1 /* $OpenBSD: umac.c,v 1.20 2020/03/13 03:17:07 djm Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public license at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #ifndef UMAC_OUTPUT_LEN 56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 57 #endif 58 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 59 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 60 /* #define SSE2 0 Is SSE2 is available? */ 61 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 62 /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ 63 64 /* ---------------------------------------------------------------------- */ 65 /* -- Global Includes --------------------------------------------------- */ 66 /* ---------------------------------------------------------------------- */ 67 68 #include <sys/types.h> 69 #include <endian.h> 70 #include <string.h> 71 #include <stdarg.h> 72 #include <stdio.h> 73 #include <stdlib.h> 74 #include <stddef.h> 75 76 #include "xmalloc.h" 77 #include "umac.h" 78 #include "misc.h" 79 80 /* ---------------------------------------------------------------------- */ 81 /* --- Primitive Data Types --- */ 82 /* ---------------------------------------------------------------------- */ 83 84 /* The following assumptions may need change on your system */ 85 typedef u_int8_t UINT8; /* 1 byte */ 86 typedef u_int16_t UINT16; /* 2 byte */ 87 typedef u_int32_t UINT32; /* 4 byte */ 88 typedef u_int64_t UINT64; /* 8 bytes */ 89 typedef unsigned int UWORD; /* Register */ 90 91 /* ---------------------------------------------------------------------- */ 92 /* --- Constants -------------------------------------------------------- */ 93 /* ---------------------------------------------------------------------- */ 94 95 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 96 97 /* Message "words" are read from memory in an endian-specific manner. */ 98 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 99 /* be set true if the host computer is little-endian. */ 100 101 #if BYTE_ORDER == LITTLE_ENDIAN 102 #define __LITTLE_ENDIAN__ 1 103 #else 104 #define __LITTLE_ENDIAN__ 0 105 #endif 106 107 /* ---------------------------------------------------------------------- */ 108 /* ---------------------------------------------------------------------- */ 109 /* ----- Architecture Specific ------------------------------------------ */ 110 /* ---------------------------------------------------------------------- */ 111 /* ---------------------------------------------------------------------- */ 112 113 114 /* ---------------------------------------------------------------------- */ 115 /* ---------------------------------------------------------------------- */ 116 /* ----- Primitive Routines --------------------------------------------- */ 117 /* ---------------------------------------------------------------------- */ 118 /* ---------------------------------------------------------------------- */ 119 120 121 /* ---------------------------------------------------------------------- */ 122 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 123 /* ---------------------------------------------------------------------- */ 124 125 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 126 127 /* ---------------------------------------------------------------------- */ 128 /* --- Endian Conversion --- Forcing assembly on some platforms */ 129 /* ---------------------------------------------------------------------- */ 130 131 /* The following definitions use the above reversal-primitives to do the right 132 * thing on endian specific load and stores. 133 */ 134 135 #if BYTE_ORDER == LITTLE_ENDIAN 136 #define LOAD_UINT32_REVERSED(p) get_u32(p) 137 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 138 #else 139 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 140 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 141 #endif 142 143 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 144 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 145 146 147 148 /* ---------------------------------------------------------------------- */ 149 /* ---------------------------------------------------------------------- */ 150 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 151 /* ---------------------------------------------------------------------- */ 152 /* ---------------------------------------------------------------------- */ 153 154 /* UMAC uses AES with 16 byte block and key lengths */ 155 #define AES_BLOCK_LEN 16 156 157 #ifdef WITH_OPENSSL 158 #include <openssl/aes.h> 159 typedef AES_KEY aes_int_key[1]; 160 #define aes_encryption(in,out,int_key) \ 161 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 162 #define aes_key_setup(key,int_key) \ 163 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 164 #else 165 #include "rijndael.h" 166 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 167 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 168 #define aes_encryption(in,out,int_key) \ 169 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 170 #define aes_key_setup(key,int_key) \ 171 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 172 UMAC_KEY_LEN*8) 173 #endif 174 175 /* The user-supplied UMAC key is stretched using AES in a counter 176 * mode to supply all random bits needed by UMAC. The kdf function takes 177 * an AES internal key representation 'key' and writes a stream of 178 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct 179 * 'ndx' causes a distinct byte stream. 