xref: /openbsd/usr.bin/top/machine.c (revision 264ca280)
1 /* $OpenBSD: machine.c,v 1.87 2016/07/28 21:45:00 tedu Exp $	 */
2 
3 /*-
4  * Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
19  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
21  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
30  *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
31  *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
32  *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
33  *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
34  */
35 
36 #include <sys/param.h>	/* DEV_BSIZE MAXCOMLEN PZERO */
37 #include <sys/types.h>
38 #include <sys/signal.h>
39 #include <sys/mount.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/swap.h>
43 #include <sys/sysctl.h>
44 
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48 #include <unistd.h>
49 #include <err.h>
50 #include <errno.h>
51 
52 #include "top.h"
53 #include "display.h"
54 #include "machine.h"
55 #include "utils.h"
56 
57 static int	swapmode(int *, int *);
58 static char	*state_abbr(struct kinfo_proc *);
59 static char	*format_comm(struct kinfo_proc *);
60 static int	cmd_matches(struct kinfo_proc *, char *);
61 static char	**get_proc_args(struct kinfo_proc *);
62 
63 /* get_process_info passes back a handle.  This is what it looks like: */
64 
65 struct handle {
66 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
67 	int		remaining;	/* number of pointers remaining */
68 };
69 
70 /* what we consider to be process size: */
71 #define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
72 
73 /*
74  *  These definitions control the format of the per-process area
75  */
76 static char header[] =
77 	"  PID X        PRI NICE  SIZE   RES STATE     WAIT      TIME    CPU COMMAND";
78 
79 /* 0123456   -- field to fill in starts at header+6 */
80 #define UNAME_START 6
81 
82 #define Proc_format \
83 	"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"
84 
85 /* process state names for the "STATE" column of the display */
86 /*
87  * the extra nulls in the string "run" are for adding a slash and the
88  * processor number when needed
89  */
90 
91 char	*state_abbrev[] = {
92 	"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
93 };
94 
95 /* these are for calculating cpu state percentages */
96 static int64_t     **cp_time;
97 static int64_t     **cp_old;
98 static int64_t     **cp_diff;
99 
100 /* these are for detailing the process states */
101 int process_states[8];
102 char *procstatenames[] = {
103 	"", " starting, ", " running, ", " idle, ",
104 	" stopped, ", " zombie, ", " dead, ", " on processor, ",
105 	NULL
106 };
107 
108 /* these are for detailing the cpu states */
109 int64_t *cpu_states;
110 char *cpustatenames[] = {
111 	"user", "nice", "system", "interrupt", "idle", NULL
112 };
113 
114 /* these are for detailing the memory statistics */
115 int memory_stats[10];
116 char *memorynames[] = {
117 	"Real: ", "K/", "K act/tot ", "Free: ", "K ",
118 	"Cache: ", "K ",
119 	"Swap: ", "K/", "K",
120 	NULL
121 };
122 
123 /* these are names given to allowed sorting orders -- first is default */
124 char	*ordernames[] = {
125 	"cpu", "size", "res", "time", "pri", "pid", "command", NULL
126 };
127 
128 /* these are for keeping track of the proc array */
129 static int      nproc;
130 static int      onproc = -1;
131 static int      pref_len;
