1 /* 2 * Copyright (c) 1985 Regents of the University of California. 3 * All rights reserved. The Berkeley software License Agreement 4 * specifies the terms and conditions for redistribution. 5 */ 6 7 #ifndef lint 8 static char sccsid[] = "@(#)lgamma.c 5.3 (Berkeley) 09/22/88"; 9 #endif /* not lint */ 10 11 /* 12 C program for floating point log Gamma function 13 14 lgamma(x) computes the log of the absolute 15 value of the Gamma function. 16 The sign of the Gamma function is returned in the 17 external quantity signgam. 18 19 The coefficients for expansion around zero 20 are #5243 from Hart & Cheney; for expansion 21 around infinity they are #5404. 22 23 Calls log, floor and sin. 24 */ 25 26 #include "mathimpl.h" 27 #if defined(vax)||defined(tahoe) 28 #include <errno.h> 29 #endif /* defined(vax)||defined(tahoe) */ 30 31 int signgam = 0; 32 static const double goobie = 0.9189385332046727417803297; /* log(2*pi)/2 */ 33 static const double pi = 3.1415926535897932384626434; 34 35 #define M 6 36 #define N 8 37 static const double p1[] = { 38 0.83333333333333101837e-1, 39 -.277777777735865004e-2, 40 0.793650576493454e-3, 41 -.5951896861197e-3, 42 0.83645878922e-3, 43 -.1633436431e-2, 44 }; 45 static const double p2[] = { 46 -.42353689509744089647e5, 47 -.20886861789269887364e5, 48 -.87627102978521489560e4, 49 -.20085274013072791214e4, 50 -.43933044406002567613e3, 51 -.50108693752970953015e2, 52 -.67449507245925289918e1, 53 0.0, 54 }; 55 static const double q2[] = { 56 -.42353689509744090010e5, 57 -.29803853309256649932e4, 58 0.99403074150827709015e4, 59 -.15286072737795220248e4, 60 -.49902852662143904834e3, 61 0.18949823415702801641e3, 62 -.23081551524580124562e2, 63 0.10000000000000000000e1, 64 }; 65 66 static double pos(), neg(), asym(); 67 68 double 69 lgamma(arg) 70 double arg; 71 { 72 73 signgam = 1.; 74 if(arg <= 0.) return(neg(arg)); 75 if(arg > 8.) return(asym(arg)); 76 return(log(pos(arg))); 77 } 78 79 static double 80 asym(arg) 81 double arg; 82 { 83 double n, argsq; 84 int i; 85 86 argsq = 1./(arg*arg); 87 for(n=0,i=M-1; i>=0; i--){ 88 n = n*argsq + p1[i]; 89 } 90 return((arg-.5)*log(arg) - arg + goobie + n/arg); 91 } 92 93 static double 94 neg(arg) 95 double arg; 96 { 97 double t; 98 99 arg = -arg; 100 /* 101 * to see if arg were a true integer, the old code used the 102 * mathematically correct observation: 103 * sin(n*pi) = 0 <=> n is an integer. 104 * but in finite precision arithmetic, sin(n*PI) will NEVER 105 * be zero simply because n*PI is a rational number. hence 106 * it failed to work with our newer, more accurate sin() 107 * which uses true pi to do the argument reduction... 108 * temp = sin(pi*arg); 109 */ 110 t = floor(arg); 111 if (arg - t > 0.5e0) 112 t += 1.e0; /* t := integer nearest arg */ 113 #if defined(vax)||defined(tahoe) 114 if (arg == t) { 115 return(infnan(ERANGE)); /* +INF */ 116 } 117 #endif /* defined(vax)||defined(tahoe) */ 118 signgam = (int) (t - 2*floor(t/2)); /* signgam = 1 if t was odd, */ 119 /* 0 if t was even */ 120 signgam = signgam - 1 + signgam; /* signgam = 1 if t was odd, */ 121 /* -1 if t was even */ 122 t = arg - t; /* -0.5 <= t <= 0.5 */ 123 if (t < 0.e0) { 124 t = -t; 125 signgam = -signgam; 126 } 127 return(-log(arg*pos(arg)*sin(pi*t)/pi)); 128 } 129 130 static double 131 pos(arg) 132 double arg; 133 { 134 double n, d, s; 135 register i; 136 137 if(arg < 2.) return(pos(arg+1.)/arg); 138 if(arg > 3.) return((arg-1.)*pos(arg-1.)); 139 140 s = arg - 2.; 141 for(n=0,d=0,i=N-1; i>=0; i--){ 142 n = n*s + p2[i]; 143 d = d*s + q2[i]; 144 } 145 return(n/d); 146 } 147