180 */ 181 static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) 182 { 183 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 184 UINT8 out_buf[AES_BLOCK_LEN]; 185 UINT8 *dst_buf = (UINT8 *)buffer_ptr; 186 int i; 187 188 /* Setup the initial value */ 189 in_buf[AES_BLOCK_LEN-9] = ndx; 190 in_buf[AES_BLOCK_LEN-1] = i = 1; 191 192 while (nbytes >= AES_BLOCK_LEN) { 193 aes_encryption(in_buf, out_buf, key); 194 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 195 in_buf[AES_BLOCK_LEN-1] = ++i; 196 nbytes -= AES_BLOCK_LEN; 197 dst_buf += AES_BLOCK_LEN; 198 } 199 if (nbytes) { 200 aes_encryption(in_buf, out_buf, key); 201 memcpy(dst_buf,out_buf,nbytes); 202 } 203 explicit_bzero(in_buf, sizeof(in_buf)); 204 explicit_bzero(out_buf, sizeof(out_buf)); 205 } 206 207 /* The final UHASH result is XOR'd with the output of a pseudorandom 208 * function. Here, we use AES to generate random output and 209 * xor the appropriate bytes depending on the last bits of nonce. 210 * This scheme is optimized for sequential, increasing big-endian nonces. 211 */ 212 213 typedef struct { 214 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 215 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 216 aes_int_key prf_key; /* Expanded AES key for PDF */ 217 } pdf_ctx; 218 219 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 220 { 221 UINT8 buf[UMAC_KEY_LEN]; 222 223 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 224 aes_key_setup(buf, pc->prf_key); 225 226 /* Initialize pdf and cache */ 227 memset(pc->nonce, 0, sizeof(pc->nonce)); 228 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 229 explicit_bzero(buf, sizeof(buf)); 230 } 231 232 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 233 { 234 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 235 * of the AES output. If last time around we returned the ndx-1st 236 * element, then we may have the result in the cache already. 237 */ 238 239 #if (UMAC_OUTPUT_LEN == 4) 240 #define LOW_BIT_MASK 3 241 #elif (UMAC_OUTPUT_LEN == 8) 242 #define LOW_BIT_MASK 1 243 #elif (UMAC_OUTPUT_LEN > 8) 244 #define LOW_BIT_MASK 0 245 #endif 246 union { 247 UINT8 tmp_nonce_lo[4]; 248 UINT32 align; 249 } t; 250 #if LOW_BIT_MASK != 0 251 int ndx = nonce[7] & LOW_BIT_MASK; 252 #endif 253 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 254 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 255 256 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 257 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 258 { 259 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 260 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 261 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 262 } 263 264 #if (UMAC_OUTPUT_LEN == 4) 265 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 266 #elif (UMAC_OUTPUT_LEN == 8) 267 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 268 #elif (UMAC_OUTPUT_LEN == 12) 269 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 270 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 271 #elif (UMAC_OUTPUT_LEN == 16) 272 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 273 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 274 #endif 275 } 276 277 /* ---------------------------------------------------------------------- */ 278 /* ---------------------------------------------------------------------- */ 279 /* ----- Begin NH Hash Section ------------------------------------------ */ 280 /* ---------------------------------------------------------------------- */ 281 /* ---------------------------------------------------------------------- */ 282 283 /* The NH-based hash functions used in UMAC are described in the UMAC paper 284 * and specification, both of which can be found at the UMAC website. 285 * The interface to this implementation has two 286 * versions, one expects the entire message being hashed to be passed 287 * in a single buffer and returns the hash result immediately. The second 288 * allows the message to be passed in a sequence of buffers. In the 289 * muliple-buffer interface, the client calls the routine nh_update() as 290 * many times as necessary. When there is no more data to be fed to the 291 * hash, the client calls nh_final() which calculates the hash output. 292 * Before beginning another hash calculation the nh_reset() routine 293 * must be called. The single-buffer routine, nh(), is equivalent to 294 * the sequence of calls nh_update() and nh_final(); however it is 295 * optimized and should be preferred whenever the multiple-buffer interface 296 * is not necessary. When using either interface, it is the client's 297 * responsibility to pass no more than L1_KEY_LEN bytes per hash result. 298 * 299 * The routine nh_init() initializes the nh_ctx data structure and 300 * must be called once, before any other PDF routine. 301 */ 302 303 /* The "nh_aux" routines do the actual NH hashing work. They 304 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 305 * produce output for all STREAMS NH iterations in one call, 306 * allowing the parallel implementation of the streams. 