132 static struct kinfo_proc *pbase;
133 static struct kinfo_proc **pref;
134 
135 /* these are for getting the memory statistics */
136 static int      pageshift;	/* log base 2 of the pagesize */
137 
138 /* define pagetok in terms of pageshift */
139 #define pagetok(size) ((size) << pageshift)
140 
141 int		ncpu;
142 int		fscale;
143 
144 unsigned int	maxslp;
145 
146 int
147 getfscale(void)
148 {
149 	int mib[] = { CTL_KERN, KERN_FSCALE };
150 	size_t size = sizeof(fscale);
151 
152 	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
153 	    &fscale, &size, NULL, 0) < 0)
154 		return (-1);
155 	return fscale;
156 }
157 
158 int
159 getncpu(void)
160 {
161 	int mib[] = { CTL_HW, HW_NCPU };
162 	int ncpu;
163 	size_t size = sizeof(ncpu);
164 
165 	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
166 	    &ncpu, &size, NULL, 0) == -1)
167 		return (-1);
168 
169 	return (ncpu);
170 }
171 
172 int
173 machine_init(struct statics *statics)
174 {
175 	int pagesize, cpu;
176 
177 	ncpu = getncpu();
178 	if (ncpu == -1)
179 		return (-1);
180 	if (getfscale() == -1)
181 		return (-1);
182 	cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
183 	if (cpu_states == NULL)
184 		err(1, NULL);
185 	cp_time = calloc(ncpu, sizeof(int64_t *));
186 	cp_old  = calloc(ncpu, sizeof(int64_t *));
187 	cp_diff = calloc(ncpu, sizeof(int64_t *));
188 	if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
189 		err(1, NULL);
190 	for (cpu = 0; cpu < ncpu; cpu++) {
191 		cp_time[cpu] = calloc(CPUSTATES, sizeof(int64_t));
192 		cp_old[cpu] = calloc(CPUSTATES, sizeof(int64_t));
193 		cp_diff[cpu] = calloc(CPUSTATES, sizeof(int64_t));
194 		if (cp_time[cpu] == NULL || cp_old[cpu] == NULL ||
195 		    cp_diff[cpu] == NULL)
196 			err(1, NULL);
197 	}
198 
199 	pbase = NULL;
200 	pref = NULL;
201 	onproc = -1;
202 	nproc = 0;
203 
204 	/*
205 	 * get the page size with "getpagesize" and calculate pageshift from
206 	 * it
207 	 */
208 	pagesize = getpagesize();
209 	pageshift = 0;
210 	while (pagesize > 1) {
211 		pageshift++;
212 		pagesize >>= 1;
213 	}
214 
215 	/* we only need the amount of log(2)1024 for our conversion */
216 	pageshift -= LOG1024;
217 
218 	/* fill in the statics information */
219 	statics->procstate_names = procstatenames;
220 	statics->cpustate_names = cpustatenames;
221 	statics->memory_names = memorynames;
222 	statics->order_names = ordernames;
223 	return (0);
224 }
225 
226 char *
227 format_header(char *second_field, int show_threads)
228 {
229 	char *field_name, *thread_field = "     TID";
230 	char *ptr;
231 
232 	if (show_threads)
233 		field_name = thread_field;
234 	else
235 		field_name = second_field;
236 
237 	ptr = header + UNAME_START;
238 	while (*field_name != '\0')
239 		*ptr++ = *field_name++;
240 	return (header);
241 }
242 
243 void
244 get_system_info(struct system_info *si)
245 {
246 	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
247 	static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP};
248 	static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
249 	struct loadavg sysload;
250 	struct uvmexp uvmexp;
251 	struct bcachestats bcstats;
252 	double *infoloadp;
253 	size_t size;
254 	int i;
255 	int64_t *tmpstate;
256 
257 	if (ncpu > 1) {
258 		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, /*fillme*/0};
259 
260 		size = CPUSTATES * sizeof(int64_t);
261 		for (i = 0; i < ncpu; i++) {
