15f692eeaSzliu /* 2*633a6655Sbostic * Copyright (c) 1985, 1993 3*633a6655Sbostic * The Regents of the University of California. All rights reserved. 45f692eeaSzliu * 5833fc2a5Sbostic * %sccs.include.redist.c% 65f692eeaSzliu */ 75f692eeaSzliu 85f692eeaSzliu #ifndef lint 9*633a6655Sbostic static char sccsid[] = "@(#)atan2.c 8.1 (Berkeley) 06/04/93"; 1037736ad6Szliu #endif /* not lint */ 115f692eeaSzliu 125f692eeaSzliu /* ATAN2(Y,X) 135f692eeaSzliu * RETURN ARG (X+iY) 145f692eeaSzliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 155f692eeaSzliu * CODED IN C BY K.C. NG, 1/8/85; 165f692eeaSzliu * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85. 175f692eeaSzliu * 185f692eeaSzliu * Required system supported functions : 195f692eeaSzliu * copysign(x,y) 205f692eeaSzliu * scalb(x,y) 215f692eeaSzliu * logb(x) 225f692eeaSzliu * 235f692eeaSzliu * Method : 245f692eeaSzliu * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). 255f692eeaSzliu * 2. Reduce x to positive by (if x and y are unexceptional): 265f692eeaSzliu * ARG (x+iy) = arctan(y/x) ... if x > 0, 275f692eeaSzliu * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, 285f692eeaSzliu * 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument 295f692eeaSzliu * is further reduced to one of the following intervals and the 305f692eeaSzliu * arctangent of y/x is evaluated by the corresponding formula: 315f692eeaSzliu * 325f692eeaSzliu * [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) 335f692eeaSzliu * [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) ) 345f692eeaSzliu * [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) ) 355f692eeaSzliu * [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) ) 365f692eeaSzliu * [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y ) 375f692eeaSzliu * 385f692eeaSzliu * Special cases: 395f692eeaSzliu * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y). 405f692eeaSzliu * 415f692eeaSzliu * ARG( NAN , (anything) ) is NaN; 425f692eeaSzliu * ARG( (anything), NaN ) is NaN; 435f692eeaSzliu * ARG(+(anything but NaN), +-0) is +-0 ; 445f692eeaSzliu * ARG(-(anything but NaN), +-0) is +-PI ; 455f692eeaSzliu * ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2; 465f692eeaSzliu * ARG( +INF,+-(anything but INF and NaN) ) is +-0 ; 475f692eeaSzliu * ARG( -INF,+-(anything but INF and NaN) ) is +-PI; 485f692eeaSzliu * ARG( +INF,+-INF ) is +-PI/4 ; 495f692eeaSzliu * ARG( -INF,+-INF ) is +-3PI/4; 505f692eeaSzliu * ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2; 515f692eeaSzliu * 525f692eeaSzliu * Accuracy: 535f692eeaSzliu * atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded, 545f692eeaSzliu * where 555f692eeaSzliu * 565f692eeaSzliu * in decimal: 575f692eeaSzliu * pi = 3.141592653589793 23846264338327 ..... 585f692eeaSzliu * 53 bits PI = 3.141592653589793 115997963 ..... , 595f692eeaSzliu * 56 bits PI = 3.141592653589793 227020265 ..... , 605f692eeaSzliu * 615f692eeaSzliu * in hexadecimal: 625f692eeaSzliu * pi = 3.243F6A8885A308D313198A2E.... 635f692eeaSzliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 645f692eeaSzliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 655f692eeaSzliu * 665f692eeaSzliu * In a test run with 356,000 random argument on [-1,1] * [-1,1] on a 675f692eeaSzliu * VAX, the maximum observed error was 1.41 ulps (units of the last place) 685f692eeaSzliu * compared with (PI/pi)*(the exact ARG(x+iy)). 