307 */ 308 309 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 310 #define L1_KEY_LEN 1024 /* Internal key bytes */ 311 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 312 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 313 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 314 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 315 316 typedef struct { 317 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 318 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 319 int next_data_empty; /* Bookkeeping variable for data buffer. */ 320 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ 321 UINT64 state[STREAMS]; /* on-line state */ 322 } nh_ctx; 323 324 325 #if (UMAC_OUTPUT_LEN == 4) 326 327 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 328 /* NH hashing primitive. Previous (partial) hash result is loaded and 329 * then stored via hp pointer. The length of the data pointed at by "dp", 330 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 331 * is expected to be endian compensated in memory at key setup. 332 */ 333 { 334 UINT64 h; 335 UWORD c = dlen / 32; 336 UINT32 *k = (UINT32 *)kp; 337 const UINT32 *d = (const UINT32 *)dp; 338 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 339 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 340 341 h = *((UINT64 *)hp); 342 do { 343 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 344 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 345 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 346 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 347 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 348 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 349 h += MUL64((k0 + d0), (k4 + d4)); 350 h += MUL64((k1 + d1), (k5 + d5)); 351 h += MUL64((k2 + d2), (k6 + d6)); 352 h += MUL64((k3 + d3), (k7 + d7)); 353 354 d += 8; 355 k += 8; 356 } while (--c); 357 *((UINT64 *)hp) = h; 358 } 359 360 #elif (UMAC_OUTPUT_LEN == 8) 361 362 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 363 /* Same as previous nh_aux, but two streams are handled in one pass, 364 * reading and writing 16 bytes of hash-state per call. 365 */ 366 { 367 UINT64 h1,h2; 368 UWORD c = dlen / 32; 369 UINT32 *k = (UINT32 *)kp; 370 const UINT32 *d = (const UINT32 *)dp; 371 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 372 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 373 k8,k9,k10,k11; 374 375 h1 = *((UINT64 *)hp); 376 h2 = *((UINT64 *)hp + 1); 377 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 378 do { 379 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 380 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 381 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 382 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 383 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 384 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 385 386 h1 += MUL64((k0 + d0), (k4 + d4)); 387 h2 += MUL64((k4 + d0), (k8 + d4)); 388 389 h1 += MUL64((k1 + d1), (k5 + d5)); 390 h2 += MUL64((k5 + d1), (k9 + d5)); 391 392 h1 += MUL64((k2 + d2), (k6 + d6)); 393 h2 += MUL64((k6 + d2), (k10 + d6)); 394 395 h1 += MUL64((k3 + d3), (k7 + d7)); 396 h2 += MUL64((k7 + d3), (k11 + d7)); 397 398 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 399 400 d += 8; 401 k += 8; 402 } while (--c); 403 ((UINT64 *)hp)[0] = h1; 404 ((UINT64 *)hp)[1] = h2; 405 } 406 407 #elif (UMAC_OUTPUT_LEN == 12) 408 409 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 410 /* Same as previous nh_aux, but two streams are handled in one pass, 411 * reading and writing 24 bytes of hash-state per call. 412 */ 413 { 414 UINT64 h1,h2,h3; 415 UWORD c = dlen / 32; 416 UINT32 *k = (UINT32 *)kp; 417 const UINT32 *d = (const UINT32 *)dp; 418 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 419 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 420 k8,k9,k10,k11,k12,k13,k14,k15; 421 422 h1 = *((UINT64 *)hp); 423 h2 = *((UINT64 *)hp + 1); 424 h3 = *((UINT64 *)hp + 2); 425 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 426 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 427 do { 428 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 429 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 430 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 431 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 432 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 433 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 434 435 h1 += MUL64((k0 + d0), (k4 + d4)); 436 h2 += MUL64((k4 + d0), (k8 + d4)); 437 h3 += MUL64((k8 + d0), (k12 + d4)); 438 439 h1 += MUL64((k1 + d1), (k5 + d5)); 440 h2 += MUL64((k5 + d1), (k9 + d5)); 441 h3 += MUL64((k9 + d1), (k13 + d5)); 442 443 h1 += MUL64((k2 + d2), (k6 + d6)); 444 h2 += MUL64((k6 + d2), (k10 + d6)); 445 h3 += MUL64((k10 + d2), (k14 + d6)); 446 447 h1 += MUL64((k3 + d3), (k7 + d7)); 448 h2 += MUL64((k7 + d3), (k11 + d7)); 449 h3 += MUL64((k11 + d3), (k15 + d7)); 450 451 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 452 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 453 454 d += 8; 455 k += 8; 456 } while (--c); 457 ((UINT64 *)hp)[0] = h1; 458 ((UINT64 *)hp)[1] = h2; 459 ((UINT64 *)hp)[2] = h3; 460 } 461 462 #elif (UMAC_OUTPUT_LEN == 16) 463 464 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 465 /* Same as previous nh_aux, but two streams are handled in one pass, 466 * reading and writing 24 bytes of