262 			cp_time_mib[2] = i;
263 			tmpstate = cpu_states + (CPUSTATES * i);
264 			if (sysctl(cp_time_mib, 3, cp_time[i], &size, NULL, 0) < 0)
265 				warn("sysctl kern.cp_time2 failed");
266 			/* convert cp_time2 counts to percentages */
267 			(void) percentages(CPUSTATES, tmpstate, cp_time[i],
268 			    cp_old[i], cp_diff[i]);
269 		}
270 	} else {
271 		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
272 		long cp_time_tmp[CPUSTATES];
273 
274 		size = sizeof(cp_time_tmp);
275 		if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, NULL, 0) < 0)
276 			warn("sysctl kern.cp_time failed");
277 		for (i = 0; i < CPUSTATES; i++)
278 			cp_time[0][i] = cp_time_tmp[i];
279 		/* convert cp_time counts to percentages */
280 		(void) percentages(CPUSTATES, cpu_states, cp_time[0],
281 		    cp_old[0], cp_diff[0]);
282 	}
283 
284 	size = sizeof(sysload);
285 	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0)
286 		warn("sysctl failed");
287 	infoloadp = si->load_avg;
288 	for (i = 0; i < 3; i++)
289 		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
290 
291 
292 	/* get total -- systemwide main memory usage structure */
293 	size = sizeof(uvmexp);
294 	if (sysctl(uvmexp_mib, 2, &uvmexp, &size, NULL, 0) < 0) {
295 		warn("sysctl failed");
296 		bzero(&uvmexp, sizeof(uvmexp));
297 	}
298 	size = sizeof(bcstats);
299 	if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) < 0) {
300 		warn("sysctl failed");
301 		bzero(&bcstats, sizeof(bcstats));
302 	}
303 	/* convert memory stats to Kbytes */
304 	memory_stats[0] = -1;
305 	memory_stats[1] = pagetok(uvmexp.active);
306 	memory_stats[2] = pagetok(uvmexp.npages - uvmexp.free);
307 	memory_stats[3] = -1;
308 	memory_stats[4] = pagetok(uvmexp.free);
309 	memory_stats[5] = -1;
310 	memory_stats[6] = pagetok(bcstats.numbufpages);
311 	memory_stats[7] = -1;
312 
313 	if (!swapmode(&memory_stats[8], &memory_stats[9])) {
314 		memory_stats[8] = 0;
315 		memory_stats[9] = 0;
316 	}
317 
318 	/* set arrays and strings */
319 	si->cpustates = cpu_states;
320 	si->memory = memory_stats;
321 	si->last_pid = -1;
322 }
323 
324 static struct handle handle;
325 
326 struct kinfo_proc *
327 getprocs(int op, int arg, int *cnt)
328 {
329 	size_t size;
330 	int mib[6] = {CTL_KERN, KERN_PROC, 0, 0, sizeof(struct kinfo_proc), 0};
331 	static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
332 	static struct kinfo_proc *procbase;
333 	int st;
334 
335 	mib[2] = op;
336 	mib[3] = arg;
337 
338 	size = sizeof(maxslp);
339 	if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) < 0) {
340 		warn("sysctl vm.maxslp failed");
341 		return (0);
342 	}
343     retry:
344 	free(procbase);
345 	st = sysctl(mib, 6, NULL, &size, NULL, 0);
346 	if (st == -1) {
347 		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
348 		return (0);
349 	}
350 	size = 5 * size / 4;			/* extra slop */
351 	if ((procbase = malloc(size)) == NULL)
352 		return (0);
353 	mib[5] = (int)(size / sizeof(struct kinfo_proc));
354 	st = sysctl(mib, 6, procbase, &size, NULL, 0);
355 	if (st == -1) {
356 		if (errno == ENOMEM)
357 			goto retry;
358 		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
359 		return (0);
360 	}
361 	*cnt = (int)(size / sizeof(struct kinfo_proc));
362 	return (procbase);
363 }
364 
365 static char **
366 get_proc_args(struct kinfo_proc *kp)
367 {
368 	static char	**s;
369 	static size_t	siz = 1023;
