1 /*- 2 * Copyright (c) 1992 Keith Muller. 3 * Copyright (c) 1992 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * Keith Muller of the University of California, San Diego. 8 * 9 * %sccs.include.redist.c% 10 */ 11 12 #ifndef lint 13 static char sccsid[] = "@(#)tables.c 1.1 (Berkeley) 12/13/92"; 14 #endif /* not lint */ 15 16 #include <sys/types.h> 17 #include <sys/time.h> 18 #include <sys/stat.h> 19 #include <sys/param.h> 20 #include <sys/fcntl.h> 21 #include <stdio.h> 22 #include <ctype.h> 23 #include <string.h> 24 #include <unistd.h> 25 #include <errno.h> 26 #include <stdlib.h> 27 #include "pax.h" 28 #include "tables.h" 29 #include "extern.h" 30 31 /* 32 * Routines for controlling the contents of all the different databases pax 33 * keeps. Tables are dynamically created only when they are needed. The 34 * goal was speed and the ability to work with HUGE archives. The databases 35 * were kept simple, but do have complex rules for when the contents change. 36 * As of this writing, the posix library functions were more complex than 37 * needed for this application (pax databases have very short lifetimes and 38 * do not survive after pax is finished). Pax is required to handle very 39 * large archives. These database routines carefully combine memory usage and 40 * temporary file storage in ways which will not significantly impact runtime 41 * performance while allowing the largest possible archives to be handled. 42 * Trying to force the fit to the posix databases routines was not considered 43 * time well spent. 44 */ 45 46 static HRDLNK **ltab = NULL; /* hard link table for detecting hard links */ 47 static FTM **ftab = NULL; /* file time table for updating arch */ 48 static NAMT **ntab = NULL; /* interactive rename storage table */ 49 static DEVT **dtab = NULL; /* device/inode mapping tables */ 50 static ATDIR **atab = NULL; /* file tree directory time reset table */ 51 static int dirfd = -1; /* storage for setting created dir time/mode */ 52 static u_long dircnt; /* entries in dir time/mode storage */ 53 static int ffd = -1; /* tmp file for file time table name storage */ 54 55 static DEVT *chk_dev __P((dev_t, int)); 56 57 /* 58 * hard link table routines 59 * 60 * The hard link table tries to detect hard links to files using the device and 61 * inode values. We do this when writing an archive, so we can tell the format 62 * write routine that this file is a hard link to another file. The format 63 * write routine then can store this file in whatever way it wants (as a hard 64 * link if the format supports that like tar, or ignore this info like cpio). 65 * (Actually a field in the format driver table tells us if the format wants 66 * hard link info. if not, we do not waste time looking for them). We also use 67 * the same table when reading an archive. In that situation, this table is 68 * used by the format read routine to detect hard links from stored dev and 69 * inode numbers (like cpio). This will allow pax to create a link when one 70 * can be detected by the archive format. 71 */ 72 73 /* 74 * lnk_start 75 * Creates the hard link table. 76 * Return: 77 * 0 if created, -1 if failure 78 */ 79 80 #if __STDC__ 81 int 82 lnk_start(void) 83 #else 84 int 85 lnk_start() 86 #endif 87 { 88 if (ltab != NULL) 89 return(0); 90 if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) { 91 warn(1, "Cannot allocate memory for hard link table"); 92 return(-1); 93 } 94 return(0); 95 } 96 97 /* 98 * chk_lnk() 99 * Looks up entry in hard link hash table. If found, it copies the name 100 * of the file it is linked to (we already saw that file) into ln_name. 101 * lnkcnt is decremented and if goes to 1 the node is deleted from the 102 * database. (We have seen all the links to this file). If not found, 103 * we add the file to the database if it has the potential for having 104 * hard links to other files we may process (it has a link count > 1) 105 * Return: 106 * if found returns 1; if not found returns 0; -1 on error 107 */ 108 109 #if __STDC__ 110 int 111 chk_lnk(register ARCHD *arcn) 112 #else 113 int 114 chk_lnk(arcn) 115 register ARCHD *arcn; 116 #endif 117 { 118 register HRDLNK *pt; 119 register HRDLNK **ppt; 120 register u_int indx; 121 122 if (ltab == NULL) 123 return(-1); 124 /* 125 * ignore those nodes that cannot have hard links 126 */ 127 if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1)) 128 return(0); 129 130 /* 131 * hash inode number and look for this file 132 */ 133 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 134 if ((pt = ltab[indx]) != NULL) { 135 /* 136 * it's hash chain in not empty, walk down looking for it 137 */ 138 ppt = &(ltab[indx]); 139 while (pt != NULL) { 140 if ((pt->ino == arcn->sb.st_ino) && 141 (pt->dev == arcn->sb.st_dev)) 142 break; 143 ppt = &(pt->fow); 144 pt = pt->fow; 145 } 146 147 if (pt != NULL) { 148 /* 149 * found a link. set the node type and copy in the 150 * name of the file it is to link to. we need to 151 * handle hardlinks to regular files differently than 152 * other links. 