUL64((k2 + d2), (k6 + d6)); 387 h2 += MUL64((k6 + d2), (k10 + d6)); 388 389 h1 += MUL64((k3 + d3), (k7 + d7)); 390 h2 += MUL64((k7 + d3), (k11 + d7)); 391 392 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 393 394 d += 8; 395 k += 8; 396 } while (--c); 397 ((UINT64 *)hp)[0] = h1; 398 ((UINT64 *)hp)[1] = h2; 399 } 400 401 #elif (UMAC_OUTPUT_LEN == 12) 402 403 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 404 /* Same as previous nh_aux, but two streams are handled in one pass, 405 * reading and writing 24 bytes of hash-state per call. 406 */ 407 { 408 UINT64 h1,h2,h3; 409 UWORD c = dlen / 32; 410 UINT32 *k = (UINT32 *)kp; 411 const UINT32 *d = (const UINT32 *)dp; 412 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 413 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 414 k8,k9,k10,k11,k12,k13,k14,k15; 415 416 h1 = *((UINT64 *)hp); 417 h2 = *((UINT64 *)hp + 1); 418 h3 = *((UINT64 *)hp + 2); 419 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 420 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 421 do { 422 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 423 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 424 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 425 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 426 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 427 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 428 429 h1 += MUL64((k0 + d0), (k4 + d4)); 430 h2 += MUL64((k4 + d0), (k8 + d4)); 431 h3 += MUL64((k8 + d0), (k12 + d4)); 432 433 h1 += MUL64((k1 + d1), (k5 + d5)); 434 h2 += MUL64((k5 + d1), (k9 + d5)); 435 h3 += MUL64((k9 + d1), (k13 + d5)); 436 437 h1 += MUL64((k2 + d2), (k6 + d6)); 438 h2 += MUL64((k6 + d2), (k10 + d6)); 439 h3 += MUL64((k10 + d2), (k14 + d6)); 440 441 h1 += MUL64((k3 + d3), (k7 + d7)); 442 h2 += MUL64((k7 + d3), (k11 + d7)); 443 h3 += MUL64((k11 + d3), (k15 + d7)); 444 445 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 446 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 447 448 d += 8; 449 k += 8; 450 } while (--c); 451 ((UINT64 *)hp)[0] = h1; 452 ((UINT64 *)hp)[1] = h2; 453 ((UINT64 *)hp)[2] = h3; 454 } 455 456 #elif (UMAC_OUTPUT_LEN == 16) 457 458 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 459 /* Same as previous nh_aux, but two streams are handled in one pass, 460 * reading and writing 24 bytes of hash-state per call. 461 */ 462 { 463 UINT64 h1,h2,h3,h4; 464 UWORD c = dlen / 32; 465 UINT32 *k = (UINT32 *)kp; 466 const UINT32 *d = (const UINT32 *)dp; 467 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 468 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 469 k8,k9,k10,k11,k12,k13,k14,k15, 470 k16,k17,k18,k19; 471 472 h1 = *((UINT64 *)hp); 473 h2 = *((UINT64 *)hp + 1); 474 h3 = *((UINT64 *)hp + 2); 475 h4 = *((UINT64 *)hp + 3); 476 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 477 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 478 do { 479 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 480 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 481 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 482 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 483 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 484 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 485 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 486 487 h1 += MUL64((k0 + d0), (k4 + d4)); 488 h2 += MUL64((k4 + d0), (k8 + d4)); 489 h3 += MUL64((k8 + d0), (k12 + d4)); 490 h4 += MUL64((k12 + d0), (k16 + d4)); 491 492 h1 += MUL64((k1 + d1), (k5 + d5)); 493 h2 += MUL64((k5 + d1), (k9 + d5)); 494 h3 += MUL64((k9 + d1), (k13 + d5)); 495 h4 += MUL64((k13 + d1), (k17 + d5)); 496 497 h1 += MUL64((k2 + d2), (k6 + d6)); 498 h2 += MUL64((k6 + d2), (k10 + d6)); 499 h3 += MUL64((k10 + d2), (k14 + d6)); 500 h4 += MUL64((k14 + d2), (k18 + d6)); 501 502 h1 += MUL64((k3 + d3), (k7 + d7)); 503 h2 += MUL64((k7 + d3), (k11 + d7)); 504 h3 += MUL64((k11 + d3), (k15 + d7)); 505 h4 += MUL64((k15 + d3), (k19 + d7)); 506 507 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 508 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 509 