1 /* $OpenBSD: umac.c,v 1.12 2017/05/31 08:09:45 markus Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 58 /* #define SSE2 0 Is SSE2 is available? */ 59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ 61 62 /* ---------------------------------------------------------------------- */ 63 /* -- Global Includes --------------------------------------------------- */ 64 /* ---------------------------------------------------------------------- */ 65 66 #include <sys/types.h> 67 #include <endian.h> 68 #include <string.h> 69 #include <stdio.h> 70 #include <stdlib.h> 71 #include <stddef.h> 72 73 #include "xmalloc.h" 74 #include "umac.h" 75 #include "misc.h" 76 77 /* ---------------------------------------------------------------------- */ 78 /* --- Primitive Data Types --- */ 79 /* ---------------------------------------------------------------------- */ 80 81 /* The following assumptions may need change on your system */ 82 typedef u_int8_t UINT8; /* 1 byte */ 83 typedef u_int16_t UINT16; /* 2 byte */ 84 typedef u_int32_t UINT32; /* 4 byte */ 85 typedef u_int64_t UINT64; /* 8 bytes */ 86 typedef unsigned int UWORD; /* Register */ 87 88 /* ---------------------------------------------------------------------- */ 89 /* --- Constants -------------------------------------------------------- */ 90 /* ---------------------------------------------------------------------- */ 91 92 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 93 94 /* Message "words" are read from memory in an endian-specific manner. */ 95 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 96 /* be set true if the host computer is little-endian. */ 97 98 #if BYTE_ORDER == LITTLE_ENDIAN 99 #define __LITTLE_ENDIAN__ 1 100 #else 101 #define __LITTLE_ENDIAN__ 0 102 #endif 103 104 /* ---------------------------------------------------------------------- */ 105 /* ---------------------------------------------------------------------- */ 106 /* ----- Architecture Specific ------------------------------------------ */ 107 /* ---------------------------------------------------------------------- */ 108 /* ---------------------------------------------------------------------- */ 109 110 111 /* ---------------------------------------------------------------------- */ 112 /* ---------------------------------------------------------------------- */ 113 /* ----- Primitive Routines --------------------------------------------- */ 114 /* ---------------------------------------------------------------------- */ 115 /* ---------------------------------------------------------------------- */ 116 117 118 /* ---------------------------------------------------------------------- */ 119 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 120 /* ---------------------------------------------------------------------- */ 121 122 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 123 124 /* ---------------------------------------------------------------------- */ 125 /* --- Endian Conversion --- Forcing assembly on some platforms */ 126 /* ---------------------------------------------------------------------- */ 127 128 /* The following definitions use the above reversal-primitives to do the right 129 * thing on endian specific load and stores. 130 */ 131 132 #if BYTE_ORDER == LITTLE_ENDIAN 133 #define LOAD_UINT32_REVERSED(p) get_u32(p) 134 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 135 #else 136 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 137 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 138 #endif 139 140 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 141 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 142 143 144 145 /* ---------------------------------------------------------------------- */ 146 /* ---------------------------------------------------------------------- */ 147 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 148 /* ---------------------------------------------------------------------- */ 149 /* ---------------------------------------------------------------------- */ 150 151 /* UMAC uses AES with 16 byte block and key lengths */ 152 #define AES_BLOCK_LEN 16 153 154 #ifdef WITH_OPENSSL 155 #include <openssl/aes.h> 156 typedef AES_KEY aes_int_key[1]; 157 #define aes_encryption(in,out,int_key) \ 158 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 159 #define aes_key_setup(key,int_key) \ 160 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 161 #else 162 #include "rijndael.h" 163 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 164 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 165 #define aes_encryption(in,out,int_key) \ 166 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 167 #define aes_key_setup(key,int_key) \ 168 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 169 UMAC_KEY_LEN*8) 170 #endif 171 172 /* The user-supplied UMAC key is stretched using AES in a counter 173 * mode to supply all random bits needed by UMAC. The kdf function takes 174 * an AES internal key representation 'key' and writes a stream of 175 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct 176 * 'ndx' causes a distinct byte stream. 