153 */ 154 arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name, 155 PAXPATHLEN+1); 156 if (arcn->type == PAX_REG) 157 arcn->type = PAX_HRG; 158 else 159 arcn->type = PAX_HLK; 160 161 /* 162 * if we have found all the links to this file, remove 163 * it from the database 164 */ 165 if (--pt->nlink <= 1) { 166 *ppt = pt->fow; 167 (void)free((char *)pt->name); 168 (void)free((char *)pt); 169 } 170 return(1); 171 } 172 } 173 174 /* 175 * we never saw this file before. It has links so we add it to the 176 * front of this hash chain 177 */ 178 if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) { 179 if ((pt->name = strdup(arcn->name)) != NULL) { 180 pt->dev = arcn->sb.st_dev; 181 pt->ino = arcn->sb.st_ino; 182 pt->nlink = arcn->sb.st_nlink; 183 pt->fow = ltab[indx]; 184 ltab[indx] = pt; 185 return(0); 186 } 187 (void)free((char *)pt); 188 } 189 190 warn(1, "Hard link table out of memory"); 191 return(-1); 192 } 193 194 /* 195 * purg_lnk 196 * remove reference for a file that we may have added to the data base as 197 * a potential source for hard links. We ended up not using the file, so 198 * we do not want to accidently point another file at it later on. 199 */ 200 201 #if __STDC__ 202 void 203 purg_lnk(register ARCHD *arcn) 204 #else 205 void 206 purg_lnk(arcn) 207 register ARCHD *arcn; 208 #endif 209 { 210 register HRDLNK *pt; 211 register HRDLNK **ppt; 212 register u_int indx; 213 214 if (ltab == NULL) 215 return; 216 /* 217 * do not bother to look if it could not be in the database 218 */ 219 if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) || 220 (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG)) 221 return; 222 223 /* 224 * find the hash chain for this inode value, if empty return 225 */ 226 indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ; 227 if ((pt = ltab[indx]) == NULL) 228 return; 229 230 /* 231 * walk down the list looking for the inode/dev pair, unlink and 232 * free if found 233 */ 234 ppt = &(ltab[indx]); 235 while (pt != NULL) { 236 if ((pt->ino == arcn->sb.st_ino) && 237 (pt->dev == arcn->sb.st_dev)) 238 break; 239 ppt = &(pt->fow); 240 pt = pt->fow; 241 } 242 if (pt == NULL) 243 return; 244 245 /* 246 * remove and free it 247 */ 248 *ppt = pt->fow; 249 (void)free((char *)pt->name); 250 (void)free((char *)pt); 251 } 252 253 /* 254 * lnk_end() 255 * pull apart a existing link table so we can reuse it. We do this between 256 * read and write phases of append with update. (The format may have 257 * used the link table, and we need to start with a fresh table for the 258 * write phase 259 */ 260 261 #if __STDC__ 262 void 263 lnk_end(void) 264 #else 265 void 266 lnk_end() 267 #endif 268 { 269 register int i; 270 register HRDLNK *pt; 271 register HRDLNK *ppt; 272 273 if (ltab == NULL) 274 return; 275 276 for (i = 0; i < L_TAB_SZ; ++i) { 277 if (ltab[i] == NULL) 278 continue; 279 pt = ltab[i]; 280 ltab[i] = NULL; 281 282 /* 283 * free up each entry on this chain 284 */ 285 while (pt != NULL) { 286 ppt = pt; 287 pt = ppt->fow; 288 (void)free((char *)ppt->name); 289 (void)free((char *)ppt); 290 } 291 } 292 return; 293 } 294 295 /* 296 * modification time table routines 297 * 298 * The modification time table keeps track of last modification times for all 299 * files stored in an archive during a write phase when -u is set. We only 300 * add a file to the archive if it is newer than a file with the same name 301 * already stored on the archive (if there is no other file with the same 302 * name on the archive it is added). This applies to writes and appends. 303 * An append with an -u must read the archive and store the modification time 304 * for every file on that archive before starting the write phase. It is clear 305 * that this is one HUGE database. To save memory space, the actual file names 306 * are stored in a scatch file and indexed by an in memory hash table. The 307 * hash table is indexed by hashing the file path. The nodes in the table store 308 * the length of the filename and the lseek offset within the scratch file 309 * where the actual name is stored. Since there are never any deletions to this 310 * table, fragmentation of the scratch file is never a issue. Lookups seem to 311 * not exhibit any locality at all (files in the database are rarely 312 * looked up more than once...). So caching is just a waste of memory. The 313 * only limitation is the amount of scatch file space available to store the 314 * path names. 315 */ 316 317 /* 318 * ftime_start() 319 * create the file time hash table and open for read/write the scratch 320 * file. (after created it is unlinked, so when we exit we leave 321 * no witnesses). 