xref: /openbsd/usr.bin/vi/common/key.c (revision 17df1aa7)
1 /*	$OpenBSD: key.c,v 1.10 2009/10/27 23:59:47 deraadt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1991, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1991, 1993, 1994, 1995, 1996
7  *	Keith Bostic.  All rights reserved.
8  *
9  * See the LICENSE file for redistribution information.
10  */
11 
12 #include "config.h"
13 
14 #include <sys/param.h>
15 #include <sys/queue.h>
16 #include <sys/time.h>
17 
18 #include <bitstring.h>
19 #include <ctype.h>
20 #include <errno.h>
21 #include <limits.h>
22 #include <locale.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 
28 #include "common.h"
29 #include "../vi/vi.h"
30 
31 static int	v_event_append(SCR *, EVENT *);
32 static int	v_event_grow(SCR *, int);
33 static int	v_key_cmp(const void *, const void *);
34 static void	v_keyval(SCR *, int, scr_keyval_t);
35 static void	v_sync(SCR *, int);
36 
37 /*
38  * !!!
39  * Historic vi always used:
40  *
41  *	^D: autoindent deletion
42  *	^H: last character deletion
43  *	^W: last word deletion
44  *	^Q: quote the next character (if not used in flow control).
45  *	^V: quote the next character
46  *
47  * regardless of the user's choices for these characters.  The user's erase
48  * and kill characters worked in addition to these characters.  Nvi wires
49  * down the above characters, but in addition permits the VEOF, VERASE, VKILL
50  * and VWERASE characters described by the user's termios structure.
51  *
52  * Ex was not consistent with this scheme, as it historically ran in tty
53  * cooked mode.  This meant that the scroll command and autoindent erase
54  * characters were mapped to the user's EOF character, and the character
55  * and word deletion characters were the user's tty character and word
56  * deletion characters.  This implementation makes it all consistent, as
57  * described above for vi.
58  *
59  * !!!
60  * This means that all screens share a special key set.
61  */
62 KEYLIST keylist[] = {
63 	{K_BACKSLASH,	  '\\'},	/*  \ */
64 	{K_CARAT,	   '^'},	/*  ^ */
65 	{K_CNTRLD,	'\004'},	/* ^D */
66 	{K_CNTRLR,	'\022'},	/* ^R */
67 	{K_CNTRLT,	'\024'},	/* ^T */
68 	{K_CNTRLZ,	'\032'},	/* ^Z */
69 	{K_COLON,	   ':'},	/*  : */
70 	{K_CR,		  '\r'},	/* \r */
71 	{K_ESCAPE,	'\033'},	/* ^[ */
72 	{K_FORMFEED,	  '\f'},	/* \f */
73 	{K_HEXCHAR,	'\030'},	/* ^X */
74 	{K_NL,		  '\n'},	/* \n */
75 	{K_RIGHTBRACE,	   '}'},	/*  } */
76 	{K_RIGHTPAREN,	   ')'},	/*  ) */
77 	{K_TAB,		  '\t'},	/* \t */
78 	{K_VERASE,	  '\b'},	/* \b */
79 	{K_VKILL,	'\025'},	/* ^U */
80 	{K_VLNEXT,	'\021'},	/* ^Q */
81 	{K_VLNEXT,	'\026'},	/* ^V */
82 	{K_VWERASE,	'\027'},	/* ^W */
83 	{K_ZERO,	   '0'},	/*  0 */
84 
85 #define	ADDITIONAL_CHARACTERS	4
86 	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
87 	{K_NOTUSED, 0},
88 	{K_NOTUSED, 0},
89 	{K_NOTUSED, 0},
90 };
91 static int nkeylist =
92     (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
93 
94 /*
95  * v_key_init --
96  *	Initialize the special key lookup table.
97  *
98  * PUBLIC: int v_key_init(SCR *);
99  */
100 int
101 v_key_init(sp)
102 	SCR *sp;
103 {
104 	u_int ch;
105 	GS *gp;
106 	KEYLIST *kp;
107 	int cnt;
108 
109 	gp = sp->gp;
110 
111 	/*
112 	 * XXX
113 	 * 8-bit only, for now.  Recompilation should get you any 8-bit
114 	 * character set, as long as nul isn't a character.
