1 /*-
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)lgamma.c	5.11 (Berkeley) 12/16/92";
10 #endif /* not lint */
11 
12 /*
13  * Coded by Peter McIlroy, Nov 1992;
14  *
15  * The financial support of UUNET Communications Services is greatfully
16  * acknowledged.
17  */
18 
19 #include <math.h>
20 #include <errno.h>
21 
22 #include "mathimpl.h"
23 
24 /* Log gamma function.
25  * Error:  x > 0 error < 1.3ulp.
26  *	   x > 4, error < 1ulp.
27  *	   x > 9, error < .6ulp.
28  * 	   x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
29  * Method:
30  *	x > 6:
31  *		Use the asymptotic expansion (Stirling's Formula)
32  *	0 < x < 6:
33  *		Use gamma(x+1) = x*gamma(x) for argument reduction.
34  *		Use rational approximation in
35  *		the range 1.2, 2.5
36  *		Two approximations are used, one centered at the
37  *		minimum to ensure monotonicity; one centered at 2
38  *		to maintain small relative error.
39  *	x < 0:
40  *		Use the reflection formula,
41  *		G(1-x)G(x) = PI/sin(PI*x)
42  * Special values:
43  *	non-positive integer	returns +Inf.
44  *	NaN			returns NaN
45 */
46 static int endian;
47 #if defined(vax) || defined(tahoe)
48 #define _IEEE		0
49 /* double and float have same size exponent field */
50 #define TRUNC(x)	x = (double) (float) (x)
51 #else
52 #define _IEEE		1
53 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
54 #define infnan(x)	0.0
55 #endif
56 
57 extern double log1p(double);
58 static double small_lgam(double);
59 static double large_lgam(double);
60 static double neg_lgam(double);
61 static double zero = 0.0, one = 1.0;
62 int signgam;
63 
64 #define UNDERFL (1e-1020 * 1e-1020)
65 
66 #define LEFT	(1.0 - (x0 + .25))
67 #define RIGHT	(x0 - .218)
68 /*
69 /* Constants for approximation in [1.244,1.712]
70 */
71 #define x0	0.461632144968362356785
72 #define x0_lo	-.000000000000000015522348162858676890521
73 #define a0_hi	-0.12148629128932952880859
74 #define a0_lo	.0000000007534799204229502
75 #define r0	-2.771227512955130520e-002
76 #define r1	-2.980729795228150847e-001
77 #define r2	-3.257411333183093394e-001
78 #define r3	-1.126814387531706041e-001
79 #define r4	-1.129130057170225562e-002
80 #define r5	-2.259650588213369095e-005
81 #define s0	 1.714457160001714442e+000
82 #define s1	 2.786469504618194648e+000
83 #define s2	 1.564546365519179805e+000
84 #define s3	 3.485846389981109850e-001
85 #define s4	 2.467759345363656348e-002
86 /*
87  * Constants for approximation in [1.71, 2.5]
88 */
89 #define a1_hi	4.227843350984671344505727574870e-01
90 #define a1_lo	4.670126436531227189e-18
91 #define p0	3.224670334241133695662995251041e-01
92 #define p1	3.569659696950364669021382724168e-01
93 #define p2	1.342918716072560025853732668111e-01
94 #define p3	1.950702176409779831089963408886e-02
95 #define p4	8.546740251667538090796227834289e-04
96 #define q0	1.000000000000000444089209850062e+00
97 #define q1	1.315850076960161985084596381057e+00
98 #define q2	6.274644311862156431658377186977e-01
99 #define q3	1.304706631926259297049597307705e-01
100 #define q4	1.102815279606722369265536798366e-02
101 #define q5	2.512690594856678929537585620579e-04
102 #define q6	-1.003597548112371003358107325598e-06
103 /*
104  * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
105 */
106 #define lns2pi	.418938533204672741780329736405
107 #define pb0	 8.33333333333333148296162562474e-02
108 #define pb1	-2.77777777774548123579378966497e-03
109 #define pb2	 7.93650778754435631476282786423e-04
110 #define pb3	-5.95235082566672847950717262222e-04
111 #define pb4	 8.41428560346653702135821806252e-04
112 #define pb5	-1.89773526463879200348872089421e-03
113 #define pb6	 5.69394463439411649408050664078e-03
114 #define pb7	-1.44705562421428915453880392761e-02
115 
116 double
117 lgamma(double x)
118 {
119 	double r;
120 
121 	signgam = 1;
122 	endian = ((*(int *) &one)) ? 1 : 0;
123 
124 	if (!finite(x))
125 		if (_IEEE)