322 * Return: 323 * 0 if the table and file was created ok, -1 otherwise 324 */ 325 326 #if __STDC__ 327 int 328 ftime_start(void) 329 #else 330 int 331 ftime_start() 332 #endif 333 { 334 char *pt; 335 336 if (ftab != NULL) 337 return(0); 338 if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) { 339 warn(1, "Cannot allocate memory for file time table"); 340 return(-1); 341 } 342 343 /* 344 * get random name and create temporary scratch file, unlink name 345 * so it will get removed on exit 346 */ 347 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 348 return(-1); 349 (void)unlink(pt); 350 351 if ((ffd = open(pt, O_RDWR | O_CREAT, S_IRWXU)) < 0) { 352 syswarn(1, errno, "Unable to open temporary file: %s", pt); 353 return(-1); 354 } 355 356 (void)unlink(pt); 357 return(0); 358 } 359 360 /* 361 * chk_ftime() 362 * looks up entry in file time hash table. If not found, the file is 363 * added to the hash table and the file named stored in the scratch file. 364 * If a file with the same name is found, the file times are compared and 365 * the most recent file time is retained. If the new file was younger (or 366 * was not in the database) the new file is selected for storage. 367 * Return: 368 * 0 if file should be added to the archive, 1 if it should be skipped, 369 * -1 on error 370 */ 371 372 #if __STDC__ 373 int 374 chk_ftime(register ARCHD *arcn) 375 #else 376 int 377 chk_ftime(arcn) 378 register ARCHD *arcn; 379 #endif 380 { 381 register FTM *pt; 382 register int namelen; 383 register u_int indx; 384 char ckname[PAXPATHLEN+1]; 385 386 /* 387 * no info, go ahead and add to archive 388 */ 389 if (ftab == NULL) 390 return(0); 391 392 /* 393 * hash the pathname and look up in table 394 */ 395 namelen = arcn->nlen; 396 indx = st_hash(arcn->name, namelen, F_TAB_SZ); 397 if ((pt = ftab[indx]) != NULL) { 398 /* 399 * the hash chain is not empty, walk down looking for match 400 * only read up the path names if the lengths match, speeds 401 * up the search a lot 402 */ 403 while (pt != NULL) { 404 if (pt->namelen == namelen) { 405 /* 406 * potential match, have to read the name 407 * from the scratch file. 408 */ 409 if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) { 410 syswarn(1, errno, 411 "Failed ftime table seek"); 412 return(-1); 413 } 414 if (read(ffd, ckname, namelen) != namelen) { 415 syswarn(1, errno, 416 "Failed ftime table read"); 417 return(-1); 418 } 419 420 /* 421 * if the names match, we are done 422 */ 423 if (!strncmp(ckname, arcn->name, namelen)) 424 break; 425 } 426 427 /* 428 * try the next entry on the chain 429 */ 430 pt = pt->fow; 431 } 432 433 if (pt != NULL) { 434 /* 435 * found the file, compare the times, save the newer 436 */ 437 if (arcn->sb.st_mtime > pt->mtime) { 438 /* 439 * file is newer 440 */ 441 pt->mtime = arcn->sb.st_mtime; 442 return(0); 443 } 444 /* 445 * file is older 446 */ 447 return(1); 448 } 449 } 450 451 /* 452 * not in table, add it 453 */ 454 if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) { 455 /* 456 * add the name at the end of the scratch file, saving the 457 * offset. add the file to the head of the hash chain 458 */ 459 if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) { 460 if (write(ffd, arcn->name, namelen) == namelen) { 461 pt->mtime = arcn->sb.st_mtime; 462 pt->namelen = namelen; 463 pt->fow = ftab[indx]; 464 ftab[indx] = pt; 465 return(0); 466 } 467 syswarn(1, errno, "Failed write to file time table"); 468 } else 469 syswarn(1, errno, "Failed seek on file time table"); 470 } else 471 warn(1, "File time table ran out of memory"); 472 473 if (pt != NULL) 474 (void)free((char *)pt); 475 return(-1); 476 } 477 478 /* 479 * Interactive rename table routines 480 * 481 * The interactive rename table keeps track of the new names that the user 482 * assignes to files from tty input. Since this map is unique for each file 483 * we must store it in case there is a reference to the file later in archive 484 * (a link). Otherwise we will be unable to find the file we know was 485 * extracted. The remapping of these files is stored in a memory based hash 486 * table (it is assumed since input must come from /dev/tty, it is unlikely to 487 * be a very large table). 488 */ 489 490 /* 491 * name_start() 492 * create the interactive rename table 493 * Return: 494 * 0 if successful, -1 otherwise 495 */ 496 497 #if __STDC__ 498 int 499 name_start(void) 500 #else 501 int 502 name_start() 503 #endif 504 { 505 if (ntab != NULL) 506 return(0); 507 if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) { 508 warn(1, "Cannot allocate memory for interactive rename table"); 509 return(-1); 510 } 511 return(0); 512 } 513 514 /* 515 * add_name() 516 * add the new name to old name mapping just created by the user. 517 * If an old name mapping is found (there may be duplicate names on an 518 * archive) only the most recent is kept. 519 * Return: 520 * 0 if added, -1 otherwise 521 */ 522 523 #if __STDC__ 524 int 525 add_name(register char *oname, int onamelen, char *nname) 526 #else 527 int 528 add_name(oname, onamelen, nname) 529 register char *oname; 530 int onamelen; 531 char *nname; 532 #endif 533 { 534 register NAMT *pt; 535 register u_int indx; 536 537 if (ntab == NULL) { 538 /* 539 * should never happen 540 */ 541 warn(0, "No interactive rename table, links may fail\n"); 542 