177 */ 178 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) 179 { 180 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 181 UINT8 out_buf[AES_BLOCK_LEN]; 182 UINT8 *dst_buf = (UINT8 *)buffer_ptr; 183 int i; 184 185 /* Setup the initial value */ 186 in_buf[AES_BLOCK_LEN-9] = ndx; 187 in_buf[AES_BLOCK_LEN-1] = i = 1; 188 189 while (nbytes >= AES_BLOCK_LEN) { 190 aes_encryption(in_buf, out_buf, key); 191 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 192 in_buf[AES_BLOCK_LEN-1] = ++i; 193 nbytes -= AES_BLOCK_LEN; 194 dst_buf += AES_BLOCK_LEN; 195 } 196 if (nbytes) { 197 aes_encryption(in_buf, out_buf, key); 198 memcpy(dst_buf,out_buf,nbytes); 199 } 200 explicit_bzero(in_buf, sizeof(in_buf)); 201 explicit_bzero(out_buf, sizeof(out_buf)); 202 } 203 204 /* The final UHASH result is XOR'd with the output of a pseudorandom 205 * function. Here, we use AES to generate random output and 206 * xor the appropriate bytes depending on the last bits of nonce. 207 * This scheme is optimized for sequential, increasing big-endian nonces. 208 */ 209 210 typedef struct { 211 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 212 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 213 aes_int_key prf_key; /* Expanded AES key for PDF */ 214 } pdf_ctx; 215 216 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 217 { 218 UINT8 buf[UMAC_KEY_LEN]; 219 220 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 221 aes_key_setup(buf, pc->prf_key); 222 223 /* Initialize pdf and cache */ 224 memset(pc->nonce, 0, sizeof(pc->nonce)); 225 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 226 explicit_bzero(buf, sizeof(buf)); 227 } 228 229 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 230 { 231 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 232 * of the AES output. If last time around we returned the ndx-1st 233 * element, then we may have the result in the cache already. 234 */ 235 236 #if (UMAC_OUTPUT_LEN == 4) 237 #define LOW_BIT_MASK 3 238 #elif (UMAC_OUTPUT_LEN == 8) 239 #define LOW_BIT_MASK 1 240 #elif (UMAC_OUTPUT_LEN > 8) 241 #define LOW_BIT_MASK 0 242 #endif 243 union { 244 UINT8 tmp_nonce_lo[4]; 245 UINT32 align; 246 } t; 247 #if LOW_BIT_MASK != 0 248 int ndx = nonce[7] & LOW_BIT_MASK; 249 #endif 250 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 251 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 252 253 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 254 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 255 { 256 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 257 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 258 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 259 } 260 261 #if (UMAC_OUTPUT_LEN == 4) 262 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 263 #elif (UMAC_OUTPUT_LEN == 8) 264 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 265 #elif (UMAC_OUTPUT_LEN == 12) 266 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 267 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 268 #elif (UMAC_OUTPUT_LEN == 16) 269 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 270 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 271 #endif 272 } 273 274 /* ---------------------------------------------------------------------- */ 275 /* ---------------------------------------------------------------------- */ 276 /* ----- Begin NH Hash Section ------------------------------------------ */ 277 /* ---------------------------------------------------------------------- */ 278 /* ---------------------------------------------------------------------- */ 279 280 /* The NH-based hash functions used in UMAC are described in the UMAC paper 281 * and specification, both of which can be found at the UMAC website. 282 * The interface to this implementation has two 283 * versions, one expects the entire message being hashed to be passed 284 * in a single buffer and returns the hash result immediately. The second 285 * allows the message to be passed in a sequence of buffers. In the 286 * muliple-buffer interface, the client calls the routine nh_update() as 287 * many times as necessary. When there is no more data to be fed to the 288 * hash, the client calls nh_final() which calculates the hash output. 289 * Before beginning another hash calculation the nh_reset() routine 290 * must be called. The single-buffer routine, nh(), is equivalent to 291 * the sequence of calls nh_update() and nh_final(); however it is 292 * optimized and should be prefered whenever the multiple-buffer interface 293 * is not necessary. When using either interface, it is the client's 294 * responsability to pass no more than L1_KEY_LEN bytes per hash result. 295 * 296 * The routine nh_init() initializes the nh_ctx data structure and 297 * must be called once, before any other PDF routine. 298 */ 299 300 /* The "nh_aux" routines do the actual NH hashing work. They 301 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 302 * produce output for all STREAMS NH iterations in one call, 303 * allowing the parallel implementation of the streams. 