695f692eeaSzliu * 705f692eeaSzliu * Note: 715f692eeaSzliu * We use machine PI (the true pi rounded) in place of the actual 725f692eeaSzliu * value of pi for all the trig and inverse trig functions. In general, 735f692eeaSzliu * if trig is one of sin, cos, tan, then computed trig(y) returns the 745f692eeaSzliu * exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig 755f692eeaSzliu * returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the 765f692eeaSzliu * trig functions have period PI, and trig(arctrig(x)) returns x for 775f692eeaSzliu * all critical values x. 785f692eeaSzliu * 795f692eeaSzliu * Constants: 805f692eeaSzliu * The hexadecimal values are the intended ones for the following constants. 815f692eeaSzliu * The decimal values may be used, provided that the compiler will convert 825f692eeaSzliu * from decimal to binary accurately enough to produce the hexadecimal values 835f692eeaSzliu * shown. 845f692eeaSzliu */ 855f692eeaSzliu 86e81ff4fcSbostic #include "mathimpl.h" 87e81ff4fcSbostic 88e81ff4fcSbostic vc(athfhi, 4.6364760900080611433E-1 ,6338,3fed,da7b,2b0d, -1, .ED63382B0DDA7B) 89e81ff4fcSbostic vc(athflo, 1.9338828231967579916E-19 ,5005,2164,92c0,9cfe, -62, .E450059CFE92C0) 90e81ff4fcSbostic vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2) 91e81ff4fcSbostic vc(at1fhi, 9.8279372324732906796E-1 ,985e,407b,b4d9,940f, 0, .FB985E940FB4D9) 92e81ff4fcSbostic vc(at1flo,-3.5540295636764633916E-18 ,1edc,a383,eaea,34d6, -57,-.831EDC34D6EAEA) 93e81ff4fcSbostic vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2) 94e81ff4fcSbostic vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2) 95e81ff4fcSbostic vc(a1, 3.3333333333333473730E-1 ,aaaa,3faa,ab75,aaaa, -1, .AAAAAAAAAAAB75) 96e81ff4fcSbostic vc(a2, -2.0000000000017730678E-1 ,cccc,bf4c,946e,cccd, -2,-.CCCCCCCCCD946E) 97e81ff4fcSbostic vc(a3, 1.4285714286694640301E-1 ,4924,3f12,4262,9274, -2, .92492492744262) 98e81ff4fcSbostic vc(a4, -1.1111111135032672795E-1 ,8e38,bee3,6292,ebc6, -3,-.E38E38EBC66292) 99e81ff4fcSbostic vc(a5, 9.0909091380563043783E-2 ,2e8b,3eba,d70c,b31b, -3, .BA2E8BB31BD70C) 100e81ff4fcSbostic vc(a6, -7.6922954286089459397E-2 ,89c8,be9d,7f18,27c3, -3,-.9D89C827C37F18) 101e81ff4fcSbostic vc(a7, 6.6663180891693915586E-2 ,86b4,3e88,9e58,ae37, -3, .8886B4AE379E58) 102e81ff4fcSbostic vc(a8, -5.8772703698290408927E-2 ,bba5,be70,a942,8481, -4,-.F0BBA58481A942) 103e81ff4fcSbostic vc(a9, 5.2170707402812969804E-2 ,b0f3,3e55,13ab,a1ab, -4, .D5B0F3A1AB13AB) 104e81ff4fcSbostic vc(a10, -4.4895863157820361210E-2 ,e4b9,be37,048f,7fd1, -4,-.B7E4B97FD1048F) 105e81ff4fcSbostic vc(a11, 3.3006147437343875094E-2 ,3174,3e07,2d87,3cf7, -4, .8731743CF72D87) 106e81ff4fcSbostic vc(a12, -1.4614844866464185439E-2 ,731a,bd6f,76d9,2f34, -6,-.EF731A2F3476D9) 107e81ff4fcSbostic 108e81ff4fcSbostic ic(athfhi, 4.6364760900080609352E-1 , -2, 1.DAC670561BB4F) 109e81ff4fcSbostic ic(athflo, 