return(0); 543 } 544 545 /* 546 * look to see if we have already mapped this file, if so we 547 * will update it 548 */ 549 indx = st_hash(oname, onamelen, N_TAB_SZ); 550 if ((pt = ntab[indx]) != NULL) { 551 /* 552 * look down the has chain for the file 553 */ 554 while ((pt != NULL) && (strcmp(oname, pt->oname) != 0)) 555 pt = pt->fow; 556 557 if (pt != NULL) { 558 /* 559 * found an old mapping, replace it with the new one 560 * the user just input (if it is different) 561 */ 562 if (strcmp(nname, pt->nname) == 0) 563 return(0); 564 565 (void)free((char *)pt->nname); 566 if ((pt->nname = strdup(nname)) == NULL) { 567 warn(1, "Cannot update rename table"); 568 return(-1); 569 } 570 return(0); 571 } 572 } 573 574 /* 575 * this is a new mapping, add it to the table 576 */ 577 if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) { 578 if ((pt->oname = strdup(oname)) != NULL) { 579 if ((pt->nname = strdup(nname)) != NULL) { 580 pt->fow = ntab[indx]; 581 ntab[indx] = pt; 582 return(0); 583 } 584 (void)free((char *)pt->oname); 585 } 586 (void)free((char *)pt); 587 } 588 warn(1, "Interactive rename table out of memory"); 589 return(-1); 590 } 591 592 /* 593 * sub_name() 594 * look up a link name to see if it points at a file that has been 595 * remapped by the user. If found, the link is adjusted to contain the 596 * new name (oname is the link to name) 597 */ 598 599 #if __STDC__ 600 void 601 sub_name(register char *oname, int *onamelen) 602 #else 603 void 604 sub_name(oname, onamelen) 605 register char *oname; 606 int *onamelen; 607 #endif 608 { 609 register NAMT *pt; 610 register u_int indx; 611 612 if (ntab == NULL) 613 return; 614 /* 615 * look the name up in the hash table 616 */ 617 indx = st_hash(oname, *onamelen, N_TAB_SZ); 618 if ((pt = ntab[indx]) == NULL) 619 return; 620 621 while (pt != NULL) { 622 /* 623 * walk down the hash cahin looking for a match 624 */ 625 if (strcmp(oname, pt->oname) == 0) { 626 /* 627 * found it, replace it with the new name 628 * and return (we know that oname has enough space) 629 */ 630 *onamelen = l_strncpy(oname, pt->nname, PAXPATHLEN+1); 631 return; 632 } 633 pt = pt->fow; 634 } 635 636 /* 637 * no match, just return 638 */ 639 return; 640 } 641 642 /* 643 * device/inode mapping table routines 644 * (used with formats that store device and inodes fields) 645 * 646 * device/inode mapping tables remap the device field in a archive header. The 647 * device/inode fields are used to determine when files are hard links to each 648 * other. However these values have very little meaning outside of that. This 649 * database is used to solve one of two different problems. 650 * 651 * 1) when files are appended to an archive, while the new files may have hard 652 * links to each other, you cannot determine if they have hard links to any 653 * file already stored on the archive from a prior run of pax. We must assume 654 * that these inode/device pairs are unique only within a SINGLE run of pax 655 * (which adds a set of files to an archive). So we have to make sure the 656 * inode/dev pairs we add each time are always unique. We do this by observing 657 * while the inode field is very dense, the use of the dev field is fairly 658 * sparse. Within each run of pax, we remap any device number of a new archive 659 * member that has a device number used in a prior run and already stored in a 660 * file on the archive. During the read phase of the append, we store the 661 * device numbers used and mark them to not be used by any file during the 662 * write phase. If during write we go to use one of those old device numbers, 663 * we remap it to a new value. 664 * 665 * 2) Often the fields in the archive header used to store these values are 666 * too small to store the entire value. The result is an inode or device value 667 * which can be truncated. This really can foul up an archive. With truncation 668 * we end up creating links between files that are really not links (after 669 * truncation the inodes are the same value). We address that by detecting 670 * truncation and forcing a remap of the device field to split truncated 671 * inodes away from each other. Each truncation creates a pattern of bits that 672 * are removed. We use this pattern of truncated bits to partition the inodes 673 * on a single device to many different devices (each one represented by the 674 * truncated bit pattern). All inodes on the same device that have the same 675 * truncation pattern are mapped to the same new device. Two inodes that 676 * truncate to the same value clearly will always have different truncation 677 * bit patterns, so they will be split from away each other. When we spot 678 * device truncation we remap the device number to a non truncated value. 679 * (for more info see table.h for the data structures involved). 