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 510 511 d += 8; 512 k += 8; 513 } while (--c); 514 ((UINT64 *)hp)[0] = h1; 515 ((UINT64 *)hp)[1] = h2; 516 ((UINT64 *)hp)[2] = h3; 517 ((UINT64 *)hp)[3] = h4; 518 } 519 520 /* ---------------------------------------------------------------------- */ 521 #endif /* UMAC_OUTPUT_LENGTH */ 522 /* ---------------------------------------------------------------------- */ 523 524 525 /* ---------------------------------------------------------------------- */ 526 527 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 528 /* This function is a wrapper for the primitive NH hash functions. It takes 529 * as argument "hc" the current hash context and a buffer which must be a 530 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 531 * appropriately according to how much message has been hashed already. 532 */ 533 { 534 UINT8 *key; 535 536 key = hc->nh_key + hc->bytes_hashed; 537 nh_aux(key, buf, hc->state, nbytes); 538 } 539 540 /* ---------------------------------------------------------------------- */ 541 542 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 543 /* We endian convert the keys on little-endian computers to */ 544 /* compensate for the lack of big-endian memory reads during hashing. */ 545 { 546 UWORD iters = num_bytes / bpw; 547 if (bpw == 4) { 548 UINT32 *p = (UINT32 *)buf; 549 do { 550 *p = LOAD_UINT32_REVERSED(p); 551 p++; 552 } while (--iters); 553 } else if (bpw == 8) { 554 UINT32 *p = (UINT32 *)buf; 555 UINT32 t; 556 do { 557 t = LOAD_UINT32_REVERSED(p+1); 558 p[1] = LOAD_UINT32_REVERSED(p); 559 p[0] = t; 560 p += 2; 561 } while (--iters); 562 } 563 } 564 #if (__LITTLE_ENDIAN__) 565 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 566 #else 567 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 568 #endif 569 570 /* ---------------------------------------------------------------------- */ 571 572 static void nh_reset(nh_ctx *hc) 573 /* Reset nh_ctx to ready for hashing of new data */ 574 { 575 hc->bytes_hashed = 0; 576 hc->next_data_empty = 0; 577 hc->state[0] = 0; 578 #if (UMAC_OUTPUT_LEN >= 8) 579 hc->state[1] = 0; 580 #endif 581 #if (UMAC_OUTPUT_LEN >= 12) 582 hc->state[2] = 0; 583 #endif 584 #if (UMAC_OUTPUT_LEN == 16) 585 hc->state[3] = 0; 586 #endif 587 588 } 589 590 /* ---------------------------------------------------------------------- */ 591 592 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 593 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 594 { 595 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 596 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 597 nh_reset(hc); 598 } 599 600 /* ---------------------------------------------------------------------- */ 601 602 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 603 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 604 /* even multiple of HASH_BUF_BYTES. */ 605 { 606 UINT32 i,j; 607 608 j = hc->next_data_empty; 609 if ((j + nbytes) >= HASH_BUF_BYTES) { 610 if (j) { 611 i = HASH_BUF_BYTES - j; 612 memcpy(hc->data+j, buf, i); 613 nh_transform(hc,hc->data,HASH_BUF_BYTES); 614 nbytes -= i; 615 buf += i; 616 hc->bytes_hashed += HASH_BUF_BYTES; 617 } 618 if (nbytes >= HASH_BUF_BYTES) { 619 i = nbytes & ~(HASH_BUF_BYTES - 1); 620 nh_transform(hc, buf, i); 621 nbytes -= i; 622 buf += i; 623 hc->bytes_hashed += i; 624 } 625 j = 0; 626 } 627 memcpy(hc->data + j, buf, nbytes); 628 hc->next_data_empty = j + nbytes; 629 } 630 631 /* ---------------------------------------------------------------------- */ 632 633 static void zero_pad(UINT8 *p, int nbytes) 634 { 635 /* Write "nbytes" of zeroes, beginning at "p" */ 636 if (nbytes >= (int)sizeof(UWORD)) { 637 while ((ptrdiff_t)p % sizeof(UWORD)) { 638 *p = 0; 639 nbytes--; 640 p++; 641 } 642 while (nbytes >= (int)sizeof(UWORD)) { 643 *(UWORD *)p = 0; 644 nbytes -= sizeof(UWORD); 645 p += sizeof(UWORD); 646 } 647 } 648 while (nbytes) { 649 *p = 0; 650 nbytes--; 651 p++; 652 } 653 } 654 655 /* ---------------------------------------------------------------------- */ 656 657 static void nh_final(nh_ctx *hc, UINT8 *result) 658 /* After passing some number of data buffers to nh_update() for integration 659 * into an NH context, nh_final is called to produce a hash result. If any 660 * bytes are in the buffer hc->data, incorporate them into the 661 * NH context. Finally, add into the NH accumulation "state" the total number 662 * of bits hashed. The resulting numbers are written to the buffer "result". 