304 */ 305 306 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 307 #define L1_KEY_LEN 1024 /* Internal key bytes */ 308 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 309 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 310 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 311 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 312 313 typedef struct { 314 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 315 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 316 int next_data_empty; /* Bookeeping variable for data buffer. */ 317 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ 318 UINT64 state[STREAMS]; /* on-line state */ 319 } nh_ctx; 320 321 322 #if (UMAC_OUTPUT_LEN == 4) 323 324 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 325 /* NH hashing primitive. Previous (partial) hash result is loaded and 326 * then stored via hp pointer. The length of the data pointed at by "dp", 327 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 328 * is expected to be endian compensated in memory at key setup. 329 */ 330 { 331 UINT64 h; 332 UWORD c = dlen / 32; 333 UINT32 *k = (UINT32 *)kp; 334 const UINT32 *d = (const UINT32 *)dp; 335 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 336 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 337 338 h = *((UINT64 *)hp); 339 do { 340 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 341 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 342 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 343 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 344 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 345 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 346 h += MUL64((k0 + d0), (k4 + d4)); 347 h += MUL64((k1 + d1), (k5 + d5)); 348 h += MUL64((k2 + d2), (k6 + d6)); 349 h += MUL64((k3 + d3), (k7 + d7)); 350 351 d += 8; 352 k += 8; 353 } while (--c); 354 *((UINT64 *)hp) = h; 355 } 356 357 #elif (UMAC_OUTPUT_LEN == 8) 358 359 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 360 /* Same as previous nh_aux, but two streams are handled in one pass, 361 * reading and writing 16 bytes of hash-state per call. 362 */ 363 { 364 UINT64 h1,h2; 365 UWORD c = dlen / 32; 366 UINT32 *k = (UINT32 *)kp; 367 const UINT32 *d = (const UINT32 *)dp; 368 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 369 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 370 k8,k9,k10,k11; 371 372 h1 = *((UINT64 *)hp); 373 h2 = *((UINT64 *)hp + 1); 374 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 375 do { 376 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 377 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 378 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 379 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 380 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 381 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 382 383 h1 += MUL64((k0 + d0), (k4 + d4)); 384 h2 += MUL64((k4 + d0), (k8 + d4)); 385 386 h1 += MUL64((k1 + d1), (k5 + d5)); 387 h2 += MUL64((k5 + d1), (k9 + d5)); 388 389 h1 += MUL64((k2 + d2), (k6 + d6)); 390 h2 += MUL64((k6 + d2), (k10 + d6)); 391 392 h1 += MUL64((k3 + d3), (k7 + d7)); 393 h2 += MUL64((k7 + d3), (k11 + d7)); 394 395 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 396 397 d += 8; 398 k += 8; 399 } while (--c); 400 ((UINT64 *)hp)[0] = h1; 401 ((UINT64 *)hp)[1] = h2; 402 } 403 404 #elif (UMAC_OUTPUT_LEN == 12) 405 406 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 407 /* Same as previous nh_aux, but two streams are handled in one pass, 408 * reading and writing 24 bytes of hash-state per call. 409 */ 410 { 411 UINT64 h1,h2,h3; 412 UWORD c = dlen / 32; 413 UINT32 *k = (UINT32 *)kp; 414 const UINT32 *d = (const UINT32 *)dp; 415 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 416 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 417 k8,k9,k10,k11,k12,k13,k14,k15; 418 419 h1 = *((UINT64 *)hp); 420 h2 = *((UINT64 *)hp + 1); 421 h3 = *((UINT64 *)hp + 2); 422 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 423 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 424 do { 425 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 426 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 427 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 428 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 429 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 430 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 431 432 h1 += MUL64((k0 + d0), (k4 + d4)); 433 h2 += MUL64((k4 + d0), (k8 + d4)); 434 h3 += MUL64((k8 + d0), (k12 + d4)); 435 436 h1 += MUL64((k1 + d1), (k5 + d5)); 437 h2 += MUL64((k5 + d1), (k9 + d5)); 438 h3 += MUL64((k9 + d1), (k13 + d5)); 439 440 h1 += MUL64((k2 + d2), (k6 + d6)); 441 h2 += MUL64((k6 + d2), (k10 + d6)); 442 h3 += MUL64((k10 + d2), (k14 + d6)); 443 444 h1 += MUL64((k3 + d3), (k7 + d7)); 445 h2 += MUL64((k7 + d3), (k11 + d7)); 446 h3 += MUL64((k11 + d3), (k15 + d7)); 447 448 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 449 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 450 451 d += 8; 452 k += 8; 453 } while (--c); 454 ((UINT64 *)hp)[0] = h1; 455 ((UINT64 *)hp)[1] = h2; 456 ((UINT64 *)hp)[2] = h3; 457 } 458 459 #elif (UMAC_OUTPUT_LEN == 16) 460 461 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 462 /* Same as previous nh_aux, but two streams are handled in one pass, 463 * reading and writing 24 bytes of hash-state per call. 464 */ 465 { 466 UINT64 h1,h2,h3,h4; 467 UWORD c = dlen / 32; 468 UINT32 *k = (UINT32 *)kp; 469 const UINT32 *d = (const UINT32 *)dp; 470 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 471 