680 */ 681 682 /* 683 * dev_start() 684 * create the device mapping table 685 * Return: 686 * 0 if successful, -1 otherwise 687 */ 688 689 #if __STDC__ 690 int 691 dev_start(void) 692 #else 693 int 694 dev_start() 695 #endif 696 { 697 if (dtab != NULL) 698 return(0); 699 if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) { 700 warn(1, "Cannot allocate memory for device mapping table"); 701 return(-1); 702 } 703 return(0); 704 } 705 706 /* 707 * add_dev() 708 * add a device number to the table. this will force the device to be 709 * remapped to a new value if it be used during a write phase. This 710 * function is called during the read phase of an append to prohibit the 711 * use of any device number already in the archive. 712 * Return: 713 * 0 if added ok, -1 otherwise 714 */ 715 716 #if __STDC__ 717 int 718 add_dev(register ARCHD *arcn) 719 #else 720 int 721 add_dev(arcn) 722 register ARCHD *arcn; 723 #endif 724 { 725 if (chk_dev(arcn->sb.st_dev, 1) == NULL) 726 return(-1); 727 return(0); 728 } 729 730 /* 731 * chk_dev() 732 * check for a device value in the device table. If not found and the add 733 * flag is set, it is added. This does NOT assign any mapping values, just 734 * adds the device number as one that need to be remapped. If this device 735 * is alread mapped, just return with a pointer to that entry. 736 * Return: 737 * pointer to the entry for this device in the device map table. Null 738 * if the add flag is not set and the device is not in the table (it is 739 * not been seen yet). If add is set and the device cannot be added, null 740 * is returned (indicates an error). 741 */ 742 743 #if __STDC__ 744 static DEVT * 745 chk_dev(dev_t dev, int add) 746 #else 747 static DEVT * 748 chk_dev(dev, add) 749 dev_t dev; 750 int add; 751 #endif 752 { 753 register DEVT *pt; 754 register u_int indx; 755 756 if (dtab == NULL) 757 return(NULL); 758 /* 759 * look to see if this device is already in the table 760 */ 761 indx = ((unsigned)dev) % D_TAB_SZ; 762 if ((pt = dtab[indx]) != NULL) { 763 while ((pt != NULL) && (pt->dev != dev)) 764 pt = pt->fow; 765 766 /* 767 * found it, return a pointer to it 768 */ 769 if (pt != NULL) 770 return(pt); 771 } 772 773 /* 774 * not in table, we add it only if told to as this may just be a check 775 * to see if a device number is being used. 776 */ 777 if (add == 0) 778 return(NULL); 779 780 /* 781 * allocate a node for this device and add it to the front of the hash 782 * chain. Note we do not assign remaps values here, so the pt->list 783 * list must be NULL. 784 */ 785 if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) { 786 warn(1, "Device map table out of memory"); 787 return(NULL); 788 } 789 pt->dev = dev; 790 pt->list = NULL; 791 pt->fow = dtab[indx]; 792 dtab[indx] = pt; 793 return(pt); 794 } 795 /* 796 * map_dev() 797 * given an inode and device storage mask (the mask has a 1 for each bit 798 * the archive format is able to store in a header), we check for inode 799 * and device truncation and remap the device as required. Device mapping 800 * can also occur when during the read phase of append a device number was 801 * seen (and was marked as do not use during the write phase). WE ASSUME 802 * that unsigned longs are the same size or bigger than the fields used 803 * for ino_t and dev_t. If not the types will have to be changed. 804 * Return: 805 * 0 if all ok, -1 otherwise. 806 */ 807 808 #if __STDC__ 809 int 810 map_dev(register ARCHD *arcn, u_long dev_mask, u_long ino_mask) 811 #else 812 int 813 map_dev(arcn, dev_mask, ino_mask) 814 register ARCHD *arcn; 815 u_long dev_mask; 816 u_long ino_mask; 817 #endif 818 { 819 register DEVT *pt; 820 register DLIST *dpt; 821 static dev_t lastdev = 0; /* next device number to try */ 822 int trc_ino = 0; 823 int trc_dev = 0; 824 ino_t trunc_bits = 0; 825 ino_t nino; 826 827 if (dtab == NULL) 828 return(0); 829 /* 830 * check for device and inode truncation, and extract the truncated 831 * bit pattern. 832 */ 833 if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev) 834 ++trc_dev; 835 if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) { 836 ++trc_ino; 837 trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask); 838 } 839 840 /* 841 * see if this device is already being mapped, look up the device 842 * then find the truncation bit pattern which applies 843 */ 844 if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) { 845 /* 846 * this device is already marked to be remapped 847 */ 848 for (dpt = pt->list; dpt != NULL; dpt = dpt->fow) 849 if (dpt->trunc_bits == trunc_bits) 850 break; 851 852 if (dpt != NULL) { 853 /* 854 * we are being remapped for this device and pattern 855 * change the device number to be stored and return 856 */ 857 arcn->sb.st_dev = dpt->dev; 858 arcn->sb.st_ino = nino; 859 return(0); 860 } 861 } else { 862 /* 863 * this device is not being remapped YET. if we do not have any 864 * form of truncation, we do not need a remap 865 */ 866 if (!trc_ino && !trc_dev) 867 return(0); 868 869 /* 870 * we have truncation, have to add this as a device to remap 871 */ 872 if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL) 873 goto bad; 874 875 /* 876 * if we just have a truncated inode, we have to make sure that 877 * all future inodes that do not truncate (they have the 878 * truncation pattern of all 0's) continue to map to the same 879 * device number. We probably have already written inodes with 880 * this device number to the archive with the truncation 881 * pattern of all 0's. So we add the mapping for all 0's to the 882 * same device number. 