663 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 664 */ 665 { 666 int nh_len, nbits; 667 668 if (hc->next_data_empty != 0) { 669 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 670 ~(L1_PAD_BOUNDARY - 1)); 671 zero_pad(hc->data + hc->next_data_empty, 672 nh_len - hc->next_data_empty); 673 nh_transform(hc, hc->data, nh_len); 674 hc->bytes_hashed += hc->next_data_empty; 675 } else if (hc->bytes_hashed == 0) { 676 nh_len = L1_PAD_BOUNDARY; 677 zero_pad(hc->data, L1_PAD_BOUNDARY); 678 nh_transform(hc, hc->data, nh_len); 679 } 680 681 nbits = (hc->bytes_hashed << 3); 682 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 683 #if (UMAC_OUTPUT_LEN >= 8) 684 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 685 #endif 686 #if (UMAC_OUTPUT_LEN >= 12) 687 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 688 #endif 689 #if (UMAC_OUTPUT_LEN == 16) 690 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 691 #endif 692 nh_reset(hc); 693 } 694 695 /* ---------------------------------------------------------------------- */ 696 697 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 698 UINT32 unpadded_len, UINT8 *result) 699 /* All-in-one nh_update() and nh_final() equivalent. 700 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 701 * well aligned 702 */ 703 { 704 UINT32 nbits; 705 706 /* Initialize the hash state */ 707 nbits = (unpadded_len << 3); 708 709 ((UINT64 *)result)[0] = nbits; 710 #if (UMAC_OUTPUT_LEN >= 8) 711 ((UINT64 *)result)[1] = nbits; 712 #endif 713 #if (UMAC_OUTPUT_LEN >= 12) 714 ((UINT64 *)result)[2] = nbits; 715 #endif 716 #if (UMAC_OUTPUT_LEN == 16) 717 ((UINT64 *)result)[3] = nbits; 718 #endif 719 720 nh_aux(hc->nh_key, buf, result, padded_len); 721 } 722 723 /* ---------------------------------------------------------------------- */ 724 /* ---------------------------------------------------------------------- */ 725 /* ----- Begin UHASH Section -------------------------------------------- */ 726 /* ---------------------------------------------------------------------- */ 727 /* ---------------------------------------------------------------------- */ 728 729 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 730 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 731 * unless the initial data to be hashed is short. After the polynomial- 732 * layer, an inner-product hash is used to produce the final UHASH output. 733 * 734 * UHASH provides two interfaces, one all-at-once and another where data 735 * buffers are presented sequentially. In the sequential interface, the 736 * UHASH client calls the routine uhash_update() as many times as necessary. 737 * When there is no more data to be fed to UHASH, the client calls 738 * uhash_final() which 739 * calculates the UHASH output. Before beginning another UHASH calculation 740 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 741 * uhash(), is equivalent to the sequence of calls uhash_update() and 742 * uhash_final(); however it is optimized and should be 743 * used whenever the sequential interface is not necessary. 744 * 745 * The routine uhash_init() initializes the uhash_ctx data structure and 746 * must be called once, before any other UHASH routine. 