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 472 k8,k9,k10,k11,k12,k13,k14,k15, 473 k16,k17,k18,k19; 474 475 h1 = *((UINT64 *)hp); 476 h2 = *((UINT64 *)hp + 1); 477 h3 = *((UINT64 *)hp + 2); 478 h4 = *((UINT64 *)hp + 3); 479 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 480 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 481 do { 482 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 483 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 484 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 485 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 486 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 487 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 488 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 489 490 h1 += MUL64((k0 + d0), (k4 + d4)); 491 h2 += MUL64((k4 + d0), (k8 + d4)); 492 h3 += MUL64((k8 + d0), (k12 + d4)); 493 h4 += MUL64((k12 + d0), (k16 + d4)); 494 495 h1 += MUL64((k1 + d1), (k5 + d5)); 496 h2 += MUL64((k5 + d1), (k9 + d5)); 497 h3 += MUL64((k9 + d1), (k13 + d5)); 498 h4 += MUL64((k13 + d1), (k17 + d5)); 499 500 h1 += MUL64((k2 + d2), (k6 + d6)); 501 h2 += MUL64((k6 + d2), (k10 + d6)); 502 h3 += MUL64((k10 + d2), (k14 + d6)); 503 h4 += MUL64((k14 + d2), (k18 + d6)); 504 505 h1 += MUL64((k3 + d3), (k7 + d7)); 506 h2 += MUL64((k7 + d3), (k11 + d7)); 507 h3 += MUL64((k11 + d3), (k15 + d7)); 508 h4 += MUL64((k15 + d3), (k19 + d7)); 509 510 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 511 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 512 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 513 514 d += 8; 515 k += 8; 516 } while (--c); 517 ((UINT64 *)hp)[0] = h1; 518 ((UINT64 *)hp)[1] = h2; 519 ((UINT64 *)hp)[2] = h3; 520 ((UINT64 *)hp)[3] = h4; 521 } 522 523 /* ---------------------------------------------------------------------- */ 524 #endif /* UMAC_OUTPUT_LENGTH */ 525 /* ---------------------------------------------------------------------- */ 526 527 528 /* ---------------------------------------------------------------------- */ 529 530 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 531 /* This function is a wrapper for the primitive NH hash functions. It takes 532 * as argument "hc" the current hash context and a buffer which must be a 533 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 534 * appropriately according to how much message has been hashed already. 535 */ 536 { 537 UINT8 *key; 538 539 key = hc->nh_key + hc->bytes_hashed; 540 nh_aux(key, buf, hc->state, nbytes); 541 } 542 543 /* ---------------------------------------------------------------------- */ 544 545 #if (__LITTLE_ENDIAN__) 546 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 547 /* We endian convert the keys on little-endian computers to */ 548 /* compensate for the lack of big-endian memory reads during hashing. */ 549 { 550 UWORD iters = num_bytes / bpw; 551 if (bpw == 4) { 552 UINT32 *p = (UINT32 *)buf; 553 do { 554 *p = LOAD_UINT32_REVERSED(p); 555 p++; 556 } while (--iters); 557 } else if (bpw == 8) { 558 UINT32 *p = (UINT32 *)buf; 559 UINT32 t; 560 do { 561 t = LOAD_UINT32_REVERSED(p+1); 562 p[1] = LOAD_UINT32_REVERSED(p); 563 p[0] = t; 564 p += 2; 565 } while (--iters); 566 } 567 } 568 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 569 #else 570 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 571 #endif 572 573 /* ---------------------------------------------------------------------- */ 574 575 static void nh_reset(nh_ctx *hc) 576 /* Reset nh_ctx to ready for hashing of new data */ 577 { 578 hc->bytes_hashed = 0; 579 hc->next_data_empty = 0; 580 hc->state[0] = 0; 581 #if (UMAC_OUTPUT_LEN >= 8) 582 hc->state[1] = 0; 583 #endif 584 #if (UMAC_OUTPUT_LEN >= 12) 585 hc->state[2] = 0; 586 #endif 587 #if (UMAC_OUTPUT_LEN == 16) 588 hc->state[3] = 0; 589 #endif 590 591 } 592 593 /* ---------------------------------------------------------------------- */ 594 595 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 596 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 597 { 598 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 599 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 600 nh_reset(hc); 601 } 602 603 /* ---------------------------------------------------------------------- */ 604 605 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 606 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 607 /* even multiple of HASH_BUF_BYTES. */ 608 { 609 UINT32 i,j; 610 611 j = hc->next_data_empty; 612 if ((j + nbytes) >= HASH_BUF_BYTES) { 613 if (j) { 614 i = HASH_BUF_BYTES - j; 615 memcpy(hc->data+j, buf, i); 616 nh_transform(hc,hc->data,HASH_BUF_BYTES); 617 nbytes -= i; 618 buf += i; 619 hc->bytes_hashed += HASH_BUF_BYTES; 620 } 621 if (nbytes >= HASH_BUF_BYTES) { 622 i = nbytes & ~(HASH_BUF_BYTES - 1); 623 nh_transform(hc, buf, i); 624 nbytes -= i; 625 buf += i; 626 hc->bytes_hashed += i; 627 } 628 j = 0; 629 } 630 memcpy(hc->data + j, buf, nbytes); 631 hc->next_data_empty = j + nbytes; 632 } 633 634 /* ---------------------------------------------------------------------- */ 635 636 static void zero_pad(UINT8 *p, int nbytes) 637 { 638 /* Write "nbytes" of zeroes, beginning at "p" */ 639 if (nbytes >= (int)sizeof(UWORD)) { 640 while ((ptrdiff_t)p % sizeof(UWORD)) { 641 *p = 0; 642 nbytes--; 643 p++; 644 } 645 while (nbytes >= (int)sizeof(UWORD)) { 646 *(UWORD *)p = 0; 647 nbytes -= sizeof(UWORD); 648 p += sizeof(UWORD); 649 } 650 } 651 while (nbytes) { 652 *p = 0; 653 nbytes--; 654 p++; 655 } 656 } 657 658 /* ---------------------------------------------------------------------- */ 659 660 static void nh_final(nh_ctx *hc, UINT8 *result) 661 /* After passing some number of data buffers to nh_update() for integration 662 * into an NH context, nh_final is called to produce a hash result. If any 663 * bytes are in the buffer hc->data, incorporate them into the 664 * NH context. Finally, add into the NH accumulation "state" the total number 665 * of bits hashed. The resulting numbers are written to the buffer "result". 