883 */ 884 if (!trc_dev && (trunc_bits != 0)) { 885 if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL) 886 goto bad; 887 dpt->trunc_bits = 0; 888 dpt->dev = arcn->sb.st_dev; 889 dpt->fow = pt->list; 890 pt->list = dpt; 891 } 892 } 893 894 /* 895 * look for a device number not being used. We must watch for wrap 896 * around on lastdev (so we do not get stuck looking forever!) 897 */ 898 while (++lastdev > 0) { 899 if (chk_dev(lastdev, 0) != NULL) 900 continue; 901 /* 902 * found an unused value. If we have reached truncation point 903 * for this format we are hosed, so we give up. Otherwise we 904 * mark it as being used. 905 */ 906 if (((lastdev & ((dev_t)dev_mask)) != lastdev) || 907 (chk_dev(lastdev, 1) == NULL)) 908 goto bad; 909 break; 910 } 911 912 if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)) 913 goto bad; 914 915 /* 916 * got a new device number, store it under this truncation pattern. 917 * change the device number this file is being stored with. 918 */ 919 dpt->trunc_bits = trunc_bits; 920 dpt->dev = lastdev; 921 dpt->fow = pt->list; 922 pt->list = dpt; 923 arcn->sb.st_dev = lastdev; 924 arcn->sb.st_ino = nino; 925 return(0); 926 927 bad: 928 warn(1, "Unable to fix truncated inode/device field when storing %s", 929 arcn->name); 930 warn(0, "Archive may create improper hard links when extracted"); 931 return(0); 932 } 933 934 /* 935 * directory access/mod time reset table routines (for directories READ by pax) 936 * 937 * The pax -t flag requires that access times of archive files to be the same 938 * before being read by pax. For regular files, access time is restored after 939 * the file has been copied. This database provides the same functionality for 940 * directories read during file tree traversal. Restoring directory access time 941 * is more complex than files since directories may be read several times until 942 * all the descendants in their subtree are visited by fts. Directory access 943 * and modification times are stored during the fts pre-order visit (done 944 * before any descendants in the subtree is visited) and restored after the 945 * fts post-order visit (after all the descendants have been visited). In the 946 * case of premature exit from a subtree (like from the effects of -n), any 947 * directory entries left in this database are reset during final cleanup 948 * operations of pax. Entries are hashed by inode number for fast lookup. 949 */ 950 951 /* 952 * atdir_start() 953 * create the directory access time database for directories READ by pax. 954 * Return: 955 * 0 is created ok, -1 otherwise. 956 */ 957 958 #if __STDC__ 959 int 960 atdir_start(void) 961 #else 962 int 963 atdir_start() 964 #endif 965 { 966 if (atab != NULL) 967 return(0); 968 if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) { 969 warn(1,"Cannot allocate space for directory access time table"); 970 return(-1); 971 } 972 return(0); 973 } 974 975 976 /* 977 * atdir_end() 978 * walk through the directory access time table and reset the access time 979 * of any directory who still has an entry left in the database. These 980 * entries are for directories READ by pax 981 */ 982 983 #if __STDC__ 984 void 985 atdir_end(void) 986 #else 987 void 988 atdir_end() 989 #endif 990 { 991 register ATDIR *pt; 992 register int i; 993 994 if (atab == NULL) 995 return; 996 /* 997 * for each non-empty hash table entry reset all the directories 998 * chained there. 999 */ 1000 for (i = 0; i < A_TAB_SZ; ++i) { 1001 if ((pt = atab[i]) == NULL) 1002 continue; 1003 /* 1004 * remember to force the times, set_ftime() looks at pmtime 1005 * and patime, which only applies to things CREATED by pax, 1006 * not read by pax. Read time reset is controlled by -t. 1007 */ 1008 for (; pt != NULL; pt = pt->fow) 1009 set_ftime(pt->name, pt->mtime, pt->atime, 1); 1010 } 1011 } 1012 1013 /* 1014 * add_atdir() 1015 * add a directory to the directory access time table. Table is hashed 1016 * and chained by inode number. This is for directories READ by pax 1017 */ 1018 1019 #if __STDC__ 1020 void 1021 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime) 1022 #else 1023 void 1024 add_atdir(fname, dev, ino, mtime, atime) 1025 char *fname; 1026 dev_t dev; 1027 ino_t ino; 1028 time_t mtime; 1029 time_t atime; 1030 #endif 1031 { 1032 register ATDIR *pt; 1033 register u_int indx; 1034 1035 if (atab == NULL) 1036 return; 1037 1038 /* 1039 * make sure this directory is not already in the table, if so just 1040 * return (the older entry always has the correct time). The only 1041 * way this will happen is when the same subtree can be traversed by 1042 * different args to pax and the -n option is aborting fts out of a 1043 * subtree before all the post-order visits have been made). 