370 	int		mib[4];
371 
372 	if (!s && !(s = malloc(siz)))
373 		err(1, NULL);
374 
375 	mib[0] = CTL_KERN;
376 	mib[1] = KERN_PROC_ARGS;
377 	mib[2] = kp->p_pid;
378 	mib[3] = KERN_PROC_ARGV;
379 	for (;;) {
380 		size_t space = siz;
381 		if (sysctl(mib, 4, s, &space, NULL, 0) == 0)
382 			break;
383 		if (errno != ENOMEM)
384 			return NULL;
385 		siz *= 2;
386 		if ((s = realloc(s, siz)) == NULL)
387 			err(1, NULL);
388 	}
389 	return s;
390 }
391 
392 static int
393 cmd_matches(struct kinfo_proc *proc, char *term)
394 {
395 	extern int	show_args;
396 	char		**args = NULL;
397 
398 	if (!term) {
399 		/* No command filter set */
400 		return 1;
401 	} else {
402 		/* Filter set, process name needs to contain term */
403 		if (strstr(proc->p_comm, term))
404 			return 1;
405 		/* If showing arguments, search those as well */
406 		if (show_args) {
407 			args = get_proc_args(proc);
408 
409 			if (args == NULL) {
410 				/* Failed to get args, so can't search them */
411 				return 0;
412 			}
413 
414 			while (*args != NULL) {
415 				if (strstr(*args, term))
416 					return 1;
417 				args++;
418 			}
419 		}
420 	}
421 	return 0;
422 }
423 
424 caddr_t
425 get_process_info(struct system_info *si, struct process_select *sel,
426     int (*compare) (const void *, const void *))
427 {
428 	int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
429 	int hide_uid;
430 	int total_procs, active_procs;
431 	struct kinfo_proc **prefp, *pp;
432 	int what = KERN_PROC_KTHREAD;
433 
434 	if (sel->threads)
435 		what |= KERN_PROC_SHOW_THREADS;
436 
437 	if ((pbase = getprocs(what, 0, &nproc)) == NULL) {
438 		/* warnx("%s", kvm_geterr(kd)); */
439 		quit(23);
440 	}
441 	if (nproc > onproc)
442 		pref = reallocarray(pref, (onproc = nproc),
443 		    sizeof(struct kinfo_proc *));
444 	if (pref == NULL) {
445 		warnx("Out of memory.");
446 		quit(23);
447 	}
448 	/* get a pointer to the states summary array */
449 	si->procstates = process_states;
450 
451 	/* set up flags which define what we are going to select */
452 	show_idle = sel->idle;
453 	show_system = sel->system;
454 	show_threads = sel->threads;
455 	show_uid = sel->uid != (uid_t)-1;
456 	hide_uid = sel->huid != (uid_t)-1;
457 	show_pid = sel->pid != (pid_t)-1;
458 	show_cmd = sel->command != NULL;
459 
460 	/* count up process states and get pointers to interesting procs */
461 	total_procs = 0;
462 	active_procs = 0;
463 	memset((char *) process_states, 0, sizeof(process_states));
464 	prefp = pref;
465 	for (pp = pbase; pp < &pbase[nproc]; pp++) {
466 		/*
467 		 *  Place pointers to each valid proc structure in pref[].
468 		 *  Process slots that are actually in use have a non-zero
469 		 *  status field.  Processes with P_SYSTEM set are system
470 		 *  processes---these get ignored unless show_system is set.
471 		 */
472 		if (show_threads && pp->p_tid == -1)
473 			continue;
474 		if (pp->p_stat != 0 &&
475 		    (show_system || (pp->p_flag & P_SYSTEM) == 0) &&
476 		    (show_threads || (pp->p_flag & P_THREAD) == 0)) {
477 			total_procs++;
478 			process_states[(unsigned char) pp->p_stat]++;
479 			if ((pp->p_psflags & PS_ZOMBIE) == 0 &&
480 			    (show_idle || pp->p_pctcpu != 0 ||
481 			    pp->p_stat == SRUN) &&
482 			    (!hide_uid || pp->p_ruid != sel->huid) &&
483 			    (!show_uid || pp->p_ruid == sel->uid) &&
484 			    (!show_pid || pp->p_pid == sel->pid) &&