115 	 */
116 	(void)setlocale(LC_ALL, "");
117 #if __linux__
118 	/*
119 	 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
120 	 * for ctype(3c) correctly.  This bug is fixed in libc 4.6.x.
121 	 *
122 	 * This code works around this problem for libc 4.5.x users.
123 	 * Note that this code is harmless if you're using libc 4.6.x.
124 	 */
125 	(void)setlocale(LC_CTYPE, "");
126 #endif
127 	v_key_ilookup(sp);
128 
129 	v_keyval(sp, K_CNTRLD, KEY_VEOF);
130 	v_keyval(sp, K_VERASE, KEY_VERASE);
131 	v_keyval(sp, K_VKILL, KEY_VKILL);
132 	v_keyval(sp, K_VWERASE, KEY_VWERASE);
133 
134 	/* Sort the special key list. */
135 	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
136 
137 	/* Initialize the fast lookup table. */
138 	for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) {
139 		if (gp->max_special < kp->value)
140 			gp->max_special = kp->value;
141 		if (kp->ch <= MAX_FAST_KEY)
142 			gp->special_key[kp->ch] = kp->value;
143 	}
144 
145 	/* Find a non-printable character to use as a message separator. */
146 	for (ch = 1; ch <= MAX_CHAR_T; ++ch)
147 		if (!isprint(ch)) {
148 			gp->noprint = ch;
149 			break;
150 		}
151 	if (ch != gp->noprint) {
152 		msgq(sp, M_ERR, "079|No non-printable character found");
153 		return (1);
154 	}
155 	return (0);
156 }
157 
158 /*
159  * v_keyval --
160  *	Set key values.
161  *
162  * We've left some open slots in the keylist table, and if these values exist,
163  * we put them into place.  Note, they may reset (or duplicate) values already
164  * in the table, so we check for that first.
165  */
166 static void
167 v_keyval(sp, val, name)
168 	SCR *sp;
169 	int val;
170 	scr_keyval_t name;
171 {
172 	KEYLIST *kp;
173 	CHAR_T ch;
174 	int dne;
175 
176 	/* Get the key's value from the screen. */
177 	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
178 		return;
179 	if (dne)
180 		return;
181 
182 	/* Check for duplication. */
183 	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
184 		if (kp->ch == ch) {
185 			kp->value = val;
186 			return;
187 		}
188 
189 	/* Add a new entry. */
190 	if (kp->value == K_NOTUSED) {
191 		keylist[nkeylist].ch = ch;
192 		keylist[nkeylist].value = val;
193 		++nkeylist;
194 	}
195 }
196 
197 /*
198  * v_key_ilookup --
199  *	Build the fast-lookup key display array.
200  *
201  * PUBLIC: void v_key_ilookup(SCR *);
202  */
203 void
204 v_key_ilookup(sp)
205 	SCR *sp;
206 {
207 	CHAR_T ch, *p, *t;
208 	GS *gp;
209 	size_t len;
210 
211 	for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch)
212 		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
213 		    len = gp->cname[ch].len = sp->clen; len--;)
214 			*p++ = *t++;
215 }
216 
217 /*
218  * v_key_len --
219  *	Return the length of the string that will display the key.
220  *	This routine is the backup for the KEY_LEN() macro.
221  *
222  * PUBLIC: size_t v_key_len(SCR *, ARG_CHAR_T);
223  */
224 size_t
225 v_key_len(sp, ch)
226 	SCR *sp;
227 	ARG_CHAR_T ch;
228 {
229 	(void)v_key_name(sp, ch);
230 	return (sp->clen);
231 }
232 
233 /*
234  * v_key_name --
235  *	Return the string that will display the key.  This routine
236  *	is the backup for the KEY_NAME() macro.