1044 */ 1045 indx = ((unsigned)ino) % A_TAB_SZ; 1046 if ((pt = atab[indx]) != NULL) { 1047 while (pt != NULL) { 1048 if ((pt->ino == ino) && (pt->dev == dev)) 1049 break; 1050 pt = pt->fow; 1051 } 1052 1053 /* 1054 * oops, already there. Leave it alone. 1055 */ 1056 if (pt != NULL) 1057 return; 1058 } 1059 1060 /* 1061 * add it to the front of the hash chain 1062 */ 1063 if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) { 1064 if ((pt->name = strdup(fname)) != NULL) { 1065 pt->dev = dev; 1066 pt->ino = ino; 1067 pt->mtime = mtime; 1068 pt->atime = atime; 1069 pt->fow = atab[indx]; 1070 atab[indx] = pt; 1071 return; 1072 } 1073 (void)free((char *)pt); 1074 } 1075 1076 warn(1, "Directory access time reset table ran out of memory"); 1077 return; 1078 } 1079 1080 /* 1081 * get_atdir() 1082 * look up a directory by inode and device number to obtain the access 1083 * and modification time you want to set to. If found, the modification 1084 * and access time parameters are set and the entry is removed from the 1085 * table (as it is no longer needed). These are for directories READ by 1086 * pax 1087 * Return: 1088 * 0 if found, -1 if not found. 1089 */ 1090 1091 #if __STDC__ 1092 int 1093 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime) 1094 #else 1095 int 1096 get_atdir(dev, ino, mtime, atime) 1097 dev_t dev; 1098 ino_t ino; 1099 time_t *mtime; 1100 time_t *atime; 1101 #endif 1102 { 1103 register ATDIR *pt; 1104 register ATDIR **ppt; 1105 register u_int indx; 1106 1107 if (atab == NULL) 1108 return(-1); 1109 /* 1110 * hash by inode and search the chain for an inode and device match 1111 */ 1112 indx = ((unsigned)ino) % A_TAB_SZ; 1113 if ((pt = atab[indx]) == NULL) 1114 return(-1); 1115 1116 ppt = &(atab[indx]); 1117 while (pt != NULL) { 1118 if ((pt->ino == ino) && (pt->dev == dev)) 1119 break; 1120 /* 1121 * no match, go to next one 1122 */ 1123 ppt = &(pt->fow); 1124 pt = pt->fow; 1125 } 1126 1127 /* 1128 * return if we did not find it. 1129 */ 1130 if (pt == NULL) 1131 return(-1); 1132 1133 /* 1134 * found it. return the times and remove the entry from the table. 1135 */ 1136 *ppt = pt->fow; 1137 *mtime = pt->mtime; 1138 *atime = pt->atime; 1139 (void)free((char *)pt->name); 1140 (void)free((char *)pt); 1141 return(0); 1142 } 1143 1144 /* 1145 * directory access mode and time storage routines (for directories CREATED 1146 * by pax). 1147 * 1148 * Pax requires that extracted directories, by default, have their access/mod 1149 * times and permissions set to the values specified in the archive. During the 1150 * actions of extracting (and creating the destination subtree during -rw copy) 1151 * directories extracted may be modified after being created. Even worse is 1152 * that these directories may have been created with file permissions which 1153 * prohibits any descendants of these directories from being extracted. When 1154 * directories are created by pax, access rights may be added to permit the 1155 * creation of files in their subtree. Every time pax creates a directory, the 1156 * times and file permissions specified by the archive are stored. After all 1157 * files have been extracted (or copied), these directories have their times 1158 * and file modes reset to the stored values. The directory info is restored in 1159 * reverse order as entries were added to the data file from root to leaf. To 1160 * restore atime properly, we must go backwards. The data file consists of 1161 * records with two parts, the file name followed by a DIRDATA trailer. The 1162 * fixed sized trailer contains the size of the name plus the off_t location in 1163 * the file. To restore we work backwards through the file reading the trailer 1164 * then the file name. 1165 */ 1166 1167 /* 1168 * dir_start() 1169 * set up the directory time and file mode storage for directories CREATED 1170 * by pax. 1171 * Return: 1172 * 0 if ok, -1 otherwise 1173 */ 1174 1175 #if __STDC__ 1176 int 1177 dir_start(void) 1178 #else 1179 int 1180 dir_start() 1181 #endif 1182 { 1183 char *pt; 1184 1185 if (dirfd != -1) 1186 return(0); 1187 if ((pt = tempnam((char *)NULL, (char *)NULL)) == NULL) 1188 return(-1); 1189 1190 /* 1191 * unlink the file so it goes away at termination by itself 1192 */ 1193 (void)unlink(pt); 1194 if ((dirfd = open(pt, O_RDWR|O_CREAT, 0600)) >= 0) { 1195 (void)unlink(pt); 1196 return(0); 1197 } 1198 warn(1, "Unable to create temporary file for directory times: %s", pt); 1199 return(-1); 1200 } 1201 1202 /* 1203 * add_dir() 1204 * add the mode and times for a newly CREATED directory 1205 * name is name of the directory, psb the stat buffer with the data in it, 1206 * frc_mode is a flag that says whether to force the setting of the mode 1207 * (ignoring the user set values for preserving file mode). Frc_mode is 1208 * for the case where we created a file and found that the resulting 1209 * directory was not writeable and the user asked for file modes to NOT 1210 * be preserved. (we have to preserve what was created by default, so we 1211 * have to force the setting at the end. this is stated explicitly in the 1212 * pax spec) 1213 */ 1214 1215 #if __STDC__ 1216 void 1217 add_dir(char *name, int nlen, struct stat *psb, int frc_mode) 1218 #else 1219 void 1220 add_dir(name, nlen, psb, frc_mode) 1221 char *name; 1222 int nlen; 1223 struct stat *psb; 1224 int frc_mode; 1225 #endif 1226 { 1227 DIRDATA dblk; 1228 1229 if (dirfd < 0) 1230 return; 1231 1232 /* 1233 * get current position (where file name will start) so we can store it 1234 * in the trailer 1235 */ 1236 if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) { 1237 warn(1,"Unable to store mode and times for directory: %s",name); 1238 return; 1239 } 1240 1241 /* 1242 * write the file name followed by the trailer 1243 */ 1244 dblk.nlen = nlen + 1; 1245 dblk.mode = psb->st_mode & 0xffff; 1246 dblk.mtime = psb->st_mtime; 1247 dblk.atime = psb->st_atime; 1248 dblk.frc_mode = frc_mode; 1249 if ((write(dirfd, name, dblk.nlen) == dblk.nlen) && 1250 (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) { 1251 ++dircnt; 1252 return; 1253 } 1254 1255 warn(1,"Unable to store mode and times for created directory: %s",name); 1256 return; 1257 } 1258 1259 /* 1260 * proc_dir() 1261 * process all file modes and times stored for directories CREATED 1262 * by pax 1263 */ 1264 1265 #if __STDC__ 1266 void 1267 proc_dir(void) 1268 #else 1269 void 1270 proc_dir() 1271 #endif 1272 { 1273 char name[PAXPATHLEN+1]; 1274 DIRDATA dblk; 1275 u_long cnt; 1276 1277 if (dirfd < 0) 1278 return; 1279 /* 1280 * read backwards through the file and process each directory 1281 */ 1282 for (cnt = 0; cnt < dircnt; ++cnt) { 1283 /* 1284 * read the trailer, then the file name, if this fails 1285 * just give up. 1286 */ 1287 if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0) 1288 break; 1289 if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk)) 1290 break; 1291 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1292 break; 1293 if (read(dirfd, name, dblk.nlen) != dblk.nlen) 1294 break; 1295 if (lseek(dirfd, dblk.npos, SEEK_SET) < 0) 1296 break; 1297 1298 /* 1299 * frc_mode set, make sure we set the file modes even if 1300 * the user didn't ask for it (see file_subs.c for more info) 1301 */ 1302 if (pmode || dblk.frc_mode) 1303 set_pmode(name, dblk.mode); 1304 if (patime || pmtime) 1305 set_ftime(name, dblk.mtime, dblk.atime, 0); 1306 } 1307 1308 (void)close(dirfd); 1309 dirfd = -1; 1310 if (cnt != dircnt) 1311 warn(1,"Unable to set mode and times for created directories"); 1312 return; 1313 } 1314 1315 /* 1316 * database independent routines 1317 */ 1318 1319 /* 1320 * st_hash() 1321 * hashes filenames to a u_int for hashing into a table. Looks at the tail 1322 * end of file, as this provides far better distribution than any other 1323 * part of the name. For performance reasons we only care about the last 1324 * MAXKEYLEN chars (should be at LEAST large enough to pick off the file 1325 * name). Was tested on 500,000 name file tree traversal from the root 1326 * and gave almost a perfectly uniform distribution of keys when used with 1327 * prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int) 1328 * chars at a time and pads with 0 for last addition. 1329 * Return: 1330 * the hash value of the string MOD (%) the table size. 1331 */ 1332 1333 #if __STDC__ 1334 u_int 1335 st_hash(char *name, int len, int tabsz) 1336 #else 1337 u_int 1338 st_hash(name, len, tabsz) 1339 char *name; 1340 int len; 1341 int tabsz; 1342 #endif 1343 { 1344 register char *pt; 1345 register char *dest; 1346 register char *end; 1347 register int i; 1348 register u_int key = 0; 1349 register int steps; 1350 register int res; 1351 u_int val; 1352 1353 /* 1354 * only look at the tail up to MAXKEYLEN, we do not need to waste 1355 * time here (remember these are pathnames, the tail is what will 1356 * spread out the keys) 1357 */ 1358 if (len > MAXKEYLEN) { 1359 pt = &(name[len - MAXKEYLEN]); 1360 len = MAXKEYLEN; 1361 } else 1362 pt = name; 1363 1364 /* 1365 * calculate the number of u_int size steps in the string and if 1366 * there is a runt to deal with 1367 */ 1368 steps = len/sizeof(u_int); 1369 res = len % sizeof(u_int); 1370 1371 /* 1372 * add up the value of the string in unsigned integer sized pieces 1373 * too bad we cannot have unsigned int aligned strings, then we 1374 * could avoid the expensive copy. 1375 */ 1376 for (i = 0; i < steps; ++i) { 1377 end = pt + sizeof(u_int); 1378 dest = (char *)&val; 1379 while (pt < end) 1380 *dest++ = *pt++; 1381 key += val; 1382 } 1383 1384 /* 1385 * add in the runt padded with zero to the right 1386 */ 1387 if (res) { 1388 val = 0; 1389 end = pt + res; 1390 dest = (char *)&val; 1391 while (pt < end) 1392 *dest++ = *pt++; 1393 key += val; 1394 } 1395 1396 /* 1397 * return the result mod the table size 1398 */ 1399 return(key % tabsz); 1400 } 1401