126 			return (x+x);
127 		else return (infnan(EDOM));
128 
129 	if (x > 6 + RIGHT) {
130 		r = large_lgam(x);
131 		return (r);
132 	} else if (x > 1e-16)
133 		return (small_lgam(x));
134 	else if (x > -1e-16) {
135 		if (x < 0)
136 			signgam = -1, x = -x;
137 		return (-log(x));
138 	} else
139 		return (neg_lgam(x));
140 }
141 
142 static double
143 large_lgam(double x)
144 {
145 	double z, p, x1;
146 	int i;
147 	struct Double t, u, v;
148 	u = log__D(x);
149 	u.a -= 1.0;
150 	if (x > 1e15) {
151 		v.a = x - 0.5;
152 		TRUNC(v.a);
153 		v.b = (x - v.a) - 0.5;
154 		t.a = u.a*v.a;
155 		t.b = x*u.b + v.b*u.a;
156 		if (_IEEE == 0 && !finite(t.a))
157 			return(infnan(ERANGE));
158 		return(t.a + t.b);
159 	}
160 	x1 = 1./x;
161 	z = x1*x1;
162 	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
163 					/* error in approximation = 2.8e-19 */
164 
165 	p = p*x1;			/* error < 2.3e-18 absolute */
166 					/* 0 < p < 1/64 (at x = 5.5) */
167 	v.a = x = x - 0.5;
168 	TRUNC(v.a);			/* truncate v.a to 26 bits. */
169 	v.b = x - v.a;
170 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
171 	t.b = v.b*u.a + x*u.b;
172 	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */
173 	return (t.a + t.b);
174 }
175 
176 static double
177 small_lgam(double x)
178 {
179 	int x_int;
180 	double y, z, t, r = 0, p, q, hi, lo;
181 	struct Double rr;
182 	x_int = (x + .5);
183 	y = x - x_int;
184 	if (x_int <= 2 && y > RIGHT) {
185 		t = y - x0;
186 		y--; x_int++;
187 		goto CONTINUE;
188 	} else if (y < -LEFT) {
189 		t = y +(1.0-x0);
190 CONTINUE:
191 		z = t - x0_lo;
192 		p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
193 		q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
194 		r = t*(z*(p/q) - x0_lo);
195 		t = .5*t*t;
196 		z = 1.0;
197 		switch (x_int) {
198 		case 6:	z  = (y + 5);
199 		case 5:	z *= (y + 4);
200 		case 4:	z *= (y + 3);
201 		case 3:	z *= (y + 2);
202 			rr = log__D(z);
203 			rr.b += a0_lo; rr.a += a0_hi;
204 			return(((r+rr.b)+t+rr.a));
205 		case 2: return(((r+a0_lo)+t)+a0_hi);
206 		case 0: r -= log1p(x);
207 		default: rr = log__D(x);
208 			rr.a -= a0_hi; rr.b -= a0_lo;
209 			return(((r - rr.b) + t) - rr.a);
210 		}
211 	} else {
212 		p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
213 		q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
214 		p = p*(y/q);
215 		t = (double)(float) y;
216 		z = y-t;
217 		hi = (double)(float) (p+a1_hi);
218 		lo = a1_hi - hi; lo += p; lo += a1_lo;
219 		r = lo*y + z*hi;	/* q + r = y*(a0+p/q) */
220 		q = hi*t;
221 		z = 1.0;
222 		switch (x_int) {
223 		case 6:	z  = (y + 5);
224 		case 5:	z *= (y + 4);
225 		case 4:	z *= (y + 3);
226 		case 3:	z *= (y + 2);
227 			rr = log__D(z);
228 			r += rr.b; r += q;
229 			return(rr.a + r);
230 		case 2:	return (q+ r);
231 		case 0: rr = log__D(x);
232 			r -= rr.b; r -= log1p(x);
233 			r += q; r-= rr.a;
234 			return(r);
235 		default: rr = log__D(x);
236 			r -= rr.b;
237 			q -= rr.a;
238 			return (r+q);
239 		}
240 	}
241 }
242 
243 static double
244 neg_lgam(double x)
245 {
246 	int xi;
247 	double y, z, one = 1.0, zero = 0.0;
248 	extern double gamma();
249 
250 	/* avoid destructive cancellation as much as possible */
251 	if (x > -170) {
252 		xi = x;
253 		if (xi == x)
254 			if (_IEEE)
255 				return(one/zero);
256 			else
257 				return(infnan(ERANGE));
258 		y = gamma(x);
259 		if (y < 0)
260 			y = -y, signgam = -1;
261 		return (log(y));
262 	}
263 	z = floor(x + .5);
264 	if (z == x) {		/* convention: G(-(integer)) -> +Inf */
265 		if (_IEEE)
266 			return (one/zero);
267 		else
268 			return (infnan(ERANGE));
269 	}
270 	y = .5*ceil(x);
271 	if (y == ceil(y))
272 		signgam = -1;
273 	x = -x;
274 	z = fabs(x + z);	/* 0 < z <= .5 */
275 	if (z < .25)
276 		z = sin(M_PI*z);
277 	else
278 		z = cos(M_PI*(0.5-z));
279 	z = log(M_PI/(z*x));
280 	y = large_lgam(x);
281 	return (z - y);
282 }
283