747 */ 748 749 /* ---------------------------------------------------------------------- */ 750 /* ----- Constants and uhash_ctx ---------------------------------------- */ 751 /* ---------------------------------------------------------------------- */ 752 753 /* ---------------------------------------------------------------------- */ 754 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 755 /* ---------------------------------------------------------------------- */ 756 757 /* Primes and masks */ 758 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 759 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 760 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 761 762 763 /* ---------------------------------------------------------------------- */ 764 765 typedef struct uhash_ctx { 766 nh_ctx hash; /* Hash context for L1 NH hash */ 767 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 768 UINT64 poly_accum[STREAMS]; /* poly hash result */ 769 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 770 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 771 UINT32 msg_len; /* Total length of data passed */ 772 /* to uhash */ 773 } uhash_ctx; 774 typedef struct uhash_ctx *uhash_ctx_t; 775 776 /* ---------------------------------------------------------------------- */ 777 778 779 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 780 * word at a time. As described in the specification, poly32 and poly64 781 * require keys from special domains. The following implementations exploit 782 * the special domains to avoid overflow. The results are not guaranteed to 783 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 784 * patches any errant values. 785 */ 786 787 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 788 { 789 UINT32 key_hi = (UINT32)(key >> 32), 790 key_lo = (UINT32)key, 791 cur_hi = (UINT32)(cur >> 32), 792 cur_lo = (UINT32)cur, 793 x_lo, 794 x_hi; 795 UINT64 X,T,res; 796 797 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 798 x_lo = (UINT32)X; 799 x_hi = (UINT32)(X >> 32); 800 801 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 802 803 T = ((UINT64)x_lo << 32); 804 res += T; 805 if (res < T) 806 res += 59; 807 808 res += data; 809 if (res < data) 810 res += 59; 811 812 return res; 813 } 814 815 816 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 817 * implementation does not handle all ramp levels. Because we don't handle 818 * the ramp up to p128 modulus in this implementation, we are limited to 819 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 820 * bytes input to UMAC per tag, ie. 16MB). 821 */ 822 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 823 { 824 int i; 825 UINT64 *data=(UINT64*)data_in; 826 827 for (i = 0; i < STREAMS; i++) { 828 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 829 hc->poly_accum[i] = poly64(hc->poly_accum[i], 830 hc->poly_key_8[i], p64 - 1); 831 hc->poly_accum[i] = poly64(hc->poly_accum[i], 832 hc->poly_key_8[i], (data[i] - 59)); 833 } else { 834 hc->poly_accum[i] = poly64(hc->poly_accum[i], 835 hc->poly_key_8[i], data[i]); 836 } 837 } 838 } 839 840 841 /* ---------------------------------------------------------------------- */ 842 843 844 /* The final step in UHASH is an inner-product hash. The poly hash 845 * produces a result not neccesarily WORD_LEN bytes long. The inner- 846 * product hash breaks the polyhash output into 16-bit chunks and 847 * multiplies each with a 36 bit key. 848 */ 849 850 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 851 { 852 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 853 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 854 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 855 t = t + ipkp[3] * (UINT64)(UINT16)(data); 856 857 return t; 858 } 859 860 static UINT32 ip_reduce_p36(UINT64 t) 861 { 862 /* Divisionless modular reduction */ 863 UINT64 ret; 864 865 ret = (t & m36) + 5 * (t >> 36); 866 if (ret >= p36) 867 ret -= p36; 868 869 /* return least significant 32 bits */ 870 return (UINT32)(ret); 871 } 872 873 874 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 875 * the polyhash stage is skipped and ip_short is applied directly to the 876 * NH output. 877 */ 878 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 879 { 880 UINT64 t; 881 UINT64 *nhp = (UINT64 *)nh_res; 882 883 t = ip_aux(0,ahc->ip_keys, nhp[0]); 884 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 885 #if (UMAC_OUTPUT_LEN >= 8) 886 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 887 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 888 #endif 889 #if (UMAC_OUTPUT_LEN >= 12) 890 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 891 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 892 #endif 893 #if (UMAC_OUTPUT_LEN == 16) 894 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 895 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 896 #endif 897 } 898 899 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 900 * the polyhash stage is not skipped and ip_long is applied to the 901 * polyhash output. 