666 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 667 */ 668 { 669 int nh_len, nbits; 670 671 if (hc->next_data_empty != 0) { 672 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 673 ~(L1_PAD_BOUNDARY - 1)); 674 zero_pad(hc->data + hc->next_data_empty, 675 nh_len - hc->next_data_empty); 676 nh_transform(hc, hc->data, nh_len); 677 hc->bytes_hashed += hc->next_data_empty; 678 } else if (hc->bytes_hashed == 0) { 679 nh_len = L1_PAD_BOUNDARY; 680 zero_pad(hc->data, L1_PAD_BOUNDARY); 681 nh_transform(hc, hc->data, nh_len); 682 } 683 684 nbits = (hc->bytes_hashed << 3); 685 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 686 #if (UMAC_OUTPUT_LEN >= 8) 687 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 688 #endif 689 #if (UMAC_OUTPUT_LEN >= 12) 690 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 691 #endif 692 #if (UMAC_OUTPUT_LEN == 16) 693 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 694 #endif 695 nh_reset(hc); 696 } 697 698 /* ---------------------------------------------------------------------- */ 699 700 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 701 UINT32 unpadded_len, UINT8 *result) 702 /* All-in-one nh_update() and nh_final() equivalent. 703 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 704 * well aligned 705 */ 706 { 707 UINT32 nbits; 708 709 /* Initialize the hash state */ 710 nbits = (unpadded_len << 3); 711 712 ((UINT64 *)result)[0] = nbits; 713 #if (UMAC_OUTPUT_LEN >= 8) 714 ((UINT64 *)result)[1] = nbits; 715 #endif 716 #if (UMAC_OUTPUT_LEN >= 12) 717 ((UINT64 *)result)[2] = nbits; 718 #endif 719 #if (UMAC_OUTPUT_LEN == 16) 720 ((UINT64 *)result)[3] = nbits; 721 #endif 722 723 nh_aux(hc->nh_key, buf, result, padded_len); 724 } 725 726 /* ---------------------------------------------------------------------- */ 727 /* ---------------------------------------------------------------------- */ 728 /* ----- Begin UHASH Section -------------------------------------------- */ 729 /* ---------------------------------------------------------------------- */ 730 /* ---------------------------------------------------------------------- */ 731 732 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 733 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 734 * unless the initial data to be hashed is short. After the polynomial- 735 * layer, an inner-product hash is used to produce the final UHASH output. 736 * 737 * UHASH provides two interfaces, one all-at-once and another where data 738 * buffers are presented sequentially. In the sequential interface, the 739 * UHASH client calls the routine uhash_update() as many times as necessary. 740 * When there is no more data to be fed to UHASH, the client calls 741 * uhash_final() which 742 * calculates the UHASH output. Before beginning another UHASH calculation 743 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 744 * uhash(), is equivalent to the sequence of calls uhash_update() and 745 * uhash_final(); however it is optimized and should be 746 * used whenever the sequential interface is not necessary. 747 * 748 * The routine uhash_init() initializes the uhash_ctx data structure and 749 * must be called once, before any other UHASH routine. 750 */ 751 752 /* ---------------------------------------------------------------------- */ 753 /* ----- Constants and uhash_ctx ---------------------------------------- */ 754 /* ---------------------------------------------------------------------- */ 755 756 /* ---------------------------------------------------------------------- */ 757 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 758 /* ---------------------------------------------------------------------- */ 759 760 /* Primes and masks */ 761 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 762 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 763 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 764 765 766 /* ---------------------------------------------------------------------- */ 767 768 typedef struct uhash_ctx { 769 nh_ctx hash; /* Hash context for L1 NH hash */ 770 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 771 UINT64 poly_accum[STREAMS]; /* poly hash result */ 772 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 773 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 774 UINT32 msg_len; /* Total length of data passed */ 775 /* to uhash */ 776 } uhash_ctx; 777 typedef struct uhash_ctx *uhash_ctx_t; 778 779 /* ---------------------------------------------------------------------- */ 780 781 782 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 783 * word at a time. As described in the specification, poly32 and poly64 784 * require keys from special domains. The following implementations exploit 785 * the special domains to avoid overflow. The results are not guaranteed to 786 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 787 * patches any errant values. 