hash-state per call. 467 */ 468 { 469 UINT64 h1,h2,h3,h4; 470 UWORD c = dlen / 32; 471 UINT32 *k = (UINT32 *)kp; 472 const UINT32 *d = (const UINT32 *)dp; 473 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 474 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 475 k8,k9,k10,k11,k12,k13,k14,k15, 476 k16,k17,k18,k19; 477 478 h1 = *((UINT64 *)hp); 479 h2 = *((UINT64 *)hp + 1); 480 h3 = *((UINT64 *)hp + 2); 481 h4 = *((UINT64 *)hp + 3); 482 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 483 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 484 do { 485 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 486 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 487 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 488 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 489 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 490 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 491 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 492 493 h1 += MUL64((k0 + d0), (k4 + d4)); 494 h2 += MUL64((k4 + d0), (k8 + d4)); 495 h3 += MUL64((k8 + d0), (k12 + d4)); 496 h4 += MUL64((k12 + d0), (k16 + d4)); 497 498 h1 += MUL64((k1 + d1), (k5 + d5)); 499 h2 += MUL64((k5 + d1), (k9 + d5)); 500 h3 += MUL64((k9 + d1), (k13 + d5)); 501 h4 += MUL64((k13 + d1), (k17 + d5)); 502 503 h1 += MUL64((k2 + d2), (k6 + d6)); 504 h2 += MUL64((k6 + d2), (k10 + d6)); 505 h3 += MUL64((k10 + d2), (k14 + d6)); 506 h4 += MUL64((k14 + d2), (k18 + d6)); 507 508 h1 += MUL64((k3 + d3), (k7 + d7)); 509 h2 += MUL64((k7 + d3), (k11 + d7)); 510 h3 += MUL64((k11 + d3), (k15 + d7)); 511 h4 += MUL64((k15 + d3), (k19 + d7)); 512 513 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 514 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 515 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 516 517 d += 8; 518 k += 8; 519 } while (--c); 520 ((UINT64 *)hp)[0] = h1; 521 ((UINT64 *)hp)[1] = h2; 522 ((UINT64 *)hp)[2] = h3; 523 ((UINT64 *)hp)[3] = h4; 524 } 525 526 /* ---------------------------------------------------------------------- */ 527 #endif /* UMAC_OUTPUT_LENGTH */ 528 /* ---------------------------------------------------------------------- */ 529 530 531 /* ---------------------------------------------------------------------- */ 532 533 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 534 /* This function is a wrapper for the primitive NH hash functions. It takes 535 * as argument "hc" the current hash context and a buffer which must be a 536 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 537 * appropriately according to how much message has been hashed already. 538 */ 539 { 540 UINT8 *key; 541 542 key = hc->nh_key + hc->bytes_hashed; 543 nh_aux(key, buf, hc->state, nbytes); 544 } 545 546 /* ---------------------------------------------------------------------- */ 547 548 #if (__LITTLE_ENDIAN__) 549 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 550 /* We endian convert the keys on little-endian computers to */ 551 /* compensate for the lack of big-endian memory reads during hashing. */ 552 { 553 UWORD iters = num_bytes / bpw; 554 if (bpw == 4) { 555 UINT32 *p = (UINT32 *)buf; 556 do { 557 *p = LOAD_UINT32_REVERSED(p); 558 p++; 559 } while (--iters); 560 } else if (bpw == 8) { 561 UINT32 *p = (UINT32 *)buf; 562 UINT32 t; 563 do { 564 t = LOAD_UINT32_REVERSED(p+1); 565 p[1] = LOAD_UINT32_REVERSED(p); 566 p[0] = t; 567 p += 2; 568 } while (--iters); 569 } 570 } 571 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 572 #else 573 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 574 #endif 575 576 /* ---------------------------------------------------------------------- */ 577 578 static void nh_reset(nh_ctx *hc) 579 /* Reset nh_ctx to ready for hashing of new data */ 580 { 581 hc->bytes_hashed = 0; 582 hc->next_data_empty = 0; 583 hc->state[0] = 0; 584 #if (UMAC_OUTPUT_LEN >= 8) 585 hc->state[1] = 0; 586 #endif 587 #if (UMAC_OUTPUT_LEN >= 12) 588 hc->state[2] = 0; 589 #endif 590 #if (UMAC_OUTPUT_LEN == 16) 591 hc->state[3] = 0; 592 #endif 593 594 } 595 596 /* ---------------------------------------------------------------------- */ 597 598 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 599 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 600 { 601 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 602 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 603 nh_reset(hc); 604 } 605 606 /* ---------------------------------------------------------------------- */ 607 608 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 609 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 610 /* even multiple of HASH_BUF_BYTES. */ 611 { 612 UINT32 i,j; 613 614 j = hc->next_data_empty; 615 if ((j + nbytes) >= HASH_BUF_BYTES) { 616 if (j) { 617 i = HASH_BUF_BYTES - j; 618 memcpy(hc->data+j, buf, i); 619 nh_transform(hc,hc->data,HASH_BUF_BYTES); 620 nbytes -= i; 621 buf += i; 622 hc->bytes_hashed += HASH_BUF_BYTES; 623 } 624 if (nbytes >= HASH_BUF_BYTES) { 625 i = nbytes & ~(HASH_BUF_BYTES - 1); 626 nh_transform(hc, buf, i); 627 nbytes -= i; 628 buf += i; 629 hc->bytes_hashed += i; 630 } 631 j = 0; 632 } 633 memcpy(hc->data + j, buf, nbytes); 634 hc->next_data_empty = j + nbytes; 635 } 636 637 /* ---------------------------------------------------------------------- */ 638 639 static void zero_pad(UINT8 *p, int nbytes) 