902 */ 903 static void ip_long(uhash_ctx_t ahc, u_char *res) 904 { 905 int i; 906 UINT64 t; 907 908 for (i = 0; i < STREAMS; i++) { 909 /* fix polyhash output not in Z_p64 */ 910 if (ahc->poly_accum[i] >= p64) 911 ahc->poly_accum[i] -= p64; 912 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 913 STORE_UINT32_BIG((UINT32 *)res+i, 914 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 915 } 916 } 917 918 919 /* ---------------------------------------------------------------------- */ 920 921 /* ---------------------------------------------------------------------- */ 922 923 /* Reset uhash context for next hash session */ 924 static int uhash_reset(uhash_ctx_t pc) 925 { 926 nh_reset(&pc->hash); 927 pc->msg_len = 0; 928 pc->poly_accum[0] = 1; 929 #if (UMAC_OUTPUT_LEN >= 8) 930 pc->poly_accum[1] = 1; 931 #endif 932 #if (UMAC_OUTPUT_LEN >= 12) 933 pc->poly_accum[2] = 1; 934 #endif 935 #if (UMAC_OUTPUT_LEN == 16) 936 pc->poly_accum[3] = 1; 937 #endif 938 return 1; 939 } 940 941 /* ---------------------------------------------------------------------- */ 942 943 /* Given a pointer to the internal key needed by kdf() and a uhash context, 944 * initialize the NH context and generate keys needed for poly and inner- 945 * product hashing. All keys are endian adjusted in memory so that native 946 * loads cause correct keys to be in registers during calculation. 947 */ 948 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 949 { 950 int i; 951 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 952 953 /* Zero the entire uhash context */ 954 memset(ahc, 0, sizeof(uhash_ctx)); 955 956 /* Initialize the L1 hash */ 957 nh_init(&ahc->hash, prf_key); 958 959 /* Setup L2 hash variables */ 960 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 961 for (i = 0; i < STREAMS; i++) { 962 /* Fill keys from the buffer, skipping bytes in the buffer not 963 * used by this implementation. Endian reverse the keys if on a 964 * little-endian computer. 965 */ 966 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 967 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 968 /* Mask the 64-bit keys to their special domain */ 969 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 970 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 971 } 972 973 /* Setup L3-1 hash variables */ 974 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 975 for (i = 0; i < STREAMS; i++) 976 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 977 4*sizeof(UINT64)); 978 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 979 sizeof(ahc->ip_keys)); 980 for (i = 0; i < STREAMS*4; i++) 981 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 982 983 /* Setup L3-2 hash variables */ 984 /* Fill buffer with index 4 key */ 985 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 986 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 987 STREAMS * sizeof(UINT32)); 988 } 989 990 /* ---------------------------------------------------------------------- */ 991 992 #if 0 993 static uhash_ctx_t uhash_alloc(u_char key[]) 994 { 995 /* Allocate memory and force to a 16-byte boundary. */ 996 uhash_ctx_t ctx; 997 u_char bytes_to_add; 998 aes_int_key prf_key; 999 1000 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1001 if (ctx) { 1002 if (ALLOC_BOUNDARY) { 1003 bytes_to_add = ALLOC_BOUNDARY - 1004 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1005 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1006 *((u_char *)ctx - 1) = bytes_to_add; 1007 } 1008 aes_key_setup(key,prf_key); 1009 uhash_init(ctx, prf_key); 1010 } 1011 return (ctx); 1012 } 1013 #endif 1014 1015 /* ---------------------------------------------------------------------- */ 1016 1017 #if 0 1018 static int uhash_free(uhash_ctx_t ctx) 1019 { 1020 /* Free memory allocated by uhash_alloc */ 1021 u_char bytes_to_sub; 1022 1023 if (ctx) { 1024 if (ALLOC_BOUNDARY) { 1025 bytes_to_sub = *((u_char *)ctx - 1); 1026 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1027 } 1028 free(ctx); 1029 } 1030 return (1); 1031 } 1032 #endif 1033 /* ---------------------------------------------------------------------- */ 1034 1035 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1036 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1037 * hash each one with NH, calling the polyhash on each NH output. 