788 */ 789 790 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 791 { 792 UINT32 key_hi = (UINT32)(key >> 32), 793 key_lo = (UINT32)key, 794 cur_hi = (UINT32)(cur >> 32), 795 cur_lo = (UINT32)cur, 796 x_lo, 797 x_hi; 798 UINT64 X,T,res; 799 800 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 801 x_lo = (UINT32)X; 802 x_hi = (UINT32)(X >> 32); 803 804 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 805 806 T = ((UINT64)x_lo << 32); 807 res += T; 808 if (res < T) 809 res += 59; 810 811 res += data; 812 if (res < data) 813 res += 59; 814 815 return res; 816 } 817 818 819 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 820 * implementation does not handle all ramp levels. Because we don't handle 821 * the ramp up to p128 modulus in this implementation, we are limited to 822 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 823 * bytes input to UMAC per tag, ie. 16MB). 824 */ 825 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 826 { 827 int i; 828 UINT64 *data=(UINT64*)data_in; 829 830 for (i = 0; i < STREAMS; i++) { 831 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 832 hc->poly_accum[i] = poly64(hc->poly_accum[i], 833 hc->poly_key_8[i], p64 - 1); 834 hc->poly_accum[i] = poly64(hc->poly_accum[i], 835 hc->poly_key_8[i], (data[i] - 59)); 836 } else { 837 hc->poly_accum[i] = poly64(hc->poly_accum[i], 838 hc->poly_key_8[i], data[i]); 839 } 840 } 841 } 842 843 844 /* ---------------------------------------------------------------------- */ 845 846 847 /* The final step in UHASH is an inner-product hash. The poly hash 848 * produces a result not neccesarily WORD_LEN bytes long. The inner- 849 * product hash breaks the polyhash output into 16-bit chunks and 850 * multiplies each with a 36 bit key. 851 */ 852 853 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 854 { 855 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 856 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 857 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 858 t = t + ipkp[3] * (UINT64)(UINT16)(data); 859 860 return t; 861 } 862 863 static UINT32 ip_reduce_p36(UINT64 t) 864 { 865 /* Divisionless modular reduction */ 866 UINT64 ret; 867 868 ret = (t & m36) + 5 * (t >> 36); 869 if (ret >= p36) 870 ret -= p36; 871 872 /* return least significant 32 bits */ 873 return (UINT32)(ret); 874 } 875 876 877 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 878 * the polyhash stage is skipped and ip_short is applied directly to the 879 * NH output. 880 */ 881 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 882 { 883 UINT64 t; 884 UINT64 *nhp = (UINT64 *)nh_res; 885 886 t = ip_aux(0,ahc->ip_keys, nhp[0]); 887 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 888 #if (UMAC_OUTPUT_LEN >= 8) 889 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 890 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 891 #endif 892 #if (UMAC_OUTPUT_LEN >= 12) 893 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 894 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 895 #endif 896 #if (UMAC_OUTPUT_LEN == 16) 897 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 898 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 899 #endif 900 } 901 902 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 903 * the polyhash stage is not skipped and ip_long is applied to the 904 * polyhash output. 905 */ 906 static void ip_long(uhash_ctx_t ahc, u_char *res) 907 { 908 int i; 909 UINT64 t; 910 911 for (i = 0; i < STREAMS; i++) { 912 /* fix polyhash output not in Z_p64 */ 913 if (ahc->poly_accum[i] >= p64) 914 ahc->poly_accum[i] -= p64; 915 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 916 STORE_UINT32_BIG((UINT32 *)res+i, 917 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 918 } 919 } 920 921 922 /* ---------------------------------------------------------------------- */ 923 924 /* ---------------------------------------------------------------------- */ 925 926 /* Reset uhash context for next hash session */ 927 static int uhash_reset(uhash_ctx_t pc) 928 { 929 nh_reset(&pc->hash); 930 pc->msg_len = 0; 931 pc->poly_accum[0] = 1; 932 #if (UMAC_OUTPUT_LEN >= 8) 933 pc->poly_accum[1] = 1; 934 #endif 935 #if (UMAC_OUTPUT_LEN >= 12) 936 pc->poly_accum[2] = 1; 937 #endif 938 #if (UMAC_OUTPUT_LEN == 16) 939 pc->poly_accum[3] = 1; 940 #endif 941 return 1; 942 } 943 944 /* ---------------------------------------------------------------------- */ 945 946 /* Given a pointer to the internal key needed by kdf() and a uhash context, 947 * initialize the NH context and generate keys needed for poly and inner- 948 * product hashing. All keys are endian adjusted in memory so that native 949 * loads cause correct keys to be in registers during calculation. 