4.6249969567426939759E-18 , -58, 1.5543B8F253271) 110e81ff4fcSbostic ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18) 111e81ff4fcSbostic ic(at1fhi, 9.8279372324732905408E-1 , -1, 1.F730BD281F69B) 112e81ff4fcSbostic ic(at1flo,-2.4407677060164810007E-17 , -56, -1.C23DFEFEAE6B5) 113e81ff4fcSbostic ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18) 114e81ff4fcSbostic ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18) 115e81ff4fcSbostic ic(a1, 3.3333333333333942106E-1 , -2, 1.55555555555C3) 116e81ff4fcSbostic ic(a2, -1.9999999999979536924E-1 , -3, -1.9999999997CCD) 117e81ff4fcSbostic ic(a3, 1.4285714278004377209E-1 , -3, 1.24924921EC1D7) 118e81ff4fcSbostic ic(a4, -1.1111110579344973814E-1 , -4, -1.C71C7059AF280) 119e81ff4fcSbostic ic(a5, 9.0908906105474668324E-2 , -4, 1.745CE5AA35DB2) 120e81ff4fcSbostic ic(a6, -7.6919217767468239799E-2 , -4, -1.3B0FA54BEC400) 121e81ff4fcSbostic ic(a7, 6.6614695906082474486E-2 , -4, 1.10DA924597FFF) 122e81ff4fcSbostic ic(a8, -5.8358371008508623523E-2 , -5, -1.DE125FDDBD793) 123e81ff4fcSbostic ic(a9, 4.9850617156082015213E-2 , -5, 1.9860524BDD807) 124e81ff4fcSbostic ic(a10, -3.6700606902093604877E-2 , -5, -1.2CA6C04C6937A) 125e81ff4fcSbostic ic(a11, 1.6438029044759730479E-2 , -6, 1.0D52174A1BB54) 126e81ff4fcSbostic 127e81ff4fcSbostic #ifdef vccast 128e81ff4fcSbostic #define athfhi vccast(athfhi) 129e81ff4fcSbostic #define athflo vccast(athflo) 130e81ff4fcSbostic #define PIo4 vccast(PIo4) 131e81ff4fcSbostic #define at1fhi vccast(at1fhi) 132e81ff4fcSbostic #define at1flo vccast(at1flo) 133e81ff4fcSbostic #define PIo2 vccast(PIo2) 134e81ff4fcSbostic #define PI vccast(PI) 135e81ff4fcSbostic #define a1 vccast(a1) 136e81ff4fcSbostic #define a2 vccast(a2) 137e81ff4fcSbostic #define a3 vccast(a3) 138e81ff4fcSbostic #define a4 vccast(a4) 139e81ff4fcSbostic #define a5 vccast(a5) 140e81ff4fcSbostic #define a6 vccast(a6) 141e81ff4fcSbostic #define a7 vccast(a7) 142e81ff4fcSbostic #define a8 vccast(a8) 143e81ff4fcSbostic #define a9 vccast(a9) 144e81ff4fcSbostic #define a10 vccast(a10) 145e81ff4fcSbostic #define a11 vccast(a11) 146e81ff4fcSbostic #define a12 vccast(a12) 147e81ff4fcSbostic #endif 1485f692eeaSzliu 1495f692eeaSzliu double atan2(y,x) 1505f692eeaSzliu double y,x; 1515f692eeaSzliu { 152e81ff4fcSbostic static const double zero=0, one=1, small=1.0E-9, big=1.0E18; 153e81ff4fcSbostic double t,z,signy,signx,hi,lo; 154e81ff4fcSbostic int k,m; 1555f692eeaSzliu 15637736ad6Szliu #if !defined(vax)&&!defined(tahoe) 1575f692eeaSzliu /* if x or y is NAN */ 1585f692eeaSzliu if(x!=x) return(x); if(y!=y) return(y); 15937736ad6Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 1605f692eeaSzliu 1615f692eeaSzliu /* copy down the sign of y and x */ 1625f692eeaSzliu signy = copysign(one,y) ; 1635f692eeaSzliu signx = copysign(one,x) ; 1645f692eeaSzliu 1655f692eeaSzliu /* if x is 1.0, goto begin */ 1665f692eeaSzliu if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;} 1675f692eeaSzliu 1685f692eeaSzliu /* when y = 0 */ 1695f692eeaSzliu if(y==zero) return((signx==one)?y:copysign(PI,signy)); 1705f692eeaSzliu 1715f692eeaSzliu /* when x = 0 */ 1725f692eeaSzliu