237  *
238  * PUBLIC: CHAR_T *v_key_name(SCR *, ARG_CHAR_T);
239  */
240 CHAR_T *
241 v_key_name(sp, ach)
242 	SCR *sp;
243 	ARG_CHAR_T ach;
244 {
245 	static const CHAR_T hexdigit[] = "0123456789abcdef";
246 	static const CHAR_T octdigit[] = "01234567";
247 	CHAR_T ch, *chp, mask;
248 	size_t len;
249 	int cnt, shift;
250 
251 	ch = ach;
252 
253 	/* See if the character was explicitly declared printable or not. */
254 	if ((chp = O_STR(sp, O_PRINT)) != NULL)
255 		for (; *chp != '\0'; ++chp)
256 			if (*chp == ch)
257 				goto pr;
258 	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
259 		for (; *chp != '\0'; ++chp)
260 			if (*chp == ch)
261 				goto nopr;
262 
263 	/*
264 	 * Historical (ARPA standard) mappings.  Printable characters are left
265 	 * alone.  Control characters less than 0x20 are represented as '^'
266 	 * followed by the character offset from the '@' character in the ASCII
267 	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
268 	 *
269 	 * XXX
270 	 * The following code depends on the current locale being identical to
271 	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
272 	 * told that this is a reasonable assumption...
273 	 *
274 	 * XXX
275 	 * This code will only work with CHAR_T's that are multiples of 8-bit
276 	 * bytes.
277 	 *
278 	 * XXX
279 	 * NB: There's an assumption here that all printable characters take
280 	 * up a single column on the screen.  This is not always correct.
281 	 */
282 	if (isprint(ch)) {
283 pr:		sp->cname[0] = ch;
284 		len = 1;
285 		goto done;
286 	}
287 nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
288 		sp->cname[0] = '^';
289 		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
290 		len = 2;
291 	} else if (O_ISSET(sp, O_OCTAL)) {
292 #define	BITS	(sizeof(CHAR_T) * 8)
293 #define	SHIFT	(BITS - BITS % 3)
294 #define	TOPMASK	(BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3)
295 		sp->cname[0] = '\\';
296 		sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT];
297 		shift = SHIFT - 3;
298 		for (len = 2, mask = 7 << (SHIFT - 3),
299 		    cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3)
300 			sp->cname[len++] = octdigit[(ch & mask) >> shift];
301 	} else {
302 		sp->cname[0] = '\\';
303 		sp->cname[1] = 'x';
304 		for (len = 2, chp = (u_int8_t *)&ch,
305 		    cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) {
306 			sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4];
307 			sp->cname[len++] = hexdigit[*chp & 0x0f];
308 		}
309 	}
310 done:	sp->cname[sp->clen = len] = '\0';
311 	return (sp->cname);
312 }
313 
314 /*
315  * v_key_val --
316  *	Fill in the value for a key.  This routine is the backup
317  *	for the KEY_VAL() macro.
318  *
319  * PUBLIC: int v_key_val(SCR *, ARG_CHAR_T);
320  */
321 int
322 v_key_val(sp, ch)
323 	SCR *sp;
324 	ARG_CHAR_T ch;
325 {
326 	KEYLIST k, *kp;
327 
328 	k.ch = ch;
329 	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
330 	return (kp == NULL ? K_NOTUSED : kp->value);
331 }
332 
333 /*
334  * v_event_push --
335  *	Push events/keys onto the front of the buffer.
336  *
337  * There is a single input buffer in ex/vi.  Characters are put onto the
338  * end of the buffer by the terminal input routines, and pushed onto the
339  * front of the buffer by various other functions in ex/vi.  Each key has
340  * an associated flag value, which indicates if it has already been quoted,
341  * and if it is the result of a mapping or an abbreviation.
342  *
343  * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int);
344  */
345 int
346 v_event_push(sp, p_evp, p_s, nitems, flags)
347 	SCR *sp;
348 	EVENT *p_evp;			/* Push event. */
349 	CHAR_T *p_s;			/* Push characters. */
350 	size_t nitems;			/* Number of items to push. */
351 	u_int flags;			/* CH_* flags. */
352 {
353 	EVENT *evp;
354 	GS *gp;
355 	size_t total;
356 
357 	/* If we have room, stuff the items into the buffer. */
358 	gp = sp->gp;
359 	if (nitems <= gp->i_next ||
360 	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
361 		if (gp->i_cnt != 0)
362 			gp->i_next -= nitems;
363 		goto copy;
364 	}
365 
366 	/*
367 	 * If there are currently items in the queue, shift them up,
368 	 * leaving some extra room.  Get enough space plus a little
369 	 * extra.