950 */ 951 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 952 { 953 int i; 954 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 955 956 /* Zero the entire uhash context */ 957 memset(ahc, 0, sizeof(uhash_ctx)); 958 959 /* Initialize the L1 hash */ 960 nh_init(&ahc->hash, prf_key); 961 962 /* Setup L2 hash variables */ 963 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 964 for (i = 0; i < STREAMS; i++) { 965 /* Fill keys from the buffer, skipping bytes in the buffer not 966 * used by this implementation. Endian reverse the keys if on a 967 * little-endian computer. 968 */ 969 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 970 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 971 /* Mask the 64-bit keys to their special domain */ 972 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 973 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 974 } 975 976 /* Setup L3-1 hash variables */ 977 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 978 for (i = 0; i < STREAMS; i++) 979 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 980 4*sizeof(UINT64)); 981 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 982 sizeof(ahc->ip_keys)); 983 for (i = 0; i < STREAMS*4; i++) 984 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 985 986 /* Setup L3-2 hash variables */ 987 /* Fill buffer with index 4 key */ 988 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 989 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 990 STREAMS * sizeof(UINT32)); 991 explicit_bzero(buf, sizeof(buf)); 992 } 993 994 /* ---------------------------------------------------------------------- */ 995 996 #if 0 997 static uhash_ctx_t uhash_alloc(u_char key[]) 998 { 999 /* Allocate memory and force to a 16-byte boundary. */ 1000 uhash_ctx_t ctx; 1001 u_char bytes_to_add; 1002 aes_int_key prf_key; 1003 1004 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1005 if (ctx) { 1006 if (ALLOC_BOUNDARY) { 1007 bytes_to_add = ALLOC_BOUNDARY - 1008 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1009 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1010 *((u_char *)ctx - 1) = bytes_to_add; 1011 } 1012 aes_key_setup(key,prf_key); 1013 uhash_init(ctx, prf_key); 1014 } 1015 return (ctx); 1016 } 1017 #endif 1018 1019 /* ---------------------------------------------------------------------- */ 1020 1021 #if 0 1022 static int uhash_free(uhash_ctx_t ctx) 1023 { 1024 /* Free memory allocated by uhash_alloc */ 1025 u_char bytes_to_sub; 1026 1027 if (ctx) { 1028 if (ALLOC_BOUNDARY) { 1029 bytes_to_sub = *((u_char *)ctx - 1); 1030 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1031 } 1032 free(ctx); 1033 } 1034 return (1); 1035 } 1036 #endif 1037 /* ---------------------------------------------------------------------- */ 1038 1039 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1040 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1041 * hash each one with NH, calling the polyhash on each NH output. 1042 */ 1043 { 1044 UWORD bytes_hashed, bytes_remaining; 1045 UINT64 result_buf[STREAMS]; 1046 UINT8 *nh_result = (UINT8 *)&result_buf; 1047 1048 if (ctx->msg_len + len <= L1_KEY_LEN) { 1049 nh_update(&ctx->hash, (const UINT8 *)input, len); 1050 ctx->msg_len += len; 1051 } else { 1052 1053 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1054 if (ctx->msg_len == L1_KEY_LEN) 1055 bytes_hashed = L1_KEY_LEN; 1056 1057 if (bytes_hashed + len >= L1_KEY_LEN) { 1058 1059 /* If some bytes have been passed to the hash function */ 1060 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1061 /* bytes to complete the current nh_block. */ 1062 if (bytes_hashed) { 1063 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1064 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1065 nh_final(&ctx->hash, nh_result); 1066 ctx->msg_len += bytes_remaining; 1067 poly_hash(ctx,(UINT32 *)nh_result); 1068 len -= bytes_remaining; 1069 input += bytes_remaining; 1070 } 1071 1072 /* Hash directly from input stream if enough bytes */ 1073 while (len >= L1_KEY_LEN) { 1074 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1075 L1_KEY_LEN, nh_result); 1076 ctx->msg_len += L1_KEY_LEN; 1077 len -= L1_KEY_LEN; 1078 input += L1_KEY_LEN; 1079 poly_hash(ctx,(UINT32 *)nh_result); 1080 } 1081 } 1082 1083 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1084 if (len) { 1085 nh_update(&ctx->hash, (const UINT8 *)input, len); 1086 ctx->msg_len += len; 1087 } 1088 } 1089 1090 return (1); 1091 } 1092 1093 /* ---------------------------------------------------------------------- */ 1094 1095 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1096 /* Incorporate any pending data, pad, and generate tag */ 1097 { 1098 UINT64 result_buf[STREAMS]; 1099 UINT8 *nh_result = (UINT8 *)&result_buf; 1100 1101 if (ctx->msg_len > L1_KEY_LEN) { 1102 if (ctx->msg_len % L1_KEY_LEN) { 1103 nh_final(&ctx->hash, nh_result); 1104 poly_hash(ctx,(UINT32 *)nh_result); 1105 } 1106 ip_long(ctx, res); 1107 } else { 1108 nh_final(&ctx->hash, nh_result); 1109 ip_short(ctx,nh_result, res); 1110 } 1111 uhash_reset(ctx); 1112 return (1); 1113 } 1114 1115 /* ---------------------------------------------------------------------- */ 1116 1117 #if 0 1118 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1119 /* assumes that msg is in a writable buffer of length divisible by */ 1120 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1121 { 1122 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1123 UINT32 nh_len; 1124 int extra_zeroes_needed; 1125 1126 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1127 * the polyhash. 