if(x==zero) return(copysign(PIo2,signy)); 1735f692eeaSzliu 1745f692eeaSzliu /* when x is INF */ 1755f692eeaSzliu if(!finite(x)) 1765f692eeaSzliu if(!finite(y)) 1775f692eeaSzliu return(copysign((signx==one)?PIo4:3*PIo4,signy)); 1785f692eeaSzliu else 1795f692eeaSzliu return(copysign((signx==one)?zero:PI,signy)); 1805f692eeaSzliu 1815f692eeaSzliu /* when y is INF */ 1825f692eeaSzliu if(!finite(y)) return(copysign(PIo2,signy)); 1835f692eeaSzliu 1845f692eeaSzliu /* compute y/x */ 1855f692eeaSzliu x=copysign(x,one); 1865f692eeaSzliu y=copysign(y,one); 1875f692eeaSzliu if((m=(k=logb(y))-logb(x)) > 60) t=big+big; 1885f692eeaSzliu else if(m < -80 ) t=y/x; 1895f692eeaSzliu else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); } 1905f692eeaSzliu 1915f692eeaSzliu /* begin argument reduction */ 1925f692eeaSzliu begin: 1935f692eeaSzliu if (t < 2.4375) { 1945f692eeaSzliu 1955f692eeaSzliu /* truncate 4(t+1/16) to integer for branching */ 1965f692eeaSzliu k = 4 * (t+0.0625); 1975f692eeaSzliu switch (k) { 1985f692eeaSzliu 1995f692eeaSzliu /* t is in [0,7/16] */ 2005f692eeaSzliu case 0: 2015f692eeaSzliu case 1: 2025f692eeaSzliu if (t < small) 2035f692eeaSzliu { big + small ; /* raise inexact flag */ 2045f692eeaSzliu return (copysign((signx>zero)?t:PI-t,signy)); } 2055f692eeaSzliu 2065f692eeaSzliu hi = zero; lo = zero; break; 2075f692eeaSzliu 2085f692eeaSzliu /* t is in [7/16,11/16] */ 2095f692eeaSzliu case 2: 2105f692eeaSzliu hi = athfhi; lo = athflo; 2115f692eeaSzliu z = x+x; 2125f692eeaSzliu t = ( (y+y) - x ) / ( z + y ); break; 2135f692eeaSzliu 2145f692eeaSzliu /* t is in [11/16,19/16] */ 2155f692eeaSzliu case 3: 2165f692eeaSzliu case 4: 2175f692eeaSzliu hi = PIo4; lo = zero; 2185f692eeaSzliu t = ( y - x ) / ( x + y ); break; 2195f692eeaSzliu 2205f692eeaSzliu /* t is in [19/16,39/16] */ 2215f692eeaSzliu default: 2225f692eeaSzliu hi = at1fhi; lo = at1flo; 2235f692eeaSzliu z = y-x; y=y+y+y; t = x+x; 2245f692eeaSzliu t = ( (z+z)-x ) / ( t + y ); break; 2255f692eeaSzliu } 2265f692eeaSzliu } 2275f692eeaSzliu /* end of if (t < 2.4375) */ 2285f692eeaSzliu 2295f692eeaSzliu else 2305f692eeaSzliu { 2315f692eeaSzliu hi = PIo2; lo = zero; 2325f692eeaSzliu 2335f692eeaSzliu /* t is in [2.4375, big] */ 2345f692eeaSzliu if (t <= big) t = - x / y; 2355f692eeaSzliu 2365f692eeaSzliu /* t is in [big, INF] */ 2375f692eeaSzliu else 2385f692eeaSzliu { big+small; /* raise inexact flag */ 2395f692eeaSzliu t = zero; } 2405f692eeaSzliu } 2415f692eeaSzliu /* end of argument reduction */ 2425f692eeaSzliu 2435f692eeaSzliu /* compute atan(t) for t in [-.4375, .4375] */ 2445f692eeaSzliu z = t*t; 24537736ad6Szliu #if defined(vax)||defined(tahoe) 2465f692eeaSzliu z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+ 2475f692eeaSzliu z*(a9+z*(a10+z*(a11+z*a12)))))))))))); 24837736ad6Szliu #else /* defined(vax)||defined(tahoe) */ 2495f692eeaSzliu z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+ 2505f692eeaSzliu z*(a9+z*(a10+z*a11))))))))))); 25137736ad6Szliu #endif /* defined(vax)||defined(tahoe) */ 2525f692eeaSzliu z = lo - z; z += t; z += hi; 2535f692eeaSzliu 2545f692eeaSzliu return(copysign((signx>zero)?z:PI-z,signy)); 2555f692eeaSzliu } 256