370 	 */
371 #define	TERM_PUSH_SHIFT	30
372 	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
373 	if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64)))
374 		return (1);
375 	if (gp->i_cnt)
376 		MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems,
377 		    gp->i_event + gp->i_next, gp->i_cnt);
378 	gp->i_next = TERM_PUSH_SHIFT;
379 
380 	/* Put the new items into the queue. */
381 copy:	gp->i_cnt += nitems;
382 	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
383 		if (p_evp != NULL)
384 			*evp = *p_evp++;
385 		else {
386 			evp->e_event = E_CHARACTER;
387 			evp->e_c = *p_s++;
388 			evp->e_value = KEY_VAL(sp, evp->e_c);
389 			F_INIT(&evp->e_ch, flags);
390 		}
391 	}
392 	return (0);
393 }
394 
395 /*
396  * v_event_append --
397  *	Append events onto the tail of the buffer.
398  */
399 static int
400 v_event_append(sp, argp)
401 	SCR *sp;
402 	EVENT *argp;
403 {
404 	CHAR_T *s;			/* Characters. */
405 	EVENT *evp;
406 	GS *gp;
407 	size_t nevents;			/* Number of events. */
408 
409 	/* Grow the buffer as necessary. */
410 	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
411 	gp = sp->gp;
412 	if (gp->i_event == NULL ||
413 	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
414 		v_event_grow(sp, MAX(nevents, 64));
415 	evp = gp->i_event + gp->i_next + gp->i_cnt;
416 	gp->i_cnt += nevents;
417 
418 	/* Transform strings of characters into single events. */
419 	if (argp->e_event == E_STRING)
420 		for (s = argp->e_csp; nevents--; ++evp) {
421 			evp->e_event = E_CHARACTER;
422 			evp->e_c = *s++;
423 			evp->e_value = KEY_VAL(sp, evp->e_c);
424 			evp->e_flags = 0;
425 		}
426 	else
427 		*evp = *argp;
428 	return (0);
429 }
430 
431 /* Remove events from the queue. */
432 #define	QREM(len) {							\
433 	if ((gp->i_cnt -= (len)) == 0)					\
434 		gp->i_next = 0;						\
435 	else								\
436 		gp->i_next += (len);					\
437 }
438 
439 /*
440  * v_event_get --
441  *	Return the next event.
442  *
443  * !!!
444  * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
445  * mapping keys is that one or more keystrokes act like a function key.
446  * What's going on is that vi is reading a number, and the character following
447  * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
448  * user is entering the z command, a valid command is "z40+", and we don't want
449  * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
450  * into "z40xxx".  However, if the user enters "35x", we want to put all of the
451  * characters through the mapping code.
452  *
453  * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
454  * mapping digits as long as they weren't the first character of the map, e.g.
455  * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
456  * (the digit 0 was a special case as it doesn't indicate the start of a count)
457  * as the first character of the map, but then ignored those mappings.  While
458  * it's probably stupid to map digits, vi isn't your mother.
459  *
460  * The way this works is that the EC_MAPNODIGIT causes term_key to return the
461  * end-of-digit without "looking" at the next character, i.e. leaving it as the
462  * user entered it.  Presumably, the next term_key call will tell us how the
463  * user wants it handled.
464  *
465  * There is one more complication.  Users might map keys to digits, and, as
466  * it's described above, the commands:
467  *
468  *	:map g 1G
469  *	d2g
470  *
471  * would return the keys "d2<end-of-digits>1G", when the user probably wanted
472  * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
473  * before, otherwise, we pretend we haven't mapped the character, and return
474  * <end-of-digits>.
475  *
476  * Now that that's out of the way, let's talk about Energizer Bunny macros.
477  * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
478  * fairly easy to detect this example, because it's all internal to term_key.