640 { 641 /* Write "nbytes" of zeroes, beginning at "p" */ 642 if (nbytes >= (int)sizeof(UWORD)) { 643 while ((ptrdiff_t)p % sizeof(UWORD)) { 644 *p = 0; 645 nbytes--; 646 p++; 647 } 648 while (nbytes >= (int)sizeof(UWORD)) { 649 *(UWORD *)p = 0; 650 nbytes -= sizeof(UWORD); 651 p += sizeof(UWORD); 652 } 653 } 654 while (nbytes) { 655 *p = 0; 656 nbytes--; 657 p++; 658 } 659 } 660 661 /* ---------------------------------------------------------------------- */ 662 663 static void nh_final(nh_ctx *hc, UINT8 *result) 664 /* After passing some number of data buffers to nh_update() for integration 665 * into an NH context, nh_final is called to produce a hash result. If any 666 * bytes are in the buffer hc->data, incorporate them into the 667 * NH context. Finally, add into the NH accumulation "state" the total number 668 * of bits hashed. The resulting numbers are written to the buffer "result". 669 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 670 */ 671 { 672 int nh_len, nbits; 673 674 if (hc->next_data_empty != 0) { 675 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 676 ~(L1_PAD_BOUNDARY - 1)); 677 zero_pad(hc->data + hc->next_data_empty, 678 nh_len - hc->next_data_empty); 679 nh_transform(hc, hc->data, nh_len); 680 hc->bytes_hashed += hc->next_data_empty; 681 } else if (hc->bytes_hashed == 0) { 682 nh_len = L1_PAD_BOUNDARY; 683 zero_pad(hc->data, L1_PAD_BOUNDARY); 684 nh_transform(hc, hc->data, nh_len); 685 } 686 687 nbits = (hc->bytes_hashed << 3); 688 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 689 #if (UMAC_OUTPUT_LEN >= 8) 690 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 691 #endif 692 #if (UMAC_OUTPUT_LEN >= 12) 693 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 694 #endif 695 #if (UMAC_OUTPUT_LEN == 16) 696 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 697 #endif 698 nh_reset(hc); 699 } 700 701 /* ---------------------------------------------------------------------- */ 702 703 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 704 UINT32 unpadded_len, UINT8 *result) 705 /* All-in-one nh_update() and nh_final() equivalent. 706 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 707 * well aligned 708 */ 709 { 710 UINT32 nbits; 711 712 /* Initialize the hash state */ 713 nbits = (unpadded_len << 3); 714 715 ((UINT64 *)result)[0] = nbits; 716 #if (UMAC_OUTPUT_LEN >= 8) 717 ((UINT64 *)result)[1] = nbits; 718 #endif 719 #if (UMAC_OUTPUT_LEN >= 12) 720 ((UINT64 *)result)[2] = nbits; 721 #endif 722 #if (UMAC_OUTPUT_LEN == 16) 723 ((UINT64 *)result)[3] = nbits; 724 #endif 725 726 nh_aux(hc->nh_key, buf, result, padded_len); 727 } 728 729 /* ---------------------------------------------------------------------- */ 730 /* ---------------------------------------------------------------------- */ 731 /* ----- Begin UHASH Section -------------------------------------------- */ 732 /* ---------------------------------------------------------------------- */ 733 /* ---------------------------------------------------------------------- */ 734 735 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 736 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 737 * unless the initial data to be hashed is short. After the polynomial- 738 * layer, an inner-product hash is used to produce the final UHASH output. 739 * 740 * UHASH provides two interfaces, one all-at-once and another where data 741 * buffers are presented sequentially. In the sequential interface, the 742 * UHASH client calls the routine uhash_update() as many times as necessary. 743 * When there is no more data to be fed to UHASH, the client calls 744 * uhash_final() which 745 * calculates the UHASH output. Before beginning another UHASH calculation 746 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 747 * uhash(), is equivalent to the sequence of calls uhash_update() and 748 * uhash_final(); however it is optimized and should be 749 * used whenever the sequential interface is not necessary. 750 * 751 * The routine uhash_init() initializes the uhash_ctx data structure and 752 * must be called once, before any other UHASH routine. 753 */ 754 755 /* ---------------------------------------------------------------------- */ 756 /* ----- Constants and uhash_ctx ---------------------------------------- */ 757 /* ---------------------------------------------------------------------- */ 758 759 /* ---------------------------------------------------------------------- */ 760 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 761 /* ---------------------------------------------------------------------- */ 762 763 /* Primes and masks */ 764 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 765 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 766 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 767 768 769 /* ---------------------------------------------------------------------- */ 770 771 typedef struct uhash_ctx { 772 nh_ctx hash; /* Hash context for L1 NH hash */ 773 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 774 UINT64 poly_accum[STREAMS]; /* poly hash result */ 775 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 776 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 777 UINT32 msg_len; /* Total length of data passed */ 778 /* to uhash */ 779 } uhash_ctx; 780 typedef struct uhash_ctx *uhash_ctx_t; 781 782 /* ---------------------------------------------------------------------- */ 783 784 785 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 786 * word at a time. As described in the specification, poly32 and poly64 787 * require keys from special domains. The following implementations exploit 788 * the special domains to avoid overflow. The results are not guaranteed to 789 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 790 * patches any errant values. 