485 			    (!show_cmd || cmd_matches(pp, sel->command))) {
486 				*prefp++ = pp;
487 				active_procs++;
488 			}
489 		}
490 	}
491 
492 	/* if requested, sort the "interesting" processes */
493 	if (compare != NULL)
494 		qsort((char *) pref, active_procs,
495 		    sizeof(struct kinfo_proc *), compare);
496 	/* remember active and total counts */
497 	si->p_total = total_procs;
498 	si->p_active = pref_len = active_procs;
499 
500 	/* pass back a handle */
501 	handle.next_proc = pref;
502 	handle.remaining = active_procs;
503 	return ((caddr_t) & handle);
504 }
505 
506 char fmt[MAX_COLS];	/* static area where result is built */
507 
508 static char *
509 state_abbr(struct kinfo_proc *pp)
510 {
511 	static char buf[10];
512 
513 	if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
514 		snprintf(buf, sizeof buf, "%s/%llu",
515 		    state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
516 	else
517 		snprintf(buf, sizeof buf, "%s",
518 		    state_abbrev[(unsigned char)pp->p_stat]);
519 	return buf;
520 }
521 
522 static char *
523 format_comm(struct kinfo_proc *kp)
524 {
525 	static char	buf[MAX_COLS];
526 	char		**p, **s;
527 	extern int	show_args;
528 
529 	if (!show_args)
530 		return (kp->p_comm);
531 
532 	s = get_proc_args(kp);
533 	if (s == NULL)
534 		return kp->p_comm;
535 
536 	buf[0] = '\0';
537 	for (p = s; *p != NULL; p++) {
538 		if (p != s)
539 			strlcat(buf, " ", sizeof(buf));
540 		strlcat(buf, *p, sizeof(buf));
541 	}
542 	if (buf[0] == '\0')
543 		return (kp->p_comm);
544 	return (buf);
545 }
546 
547 char *
548 format_next_process(caddr_t handle, char *(*get_userid)(uid_t), pid_t *pid,
549     int show_threads)
550 {
551 	char *p_wait;
552 	struct kinfo_proc *pp;
553 	struct handle *hp;
554 	int cputime;
555 	double pct;
556 	char buf[16];
557 
558 	/* find and remember the next proc structure */
559 	hp = (struct handle *) handle;
560 	pp = *(hp->next_proc++);
561 	hp->remaining--;
562 
563 	cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);
564 
565 	/* calculate the base for cpu percentages */
566 	pct = (double)pp->p_pctcpu / fscale;
567 
568 	if (pp->p_wmesg[0])
569 		p_wait = pp->p_wmesg;
570 	else
571 		p_wait = "-";
572 
573 	if (show_threads)
574 		snprintf(buf, sizeof(buf), "%8d", pp->p_tid);
575 	else
576 		snprintf(buf, sizeof(buf), "%s", (*get_userid)(pp->p_ruid));
577 
578 	/* format this entry */
579 	snprintf(fmt, sizeof(fmt), Proc_format, pp->p_pid, buf,
580 	    pp->p_priority - PZERO, pp->p_nice - NZERO,
581 	    format_k(pagetok(PROCSIZE(pp))),
582 	    format_k(pagetok(pp->p_vm_rssize)),
583 	    (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
584 	    "idle" : state_abbr(pp),
585 	    p_wait, format_time(cputime), 100.0 * pct,
586 	    printable(format_comm(pp)));
587 
588 	*pid = pp->p_pid;
589 	/* return the result */
590 	return (fmt);
591 }
592 
593 /* comparison routine for qsort */
594 static unsigned char sorted_state[] =
595 {
596 	0,			/* not used		 */
597 	4,			/* start		 */
598 	5,			/* run			 */
599 	2,			/* sleep		 */
600 	3,			/* stop			 */
601 	1			/* zombie		 */
602 };
603 
604 /*
605  *  proc_compares - comparison functions for "qsort"
606  */
607 
608 /*
609  * First, the possible comparison keys.  These are defined in such a way
610  * that they can be merely listed in the source code to define the actual
611  * desired ordering.