1038 */ 1039 { 1040 UWORD bytes_hashed, bytes_remaining; 1041 UINT64 result_buf[STREAMS]; 1042 UINT8 *nh_result = (UINT8 *)&result_buf; 1043 1044 if (ctx->msg_len + len <= L1_KEY_LEN) { 1045 nh_update(&ctx->hash, (const UINT8 *)input, len); 1046 ctx->msg_len += len; 1047 } else { 1048 1049 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1050 if (ctx->msg_len == L1_KEY_LEN) 1051 bytes_hashed = L1_KEY_LEN; 1052 1053 if (bytes_hashed + len >= L1_KEY_LEN) { 1054 1055 /* If some bytes have been passed to the hash function */ 1056 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1057 /* bytes to complete the current nh_block. */ 1058 if (bytes_hashed) { 1059 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1060 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1061 nh_final(&ctx->hash, nh_result); 1062 ctx->msg_len += bytes_remaining; 1063 poly_hash(ctx,(UINT32 *)nh_result); 1064 len -= bytes_remaining; 1065 input += bytes_remaining; 1066 } 1067 1068 /* Hash directly from input stream if enough bytes */ 1069 while (len >= L1_KEY_LEN) { 1070 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1071 L1_KEY_LEN, nh_result); 1072 ctx->msg_len += L1_KEY_LEN; 1073 len -= L1_KEY_LEN; 1074 input += L1_KEY_LEN; 1075 poly_hash(ctx,(UINT32 *)nh_result); 1076 } 1077 } 1078 1079 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1080 if (len) { 1081 nh_update(&ctx->hash, (const UINT8 *)input, len); 1082 ctx->msg_len += len; 1083 } 1084 } 1085 1086 return (1); 1087 } 1088 1089 /* ---------------------------------------------------------------------- */ 1090 1091 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1092 /* Incorporate any pending data, pad, and generate tag */ 1093 { 1094 UINT64 result_buf[STREAMS]; 1095 UINT8 *nh_result = (UINT8 *)&result_buf; 1096 1097 if (ctx->msg_len > L1_KEY_LEN) { 1098 if (ctx->msg_len % L1_KEY_LEN) { 1099 nh_final(&ctx->hash, nh_result); 1100 poly_hash(ctx,(UINT32 *)nh_result); 1101 } 1102 ip_long(ctx, res); 1103 } else { 1104 nh_final(&ctx->hash, nh_result); 1105 ip_short(ctx,nh_result, res); 1106 } 1107 uhash_reset(ctx); 1108 return (1); 1109 } 1110 1111 /* ---------------------------------------------------------------------- */ 1112 1113 #if 0 1114 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1115 /* assumes that msg is in a writable buffer of length divisible by */ 1116 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1117 { 1118 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1119 UINT32 nh_len; 1120 int extra_zeroes_needed; 1121 1122 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1123 * the polyhash. 1124 */ 1125 if (len <= L1_KEY_LEN) { 1126 if (len == 0) /* If zero length messages will not */ 1127 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1128 else 1129 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1130 extra_zeroes_needed = nh_len - len; 1131 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1132 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1133 ip_short(ahc,nh_result, res); 1134 } else { 1135 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1136 * output to poly_hash(). 