479  * If we're expanding a macro and it gets big enough, at some point we can
480  * assume it's looping and kill it.  The examples that are tough are the ones
481  * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
482  * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
483  * find the looping macro again.  There is no way that we can detect this
484  * without doing a full parse of the command, because the character that might
485  * cause the loop (in this case 'x') may be a literal character, e.g. the map
486  * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
487  *
488  * Historic vi tried to detect looping macros by disallowing obvious cases in
489  * the map command, maps that that ended with the same letter as they started
490  * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
491  * too many times before keys were returned to the command parser.  It didn't
492  * get many (most?) of the tricky cases right, however, and it was certainly
493  * possible to create macros that ran forever.  And, even if it did figure out
494  * what was going on, the user was usually tossed into ex mode.  Finally, any
495  * changes made before vi realized that the macro was recursing were left in
496  * place.  We recover gracefully, but the only recourse the user has in an
497  * infinite macro loop is to interrupt.
498  *
499  * !!!
500  * It is historic practice that mapping characters to themselves as the first
501  * part of the mapped string was legal, and did not cause infinite loops, i.e.
502  * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
503  * characters were returned instead of being remapped.
504  *
505  * !!!
506  * It is also historic practice that the macro "map ] ]]^" caused a single ]
507  * keypress to behave as the command ]] (the ^ got the map past the vi check
508  * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
509  * What happened was that, in the historic vi, maps were expanded as the keys
510  * were retrieved, but not all at once and not centrally.  So, the keypress ]
511  * pushed ]]^ on the stack, and then the first ] from the stack was passed to
512  * the ]] command code.  The ]] command then retrieved a key without entering
513  * the mapping code.  This could bite us anytime a user has a map that depends
514  * on secondary keys NOT being mapped.  I can't see any possible way to make
515  * this work in here without the complete abandonment of Rationality Itself.
516  *
517  * XXX
518  * The final issue is recovery.  It would be possible to undo all of the work
519  * that was done by the macro if we entered a record into the log so that we
520  * knew when the macro started, and, in fact, this might be worth doing at some
521  * point.  Given that this might make the log grow unacceptably (consider that
522  * cursor keys are done with maps), for now we leave any changes made in place.
523  *
524  * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t);
525  */
526 int
527 v_event_get(sp, argp, timeout, flags)
528 	SCR *sp;
529 	EVENT *argp;
530 	int timeout;
531 	u_int32_t flags;
532 {
533 	EVENT *evp, ev;
534 	GS *gp;
535 	SEQ *qp;
536 	int init_nomap, ispartial, istimeout, remap_cnt;
537 
538 	gp = sp->gp;
539 
540 	/* If simply checking for interrupts, argp may be NULL. */
541 	if (argp == NULL)
542 		argp = &ev;
543 
544 retry:	istimeout = remap_cnt = 0;
545 
546 	/*
547 	 * If the queue isn't empty and we're timing out for characters,
548 	 * return immediately.
549 	 */
550 	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
551 		return (0);
552 
553 	/*
554 	 * If the queue is empty, we're checking for interrupts, or we're
555 	 * timing out for characters, get more events.
556 	 */
557 	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
558 		/*
559 		 * If we're reading new characters, check any scripting
560 		 * windows for input.
561 		 */
562 		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
563 			return (1);
564 loop:		if (gp->scr_event(sp, argp,
565 		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
566 			return (1);
567 		switch (argp->e_event) {
568 		case E_ERR:
569 		case E_SIGHUP:
570 		case E_SIGTERM:
571 			/*
572 			 * Fatal conditions cause the file to be synced to
573 			 * disk immediately.
574 			 */
575 			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
576 			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
577 			return (1);
578 		case E_TIMEOUT:
579 			istimeout = 1;
580 			break;
581 		case E_INTERRUPT:
582 			/* Set the global interrupt flag. */
583 			F_SET(sp->gp, G_INTERRUPTED);
584 
585 			/*
586 			 * If the caller was interested in interrupts, return
587 			 * immediately.
588 			 */
589 			if (LF_ISSET(EC_INTERRUPT))
590 				return (0);
591 			goto append;
592 		default:
593 append:			if (v_event_append(sp, argp))
594 				return (1);
595 			break;
596 		}
597 	}
598 
599 	/*
600 	 * If the caller was only interested in interrupts or timeouts, return
601 	 * immediately.  (We may have gotten characters, and that's okay, they
602 	 * were queued up for later use.)