791 */ 792 793 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 794 { 795 UINT32 key_hi = (UINT32)(key >> 32), 796 key_lo = (UINT32)key, 797 cur_hi = (UINT32)(cur >> 32), 798 cur_lo = (UINT32)cur, 799 x_lo, 800 x_hi; 801 UINT64 X,T,res; 802 803 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 804 x_lo = (UINT32)X; 805 x_hi = (UINT32)(X >> 32); 806 807 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 808 809 T = ((UINT64)x_lo << 32); 810 res += T; 811 if (res < T) 812 res += 59; 813 814 res += data; 815 if (res < data) 816 res += 59; 817 818 return res; 819 } 820 821 822 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 823 * implementation does not handle all ramp levels. Because we don't handle 824 * the ramp up to p128 modulus in this implementation, we are limited to 825 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 826 * bytes input to UMAC per tag, ie. 16MB). 827 */ 828 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 829 { 830 int i; 831 UINT64 *data=(UINT64*)data_in; 832 833 for (i = 0; i < STREAMS; i++) { 834 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 835 hc->poly_accum[i] = poly64(hc->poly_accum[i], 836 hc->poly_key_8[i], p64 - 1); 837 hc->poly_accum[i] = poly64(hc->poly_accum[i], 838 hc->poly_key_8[i], (data[i] - 59)); 839 } else { 840 hc->poly_accum[i] = poly64(hc->poly_accum[i], 841 hc->poly_key_8[i], data[i]); 842 } 843 } 844 } 845 846 847 /* ---------------------------------------------------------------------- */ 848 849 850 /* The final step in UHASH is an inner-product hash. The poly hash 851 * produces a result not necessarily WORD_LEN bytes long. The inner- 852 * product hash breaks the polyhash output into 16-bit chunks and 853 * multiplies each with a 36 bit key. 854 */ 855 856 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 857 { 858 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 859 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 860 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 861 t = t + ipkp[3] * (UINT64)(UINT16)(data); 862 863 return t; 864 } 865 866 static UINT32 ip_reduce_p36(UINT64 t) 867 { 868 /* Divisionless modular reduction */ 869 UINT64 ret; 870 871 ret = (t & m36) + 5 * (t >> 36); 872 if (ret >= p36) 873 ret -= p36; 874 875 /* return least significant 32 bits */ 876 return (UINT32)(ret); 877 } 878 879 880 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 881 * the polyhash stage is skipped and ip_short is applied directly to the 882 * NH output. 883 */ 884 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 885 { 886 UINT64 t; 887 UINT64 *nhp = (UINT64 *)nh_res; 888 889 t = ip_aux(0,ahc->ip_keys, nhp[0]); 890 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 891 #if (UMAC_OUTPUT_LEN >= 8) 892 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 893 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 894 #endif 895 #if (UMAC_OUTPUT_LEN >= 12) 896 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 897 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 898 #endif 899 #if (UMAC_OUTPUT_LEN == 16) 900 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 901 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 902 #endif 903 } 904 905 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 906 * the polyhash stage is not skipped and ip_long is applied to the 907 * polyhash output. 908 */ 909 static void ip_long(uhash_ctx_t ahc, u_char *res) 910 { 911 int i; 912 UINT64 t; 913 914 for (i = 0; i < STREAMS; i++) { 915 /* fix polyhash output not in Z_p64 */ 916 if (ahc->poly_accum[i] >= p64) 917 ahc->poly_accum[i] -= p64; 918 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 919 STORE_UINT32_BIG((UINT32 *)res+i, 920 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 921 } 922 } 923 924 925 /* ---------------------------------------------------------------------- */ 926 927 /* ---------------------------------------------------------------------- */ 928 929 /* Reset uhash context for next hash session */ 930 static int uhash_reset(uhash_ctx_t pc) 931 { 932 nh_reset(&pc->hash); 933 pc->msg_len = 0; 934 pc->poly_accum[0] = 1; 935 #if (UMAC_OUTPUT_LEN >= 8) 936 pc->poly_accum[1] = 1; 937 #endif 938 #if (UMAC_OUTPUT_LEN >= 12) 939 pc->poly_accum[2] = 1; 940 #endif 941 #if (UMAC_OUTPUT_LEN == 16) 942 pc->poly_accum[3] = 1; 943 #endif 944 return 1; 945 } 946 947 /* ---------------------------------------------------------------------- */ 948 949 /* Given a pointer to the internal key needed by kdf() and a uhash context, 950 * initialize the NH context and generate keys needed for poly and inner- 951 * product hashing. All keys are endian adjusted in memory so that native 952 * loads cause correct keys to be in registers during calculation. 