1137 */ 1138 do { 1139 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1140 poly_hash(ahc,(UINT32 *)nh_result); 1141 len -= L1_KEY_LEN; 1142 msg += L1_KEY_LEN; 1143 } while (len >= L1_KEY_LEN); 1144 if (len) { 1145 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1146 extra_zeroes_needed = nh_len - len; 1147 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1148 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1149 poly_hash(ahc,(UINT32 *)nh_result); 1150 } 1151 1152 ip_long(ahc, res); 1153 } 1154 1155 uhash_reset(ahc); 1156 return 1; 1157 } 1158 #endif 1159 1160 /* ---------------------------------------------------------------------- */ 1161 /* ---------------------------------------------------------------------- */ 1162 /* ----- Begin UMAC Section --------------------------------------------- */ 1163 /* ---------------------------------------------------------------------- */ 1164 /* ---------------------------------------------------------------------- */ 1165 1166 /* The UMAC interface has two interfaces, an all-at-once interface where 1167 * the entire message to be authenticated is passed to UMAC in one buffer, 1168 * and a sequential interface where the message is presented a little at a 1169 * time. The all-at-once is more optimaized than the sequential version and 1170 * should be preferred when the sequential interface is not required. 1171 */ 1172 struct umac_ctx { 1173 uhash_ctx hash; /* Hash function for message compression */ 1174 pdf_ctx pdf; /* PDF for hashed output */ 1175 void *free_ptr; /* Address to free this struct via */ 1176 } umac_ctx; 1177 1178 /* ---------------------------------------------------------------------- */ 1179 1180 #if 0 1181 int umac_reset(struct umac_ctx *ctx) 1182 /* Reset the hash function to begin a new authentication. */ 1183 { 1184 uhash_reset(&ctx->hash); 1185 return (1); 1186 } 1187 #endif 1188 1189 /* ---------------------------------------------------------------------- */ 1190 1191 int umac_delete(struct umac_ctx *ctx) 1192 /* Deallocate the ctx structure */ 1193 { 1194 if (ctx) { 1195 if (ALLOC_BOUNDARY) 1196 ctx = (struct umac_ctx *)ctx->free_ptr; 1197 free(ctx); 1198 } 1199 return (1); 1200 } 1201 1202 /* ---------------------------------------------------------------------- */ 1203 1204 struct umac_ctx *umac_new(const u_char key[]) 1205 /* Dynamically allocate a umac_ctx struct, initialize variables, 1206 * generate subkeys from key. Align to 16-byte boundary. 1207 */ 1208 { 1209 struct umac_ctx *ctx, *octx; 1210 size_t bytes_to_add; 1211 aes_int_key prf_key; 1212 1213 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1214 if (ctx) { 1215 if (ALLOC_BOUNDARY) { 1216 bytes_to_add = ALLOC_BOUNDARY - 1217 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1218 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1219 } 1220 ctx->free_ptr = octx; 1221 aes_key_setup(key, prf_key); 1222 pdf_init(&ctx->pdf, prf_key); 1223 uhash_init(&ctx->hash, prf_key); 1224 } 1225 1226 return (ctx); 1227 } 1228 1229 /* ---------------------------------------------------------------------- */ 1230 1231 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1232 /* Incorporate any pending data, pad, and generate tag */ 1233 { 1234 uhash_final(&ctx->hash, (u_char *)tag); 1235 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1236 1237 return (1); 1238 } 1239 1240 /* ---------------------------------------------------------------------- */ 1241 1242 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1243 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1244 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1245 /* output buffer is full. */ 1246 { 1247 uhash_update(&ctx->hash, input, len); 1248 return (1); 1249 } 1250 1251 /* ---------------------------------------------------------------------- */ 1252 1253 #if 0 1254 int umac(struct umac_ctx *ctx, u_char *input, 1255 long len, u_char tag[], 1256 u_char nonce[8]) 1257 /* All-in-one version simply calls umac_update() and umac_final(). */ 1258 { 1259 uhash(&ctx->hash, input, len, (u_char *)tag); 1260 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1261 1262 return (1); 1263 } 1264 #endif 1265 1266 /* ---------------------------------------------------------------------- */ 1267 /* ---------------------------------------------------------------------- */ 1268 /* ----- End UMAC Section ----------------------------------------------- */ 1269 /* ---------------------------------------------------------------------- */ 1270 /* ---------------------------------------------------------------------- */ 1271