603 	 */
604 	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
605 		return (0);
606 
607 newmap:	evp = &gp->i_event[gp->i_next];
608 
609 	/*
610 	 * If the next event in the queue isn't a character event, return
611 	 * it, we're done.
612 	 */
613 	if (evp->e_event != E_CHARACTER) {
614 		*argp = *evp;
615 		QREM(1);
616 		return (0);
617 	}
618 
619 	/*
620 	 * If the key isn't mappable because:
621 	 *
622 	 *	+ ... the timeout has expired
623 	 *	+ ... it's not a mappable key
624 	 *	+ ... neither the command or input map flags are set
625 	 *	+ ... there are no maps that can apply to it
626 	 *
627 	 * return it forthwith.
628 	 */
629 	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
630 	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
631 	    (evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c)))
632 		goto nomap;
633 
634 	/* Search the map. */
635 	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
636 	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
637 
638 	/*
639 	 * If get a partial match, get more characters and retry the map.
640 	 * If time out without further characters, return the characters
641 	 * unmapped.
642 	 *
643 	 * !!!
644 	 * <escape> characters are a problem.  Cursor keys start with <escape>
645 	 * characters, so there's almost always a map in place that begins with
646 	 * an <escape> character.  If we timeout <escape> keys in the same way
647 	 * that we timeout other keys, the user will get a noticeable pause as
648 	 * they enter <escape> to terminate input mode.  If key timeout is set
649 	 * for a slow link, users will get an even longer pause.  Nvi used to
650 	 * simply timeout <escape> characters at 1/10th of a second, but this
651 	 * loses over PPP links where the latency is greater than 100Ms.
652 	 */
653 	if (ispartial) {
654 		if (O_ISSET(sp, O_TIMEOUT))
655 			timeout = (evp->e_value == K_ESCAPE ?
656 			    O_VAL(sp, O_ESCAPETIME) :
657 			    O_VAL(sp, O_KEYTIME)) * 100;
658 		else
659 			timeout = 0;
660 		goto loop;
661 	}
662 
663 	/* If no map, return the character. */
664 	if (qp == NULL) {
665 nomap:		if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
666 			goto not_digit;
667 		*argp = *evp;
668 		QREM(1);
669 		return (0);
670 	}
671 
672 	/*
673 	 * If looking for the end of a digit string, and the first character
674 	 * of the map is it, pretend we haven't seen the character.
675 	 */
676 	if (LF_ISSET(EC_MAPNODIGIT) &&
677 	    qp->output != NULL && !isdigit(qp->output[0])) {
678 not_digit:	argp->e_c = CH_NOT_DIGIT;
679 		argp->e_value = K_NOTUSED;
680 		argp->e_event = E_CHARACTER;
681 		F_INIT(&argp->e_ch, 0);
682 		return (0);
683 	}
684 
685 	/* Find out if the initial segments are identical. */
686 	init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
687 
688 	/* Delete the mapped characters from the queue. */
689 	QREM(qp->ilen);
690 
691 	/* If keys mapped to nothing, go get more. */
692 	if (qp->output == NULL)
693 		goto retry;
694 
695 	/* If remapping characters... */
696 	if (O_ISSET(sp, O_REMAP)) {
697 		/*
698 		 * Periodically check for interrupts.  Always check the first
699 		 * time through, because it's possible to set up a map that
700 		 * will return a character every time, but will expand to more,
701 		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
702 		 * get anywhere useful.
703 		 */
704 		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
705 		    (gp->scr_event(sp, &ev,
706 		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
707 			F_SET(sp->gp, G_INTERRUPTED);
708 			argp->e_event = E_INTERRUPT;
709 			return (0);
710 		}
711 
712 		/*
713 		 * If an initial part of the characters mapped, they are not
714 		 * further remapped -- return the first one.  Push the rest
715 		 * of the characters, or all of the characters if no initial
716 		 * part mapped, back on the queue.