1128 */ 1129 if (len <= L1_KEY_LEN) { 1130 if (len == 0) /* If zero length messages will not */ 1131 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1132 else 1133 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1134 extra_zeroes_needed = nh_len - len; 1135 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1136 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1137 ip_short(ahc,nh_result, res); 1138 } else { 1139 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1140 * output to poly_hash(). 1141 */ 1142 do { 1143 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1144 poly_hash(ahc,(UINT32 *)nh_result); 1145 len -= L1_KEY_LEN; 1146 msg += L1_KEY_LEN; 1147 } while (len >= L1_KEY_LEN); 1148 if (len) { 1149 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1150 extra_zeroes_needed = nh_len - len; 1151 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1152 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1153 poly_hash(ahc,(UINT32 *)nh_result); 1154 } 1155 1156 ip_long(ahc, res); 1157 } 1158 1159 uhash_reset(ahc); 1160 return 1; 1161 } 1162 #endif 1163 1164 /* ---------------------------------------------------------------------- */ 1165 /* ---------------------------------------------------------------------- */ 1166 /* ----- Begin UMAC Section --------------------------------------------- */ 1167 /* ---------------------------------------------------------------------- */ 1168 /* ---------------------------------------------------------------------- */ 1169 1170 /* The UMAC interface has two interfaces, an all-at-once interface where 1171 * the entire message to be authenticated is passed to UMAC in one buffer, 1172 * and a sequential interface where the message is presented a little at a 1173 * time. The all-at-once is more optimaized than the sequential version and 1174 * should be preferred when the sequential interface is not required. 1175 */ 1176 struct umac_ctx { 1177 uhash_ctx hash; /* Hash function for message compression */ 1178 pdf_ctx pdf; /* PDF for hashed output */ 1179 void *free_ptr; /* Address to free this struct via */ 1180 } umac_ctx; 1181 1182 /* ---------------------------------------------------------------------- */ 1183 1184 #if 0 1185 int umac_reset(struct umac_ctx *ctx) 1186 /* Reset the hash function to begin a new authentication. */ 1187 { 1188 uhash_reset(&ctx->hash); 1189 return (1); 1190 } 1191 #endif 1192 1193 /* ---------------------------------------------------------------------- */ 1194 1195 int umac_delete(struct umac_ctx *ctx) 1196 /* Deallocate the ctx structure */ 1197 { 1198 if (ctx) { 1199 if (ALLOC_BOUNDARY) 1200 ctx = (struct umac_ctx *)ctx->free_ptr; 1201 explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); 1202 free(ctx); 1203 } 1204 return (1); 1205 } 1206 1207 /* ---------------------------------------------------------------------- */ 1208 1209 struct umac_ctx *umac_new(const u_char key[]) 1210 /* Dynamically allocate a umac_ctx struct, initialize variables, 1211 * generate subkeys from key. Align to 16-byte boundary. 1212 */ 1213 { 1214 struct umac_ctx *ctx, *octx; 1215 size_t bytes_to_add; 1216 aes_int_key prf_key; 1217 1218 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1219 if (ctx) { 1220 if (ALLOC_BOUNDARY) { 1221 bytes_to_add = ALLOC_BOUNDARY - 1222 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1223 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1224 } 1225 ctx->free_ptr = octx; 1226 aes_key_setup(key, prf_key); 1227 pdf_init(&ctx->pdf, prf_key); 1228 uhash_init(&ctx->hash, prf_key); 1229 explicit_bzero(prf_key, sizeof(prf_key)); 1230 } 1231 1232 return (ctx); 1233 } 1234 1235 /* ---------------------------------------------------------------------- */ 1236 1237 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1238 /* Incorporate any pending data, pad, and generate tag */ 1239 { 1240 uhash_final(&ctx->hash, (u_char *)tag); 1241 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1242 1243 return (1); 1244 } 1245 1246 /* ---------------------------------------------------------------------- */ 1247 1248 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1249 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1250 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1251 /* output buffer is full. */ 1252 { 1253 uhash_update(&ctx->hash, input, len); 1254 return (1); 1255 } 1256 1257 /* ---------------------------------------------------------------------- */ 1258 1259 #if 0 1260 int umac(struct umac_ctx *ctx, u_char *input, 1261 long len, u_char tag[], 1262 u_char nonce[8]) 1263 /* All-in-one version simply calls umac_update() and umac_final(). */ 1264 { 1265 uhash(&ctx->hash, input, len, (u_char *)tag); 1266 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1267 1268 return (1); 1269 } 1270 #endif 1271 1272 /* ---------------------------------------------------------------------- */ 1273 /* ---------------------------------------------------------------------- */ 1274 /* ----- End UMAC Section ----------------------------------------------- */ 1275 /* ---------------------------------------------------------------------- */ 1276 /* ---------------------------------------------------------------------- */ 1277