612  */
613 
614 #define ORDERKEY_PCTCPU \
615 	if ((result = (int)(p2->p_pctcpu - p1->p_pctcpu)) == 0)
616 #define ORDERKEY_CPUTIME \
617 	if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
618 		if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
619 #define ORDERKEY_STATE \
620 	if ((result = sorted_state[(unsigned char)p2->p_stat] - \
621 	    sorted_state[(unsigned char)p1->p_stat])  == 0)
622 #define ORDERKEY_PRIO \
623 	if ((result = p2->p_priority - p1->p_priority) == 0)
624 #define ORDERKEY_RSSIZE \
625 	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
626 #define ORDERKEY_MEM \
627 	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
628 #define ORDERKEY_PID \
629 	if ((result = p1->p_pid - p2->p_pid) == 0)
630 #define ORDERKEY_CMD \
631 	if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)
632 
633 /* compare_cpu - the comparison function for sorting by cpu percentage */
634 static int
635 compare_cpu(const void *v1, const void *v2)
636 {
637 	struct proc **pp1 = (struct proc **) v1;
638 	struct proc **pp2 = (struct proc **) v2;
639 	struct kinfo_proc *p1, *p2;
640 	int result;
641 
642 	/* remove one level of indirection */
643 	p1 = *(struct kinfo_proc **) pp1;
644 	p2 = *(struct kinfo_proc **) pp2;
645 
646 	ORDERKEY_PCTCPU
647 	ORDERKEY_CPUTIME
648 	ORDERKEY_STATE
649 	ORDERKEY_PRIO
650 	ORDERKEY_RSSIZE
651 	ORDERKEY_MEM
652 		;
653 	return (result);
654 }
655 
656 /* compare_size - the comparison function for sorting by total memory usage */
657 static int
658 compare_size(const void *v1, const void *v2)
659 {
660 	struct proc **pp1 = (struct proc **) v1;
661 	struct proc **pp2 = (struct proc **) v2;
662 	struct kinfo_proc *p1, *p2;
663 	int result;
664 
665 	/* remove one level of indirection */
666 	p1 = *(struct kinfo_proc **) pp1;
667 	p2 = *(struct kinfo_proc **) pp2;
668 
669 	ORDERKEY_MEM
670 	ORDERKEY_RSSIZE
671 	ORDERKEY_PCTCPU
672 	ORDERKEY_CPUTIME
673 	ORDERKEY_STATE
674 	ORDERKEY_PRIO
675 		;
676 	return (result);
677 }
678 
679 /* compare_res - the comparison function for sorting by resident set size */
680 static int
681 compare_res(const void *v1, const void *v2)
682 {
683 	struct proc **pp1 = (struct proc **) v1;
684 	struct proc **pp2 = (struct proc **) v2;
685 	struct kinfo_proc *p1, *p2;
686 	int result;
687 
688 	/* remove one level of indirection */
689 	p1 = *(struct kinfo_proc **) pp1;
690 	p2 = *(struct kinfo_proc **) pp2;
691 
692 	ORDERKEY_RSSIZE
693 	ORDERKEY_MEM
694 	ORDERKEY_PCTCPU
695 	ORDERKEY_CPUTIME
696 	ORDERKEY_STATE
697 	ORDERKEY_PRIO
698 		;
699 	return (result);
700 }
701 
702 /* compare_time - the comparison function for sorting by CPU time */
703 static int
704 compare_time(const void *v1, const void *v2)
705 {
706 	struct proc **pp1 = (struct proc **) v1;
707 	struct proc **pp2 = (struct proc **) v2;
708 	struct kinfo_proc *p1, *p2;
709 	int result;
710 
711 	/* remove one level of indirection */
712 	p1 = *(struct kinfo_proc **) pp1;
713 	p2 = *(struct kinfo_proc **) pp2;
714 
715 	ORDERKEY_CPUTIME
716 	ORDERKEY_PCTCPU
717 	ORDERKEY_STATE
718 	ORDERKEY_PRIO
719 	ORDERKEY_MEM
720 	ORDERKEY_RSSIZE
721 		;
722 	return (result);
723 }
724 
725 /* compare_prio - the comparison function for sorting by CPU time */
726 static int
727 compare_prio(const void *v1, const void *v2)
