1 /*- 2 * Copyright (c) 1985 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.proprietary.c% 6 */ 7 8 #ifndef lint 9 static char sccsid[] = "@(#)lgamma.c 5.4 (Berkeley) 04/20/91"; 10 #endif /* not lint */ 11 12 /* 13 C program for floating point log Gamma function 14 15 lgamma(x) computes the log of the absolute 16 value of the Gamma function. 17 The sign of the Gamma function is returned in the 18 external quantity signgam. 19 20 The coefficients for expansion around zero 21 are #5243 from Hart & Cheney; for expansion 22 around infinity they are #5404. 23 24 Calls log, floor and sin. 25 */ 26 27 #include "mathimpl.h" 28 #if defined(vax)||defined(tahoe) 29 #include <errno.h> 30 #endif /* defined(vax)||defined(tahoe) */ 31 32 int signgam = 0; 33 static const double goobie = 0.9189385332046727417803297; /* log(2*pi)/2 */ 34 static const double pi = 3.1415926535897932384626434; 35 36 #define M 6 37 #define N 8 38 static const double p1[] = { 39 0.83333333333333101837e-1, 40 -.277777777735865004e-2, 41 0.793650576493454e-3, 42 -.5951896861197e-3, 43 0.83645878922e-3, 44 -.1633436431e-2, 45 }; 46 static const double p2[] = { 47 -.42353689509744089647e5, 48 -.20886861789269887364e5, 49 -.87627102978521489560e4, 50 -.20085274013072791214e4, 51 -.43933044406002567613e3, 52 -.50108693752970953015e2, 53 -.67449507245925289918e1, 54 0.0, 55 }; 56 static const double q2[] = { 57 -.42353689509744090010e5, 58 -.29803853309256649932e4, 59 0.99403074150827709015e4, 60 -.15286072737795220248e4, 61 -.49902852662143904834e3, 62 0.18949823415702801641e3, 63 -.23081551524580124562e2, 64 0.10000000000000000000e1, 65 }; 66 67 static double pos(), neg(), asym(); 68 69 double 70 lgamma(arg) 71 double arg; 72 { 73 74 signgam = 1.; 75 if(arg <= 0.) return(neg(arg)); 76 if(arg > 8.) return(asym(arg)); 77 return(log(pos(arg))); 78 } 79 80 static double 81 asym(arg) 82 double arg; 83 { 84 double n, argsq; 85 int i; 86 87 argsq = 1./(arg*arg); 88 for(n=0,i=M-1; i>=0; i--){ 89 n = n*argsq + p1[i]; 90 } 91 return((arg-.5)*log(arg) - arg + goobie + n/arg); 92 } 93 94 static double 95 neg(arg) 96 double arg; 97 { 98 double t; 99 100 arg = -arg; 101 /* 102 * to see if arg were a true integer, the old code used the 103 * mathematically correct observation: 104 * sin(n*pi) = 0 <=> n is an integer. 105 * but in finite precision arithmetic, sin(n*PI) will NEVER 106 * be zero simply because n*PI is a rational number. hence 107 * it failed to work with our newer, more accurate sin() 108 * which uses true pi to do the argument reduction... 109 * temp = sin(pi*arg); 110 */ 111 t = floor(arg); 112 if (arg - t > 0.5e0) 113 t += 1.e0; /* t := integer nearest arg */ 114 #if defined(vax)||defined(tahoe) 115 if (arg == t) { 116 return(infnan(ERANGE)); /* +INF */ 117 } 118 #endif /* defined(vax)||defined(tahoe) */ 119 signgam = (int) (t - 2*floor(t/2)); /* signgam = 1 if t was odd, */ 120 /* 0 if t was even */ 121 signgam = signgam - 1 + signgam; /* signgam = 1 if t was odd, */ 122 /* -1 if t was even */ 123 t = arg - t; /* -0.5 <= t <= 0.5 */ 124 if (t < 0.e0) { 125 t = -t; 126 signgam = -signgam; 127 } 128 return(-log(arg*pos(arg)*sin(pi*t)/pi)); 129 } 130 131 static double 132 pos(arg) 133 double arg; 134 { 135 double n, d, s; 136 register i; 137 138 if(arg < 2.) return(pos(arg+1.)/arg); 139 if(arg > 3.) return((arg-1.)*pos(arg-1.)); 140 141 s = arg - 2.; 142 for(n=0,d=0,i=N-1; i>=0; i--){ 143 n = n*s + p2[i]; 144 d = d*s + q2[i]; 145 } 146 return(n/d); 147 } 148