953 */ 954 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 955 { 956 int i; 957 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 958 959 /* Zero the entire uhash context */ 960 memset(ahc, 0, sizeof(uhash_ctx)); 961 962 /* Initialize the L1 hash */ 963 nh_init(&ahc->hash, prf_key); 964 965 /* Setup L2 hash variables */ 966 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 967 for (i = 0; i < STREAMS; i++) { 968 /* Fill keys from the buffer, skipping bytes in the buffer not 969 * used by this implementation. Endian reverse the keys if on a 970 * little-endian computer. 971 */ 972 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 973 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 974 /* Mask the 64-bit keys to their special domain */ 975 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 976 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 977 } 978 979 /* Setup L3-1 hash variables */ 980 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 981 for (i = 0; i < STREAMS; i++) 982 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 983 4*sizeof(UINT64)); 984 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 985 sizeof(ahc->ip_keys)); 986 for (i = 0; i < STREAMS*4; i++) 987 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 988 989 /* Setup L3-2 hash variables */ 990 /* Fill buffer with index 4 key */ 991 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 992 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 993 STREAMS * sizeof(UINT32)); 994 explicit_bzero(buf, sizeof(buf)); 995 } 996 997 /* ---------------------------------------------------------------------- */ 998 999 #if 0 1000 static uhash_ctx_t uhash_alloc(u_char key[]) 1001 { 1002 /* Allocate memory and force to a 16-byte boundary. */ 1003 uhash_ctx_t ctx; 1004 u_char bytes_to_add; 1005 aes_int_key prf_key; 1006 1007 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1008 if (ctx) { 1009 if (ALLOC_BOUNDARY) { 1010 bytes_to_add = ALLOC_BOUNDARY - 1011 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1012 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1013 *((u_char *)ctx - 1) = bytes_to_add; 1014 } 1015 aes_key_setup(key,prf_key); 1016 uhash_init(ctx, prf_key); 1017 } 1018 return (ctx); 1019 } 1020 #endif 1021 1022 /* ---------------------------------------------------------------------- */ 1023 1024 #if 0 1025 static int uhash_free(uhash_ctx_t ctx) 1026 { 1027 /* Free memory allocated by uhash_alloc */ 1028 u_char bytes_to_sub; 1029 1030 if (ctx) { 1031 if (ALLOC_BOUNDARY) { 1032 bytes_to_sub = *((u_char *)ctx - 1); 1033 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1034 } 1035 free(ctx); 1036 } 1037 return (1); 1038 } 1039 #endif 1040 /* ---------------------------------------------------------------------- */ 1041 1042 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1043 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1044 * hash each one with NH, calling the polyhash on each NH output. 1045 */ 1046 { 1047 UWORD bytes_hashed, bytes_remaining; 1048 UINT64 result_buf[STREAMS]; 1049 UINT8 *nh_result = (UINT8 *)&result_buf; 1050 1051 if (ctx->msg_len + len <= L1_KEY_LEN) { 1052 nh_update(&ctx->hash, (const UINT8 *)input, len); 1053 ctx->msg_len += len; 1054 } else { 1055 1056 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1057 if (ctx->msg_len == L1_KEY_LEN) 1058 bytes_hashed = L1_KEY_LEN; 1059 1060 if (bytes_hashed + len >= L1_KEY_LEN) { 1061 1062 /* If some bytes have been passed to the hash function */ 1063 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1064 /* bytes to complete the current nh_block. */ 1065 if (bytes_hashed) { 1066 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1067 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1068 nh_final(&ctx->hash, nh_result); 1069 ctx->msg_len += bytes_remaining; 1070 poly_hash(ctx,(UINT32 *)nh_result); 1071 len -= bytes_remaining; 1072 input += bytes_remaining; 1073 } 1074 1075 /* Hash directly from input stream if enough bytes */ 1076 while (len >= L1_KEY_LEN) { 1077 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1078 L1_KEY_LEN, nh_result); 1079 ctx->msg_len += L1_KEY_LEN; 1080 len -= L1_KEY_LEN; 1081 input += L1_KEY_LEN; 1082 poly_hash(ctx,(UINT32 *)nh_result); 1083 } 1084 } 1085 1086 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1087 if (len) { 1088 nh_update(&ctx->hash, (const UINT8 *)input, len); 1089 ctx->msg_len += len; 1090 } 1091 } 1092 1093 return (1); 1094 } 1095 1096 /* ---------------------------------------------------------------------- */ 1097 1098 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1099 /* Incorporate any pending data, pad, and generate tag */ 1100 { 1101 UINT64 result_buf[STREAMS]; 1102 UINT8 *nh_result = (UINT8 *)&result_buf; 1103 1104 if (ctx->msg_len > L1_KEY_LEN) { 1105 if (ctx->msg_len % L1_KEY_LEN) { 1106 nh_final(&ctx->hash, nh_result); 1107 poly_hash(ctx,(UINT32 *)nh_result); 1108 } 1109 ip_long(ctx, res); 1110 } else { 1111 nh_final(&ctx->hash, nh_result); 1112 ip_short(ctx,nh_result, res); 1113 } 1114 uhash_reset(ctx); 1115 return (1); 1116 } 1117 1118 /* ---------------------------------------------------------------------- */ 1119 1120 #if 0 1121 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1122 /* assumes that msg is in a writable buffer of length divisible by */ 1123 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1124 { 1125 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1126 UINT32 nh_len; 1127 int extra_zeroes_needed; 1128 1129 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1130 * the polyhash. 