717 		 */
718 		if (init_nomap) {
719 			if (v_event_push(sp, NULL, qp->output + qp->ilen,
720 			    qp->olen - qp->ilen, CH_MAPPED))
721 				return (1);
722 			if (v_event_push(sp, NULL,
723 			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
724 				return (1);
725 			evp = &gp->i_event[gp->i_next];
726 			goto nomap;
727 		}
728 		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
729 			return (1);
730 		goto newmap;
731 	}
732 
733 	/* Else, push the characters on the queue and return one. */
734 	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
735 		return (1);
736 
737 	goto nomap;
738 }
739 
740 /*
741  * v_sync --
742  *	Walk the screen lists, sync'ing files to their backup copies.
743  */
744 static void
745 v_sync(sp, flags)
746 	SCR *sp;
747 	int flags;
748 {
749 	GS *gp;
750 
751 	gp = sp->gp;
752 	CIRCLEQ_FOREACH(sp, &gp->dq, q)
753 		rcv_sync(sp, flags);
754 	CIRCLEQ_FOREACH(sp, &gp->hq, q)
755 		rcv_sync(sp, flags);
756 }
757 
758 /*
759  * v_event_err --
760  *	Unexpected event.
761  *
762  * PUBLIC: void v_event_err(SCR *, EVENT *);
763  */
764 void
765 v_event_err(sp, evp)
766 	SCR *sp;
767 	EVENT *evp;
768 {
769 	switch (evp->e_event) {
770 	case E_CHARACTER:
771 		msgq(sp, M_ERR, "276|Unexpected character event");
772 		break;
773 	case E_EOF:
774 		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
775 		break;
776 	case E_INTERRUPT:
777 		msgq(sp, M_ERR, "279|Unexpected interrupt event");
778 		break;
779 	case E_QUIT:
780 		msgq(sp, M_ERR, "280|Unexpected quit event");
781 		break;
782 	case E_REPAINT:
783 		msgq(sp, M_ERR, "281|Unexpected repaint event");
784 		break;
785 	case E_STRING:
786 		msgq(sp, M_ERR, "285|Unexpected string event");
787 		break;
788 	case E_TIMEOUT:
789 		msgq(sp, M_ERR, "286|Unexpected timeout event");
790 		break;
791 	case E_WRESIZE:
792 		msgq(sp, M_ERR, "316|Unexpected resize event");
793 		break;
794 	case E_WRITE:
795 		msgq(sp, M_ERR, "287|Unexpected write event");
796 		break;
797 
798 	/*
799 	 * Theoretically, none of these can occur, as they're handled at the
800 	 * top editor level.
801 	 */
802 	case E_ERR:
803 	case E_SIGHUP:
804 	case E_SIGTERM:
805 	default:
806 		abort();
807 	}
808 
809 	/* Free any allocated memory. */
810 	if (evp->e_asp != NULL)
811 		free(evp->e_asp);
812 }
813 
814 /*
815  * v_event_flush --
816  *	Flush any flagged keys, returning if any keys were flushed.
817  *
818  * PUBLIC: int v_event_flush(SCR *, u_int);
819  */
820 int
821 v_event_flush(sp, flags)
822 	SCR *sp;
823 	u_int flags;
824 {
825 	GS *gp;
826 	int rval;
827 
828 	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
829 	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
830 		QREM(1);
831 	return (rval);
832 }
833 
834 /*
835  * v_event_grow --
836  *	Grow the terminal queue.
837  */
838 static int
839 v_event_grow(sp, add)
840 	SCR *sp;
841 	int add;
842 {
843 	GS *gp;
844 	size_t new_nelem, olen;
845 
846 	gp = sp->gp;
847 	new_nelem = gp->i_nelem + add;
848 	olen = gp->i_nelem * sizeof(gp->i_event[0]);
849 	BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
850 	gp->i_nelem = olen / sizeof(gp->i_event[0]);
851 	return (0);
852 }
853 
854 /*
855  * v_key_cmp --
856  *	Compare two keys for sorting.
857  */
858 static int
859 v_key_cmp(ap, bp)
860 	const void *ap, *bp;
861 {
862 	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
863 }
864