728 {
729 	struct proc   **pp1 = (struct proc **) v1;
730 	struct proc   **pp2 = (struct proc **) v2;
731 	struct kinfo_proc *p1, *p2;
732 	int result;
733 
734 	/* remove one level of indirection */
735 	p1 = *(struct kinfo_proc **) pp1;
736 	p2 = *(struct kinfo_proc **) pp2;
737 
738 	ORDERKEY_PRIO
739 	ORDERKEY_PCTCPU
740 	ORDERKEY_CPUTIME
741 	ORDERKEY_STATE
742 	ORDERKEY_RSSIZE
743 	ORDERKEY_MEM
744 		;
745 	return (result);
746 }
747 
748 static int
749 compare_pid(const void *v1, const void *v2)
750 {
751 	struct proc **pp1 = (struct proc **) v1;
752 	struct proc **pp2 = (struct proc **) v2;
753 	struct kinfo_proc *p1, *p2;
754 	int result;
755 
756 	/* remove one level of indirection */
757 	p1 = *(struct kinfo_proc **) pp1;
758 	p2 = *(struct kinfo_proc **) pp2;
759 
760 	ORDERKEY_PID
761 	ORDERKEY_PCTCPU
762 	ORDERKEY_CPUTIME
763 	ORDERKEY_STATE
764 	ORDERKEY_PRIO
765 	ORDERKEY_RSSIZE
766 	ORDERKEY_MEM
767 		;
768 	return (result);
769 }
770 
771 static int
772 compare_cmd(const void *v1, const void *v2)
773 {
774 	struct proc **pp1 = (struct proc **) v1;
775 	struct proc **pp2 = (struct proc **) v2;
776 	struct kinfo_proc *p1, *p2;
777 	int result;
778 
779 	/* remove one level of indirection */
780 	p1 = *(struct kinfo_proc **) pp1;
781 	p2 = *(struct kinfo_proc **) pp2;
782 
783 	ORDERKEY_CMD
784 	ORDERKEY_PCTCPU
785 	ORDERKEY_CPUTIME
786 	ORDERKEY_STATE
787 	ORDERKEY_PRIO
788 	ORDERKEY_RSSIZE
789 	ORDERKEY_MEM
790 		;
791 	return (result);
792 }
793 
794 
795 int (*proc_compares[])(const void *, const void *) = {
796 	compare_cpu,
797 	compare_size,
798 	compare_res,
799 	compare_time,
800 	compare_prio,
801 	compare_pid,
802 	compare_cmd,
803 	NULL
804 };
805 
806 /*
807  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
808  *		the process does not exist.
809  *		It is EXTREMELY IMPORTANT that this function work correctly.
810  *		If top runs setuid root (as in SVR4), then this function
811  *		is the only thing that stands in the way of a serious
812  *		security problem.  It validates requests for the "kill"
813  *		and "renice" commands.
814  */
815 uid_t
816 proc_owner(pid_t pid)
817 {
818 	struct kinfo_proc **prefp, *pp;
819 	int cnt;
820 
821 	prefp = pref;
822 	cnt = pref_len;
823 	while (--cnt >= 0) {
824 		pp = *prefp++;
825 		if (pp->p_pid == pid)
826 			return ((uid_t)pp->p_ruid);
827 	}
828 	return (uid_t)(-1);
829 }
830 
831 /*
832  * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
833  * to be based on the new swapctl(2) system call.
834  */
835 static int
836 swapmode(int *used, int *total)
837 {
838 	struct swapent *swdev;
839 	int nswap, rnswap, i;
840 
841 	nswap = swapctl(SWAP_NSWAP, 0, 0);
842 	if (nswap == 0)
843 		return 0;
844 
845 	swdev = calloc(nswap, sizeof(*swdev));
846 	if (swdev == NULL)
847 		return 0;
848 
849 	rnswap = swapctl(SWAP_STATS, swdev, nswap);
850 	if (rnswap == -1) {
851 		free(swdev);
852 		return 0;
853 	}
854 
855 	/* if rnswap != nswap, then what? */
856 
857 	/* Total things up */
858 	*total = *used = 0;
859 	for (i = 0; i < nswap; i++) {
860 		if (swdev[i].se_flags & SWF_ENABLE) {
861 			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
862 			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
863 		}
864 	}
865 	free(swdev);
866 	return 1;
867 }
868