1131 */ 1132 if (len <= L1_KEY_LEN) { 1133 if (len == 0) /* If zero length messages will not */ 1134 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1135 else 1136 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1137 extra_zeroes_needed = nh_len - len; 1138 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1139 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1140 ip_short(ahc,nh_result, res); 1141 } else { 1142 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1143 * output to poly_hash(). 1144 */ 1145 do { 1146 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1147 poly_hash(ahc,(UINT32 *)nh_result); 1148 len -= L1_KEY_LEN; 1149 msg += L1_KEY_LEN; 1150 } while (len >= L1_KEY_LEN); 1151 if (len) { 1152 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1153 extra_zeroes_needed = nh_len - len; 1154 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1155 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1156 poly_hash(ahc,(UINT32 *)nh_result); 1157 } 1158 1159 ip_long(ahc, res); 1160 } 1161 1162 uhash_reset(ahc); 1163 return 1; 1164 } 1165 #endif 1166 1167 /* ---------------------------------------------------------------------- */ 1168 /* ---------------------------------------------------------------------- */ 1169 /* ----- Begin UMAC Section --------------------------------------------- */ 1170 /* ---------------------------------------------------------------------- */ 1171 /* ---------------------------------------------------------------------- */ 1172 1173 /* The UMAC interface has two interfaces, an all-at-once interface where 1174 * the entire message to be authenticated is passed to UMAC in one buffer, 1175 * and a sequential interface where the message is presented a little at a 1176 * time. The all-at-once is more optimaized than the sequential version and 1177 * should be preferred when the sequential interface is not required. 1178 */ 1179 struct umac_ctx { 1180 uhash_ctx hash; /* Hash function for message compression */ 1181 pdf_ctx pdf; /* PDF for hashed output */ 1182 void *free_ptr; /* Address to free this struct via */ 1183 } umac_ctx; 1184 1185 /* ---------------------------------------------------------------------- */ 1186 1187 #if 0 1188 int umac_reset(struct umac_ctx *ctx) 1189 /* Reset the hash function to begin a new authentication. */ 1190 { 1191 uhash_reset(&ctx->hash); 1192 return (1); 1193 } 1194 #endif 1195 1196 /* ---------------------------------------------------------------------- */ 1197 1198 int umac_delete(struct umac_ctx *ctx) 1199 /* Deallocate the ctx structure */ 1200 { 1201 if (ctx) { 1202 if (ALLOC_BOUNDARY) 1203 ctx = (struct umac_ctx *)ctx->free_ptr; 1204 freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); 1205 } 1206 return (1); 1207 } 1208 1209 /* ---------------------------------------------------------------------- */ 1210 1211 struct umac_ctx *umac_new(const u_char key[]) 1212 /* Dynamically allocate a umac_ctx struct, initialize variables, 1213 * generate subkeys from key. Align to 16-byte boundary. 1214 */ 1215 { 1216 struct umac_ctx *ctx, *octx; 1217 size_t bytes_to_add; 1218 aes_int_key prf_key; 1219 1220 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1221 if (ctx) { 1222 if (ALLOC_BOUNDARY) { 1223 bytes_to_add = ALLOC_BOUNDARY - 1224 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1225 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1226 } 1227 ctx->free_ptr = octx; 1228 aes_key_setup(key, prf_key); 1229 pdf_init(&ctx->pdf, prf_key); 1230 uhash_init(&ctx->hash, prf_key); 1231 explicit_bzero(prf_key, sizeof(prf_key)); 1232 } 1233 1234 return (ctx); 1235 } 1236 1237 /* ---------------------------------------------------------------------- */ 1238 1239 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1240 /* Incorporate any pending data, pad, and generate tag */ 1241 { 1242 uhash_final(&ctx->hash, (u_char *)tag); 1243 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1244 1245 return (1); 1246 } 1247 1248 /* ---------------------------------------------------------------------- */ 1249 1250 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1251 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1252 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1253 /* output buffer is full. */ 1254 { 1255 uhash_update(&ctx->hash, input, len); 1256 return (1); 1257 } 1258 1259 /* ---------------------------------------------------------------------- */ 1260 1261 #if 0 1262 int umac(struct umac_ctx *ctx, u_char *input, 1263 long len, u_char tag[], 1264 u_char nonce[8]) 1265 /* All-in-one version simply calls umac_update() and umac_final(). */ 1266 { 1267 uhash(&ctx->hash, input, len, (u_char *)tag); 1268 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1269 1270 return (1); 1271 } 1272 #endif 1273 1274 /* ---------------------------------------------------------------------- */ 1275 /* ---------------------------------------------------------------------- */ 1276 /* ----- End UMAC Section ----------------------------------------------- */ 1277 /* ---------------------------------------------------------------------- */ 1278 /* ---------------------------------------------------------------------- */ 1279