xref: /original-bsd/lib/libm/common_source/log.c (revision 02e832b2)
1 /*
2  * Copyright (c) 1992 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #ifndef lint
9 static char sccsid[] = "@(#)log.c	5.9 (Berkeley) 12/16/92";
10 #endif /* not lint */
11 
12 #include <math.h>
13 #include <errno.h>
14 
15 #include "log_table.h"
16 #include "mathimpl.h"
17 
18 /* Table-driven natural logarithm.
19  *
20  * This code was derived, with minor modifications, from:
21  *	Peter Tang, "Table-Driven Implementation of the
22  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
23  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
24  *
25  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
26  * where F = j/128 for j an integer in [0, 128].
27  *
28  * log(2^m) = log2_hi*m + log2_tail*m
29  * since m is an integer, the dominant term is exact.
30  * m has at most 10 digits (for subnormal numbers),
31  * and log2_hi has 11 trailing zero bits.
32  *
33  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
34  * logF_hi[] + 512 is exact.
35  *
36  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
37  * the leading term is calculated to extra precision in two
38  * parts, the larger of which adds exactly to the dominant
39  * m and F terms.
40  * There are two cases:
41  *	1. when m, j are non-zero (m | j), use absolute
42  *	   precision for the leading term.
43  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
44  *	   In this case, use a relative precision of 24 bits.
45  * (This is done differently in the original paper)
46  *
47  * Special cases:
48  *	0	return signalling -Inf
49  *	neg	return signalling NaN
50  *	+Inf	return +Inf
51 */
52 
53 #if defined(vax) || defined(tahoe)
54 #define _IEEE		0
55 #define TRUNC(x)	x = (double) (float) (x)
56 #else
57 #define _IEEE	1
58 #define endian		(((*(int *) &one)) ? 1 : 0)
59 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
60 #define infnan(x)	0.0
61 #endif
62 
63 double
64 #ifdef _ANSI_SOURCE
65 log(double x)
66 #else
67 log(x) double x;
68 #endif
69 {
70 	int m, j;
71 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
72 	double logb(), ldexp();
73 	volatile double u1;
74 
75 	/* Catch special cases */
76 	if (x <= 0)
77 		if (_IEEE && x == zero)	/* log(0) = -Inf */
78 			return (-one/zero);
79 		else if (_IEEE)		/* log(neg) = NaN */
80 			return (zero/zero);
81 		else if (x == zero)	/* NOT REACHED IF _IEEE */
82 			return (infnan(-ERANGE));
83 		else
84 			return (infnan(EDOM));
85 	else if (!finite(x))
86 		if (_IEEE)		/* x = NaN, Inf */
87 			return (x+x);
88 		else
89 			return (infnan(ERANGE));
90 
91 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
92 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
93 
94 	m = logb(x);
95 	g = ldexp(x, -m);
96 	if (_IEEE && m == -1022) {
97 		j = logb(g), m += j;
98 		g = ldexp(g, -j);
99 	}
100 	j = N*(g-1) + .5;
101 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
102 	f = g - F;
103 
104 	/* Approximate expansion for log(1+f/F) ~= u + q */
105 	g = 1/(2*F+f);
106 	u = 2*f*g;
107 	v = u*u;
108 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
109 
110     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
111      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
112      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
113     */
114 	if (m | j)
115 		u1 = u + 513, u1 -= 513;
116 
117     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
118      * 		u1 = u to 24 bits.
119     */
120 	else
121 		u1 = u, TRUNC(u1);
122 	u2 = (2.0*(f - F*u1) - u1*f) * g;
123 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
124 
125 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
126 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
127 	/* (exact) + (tiny)						*/
128 
129 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
130 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
131 	u2 += logF_tail[N]*m;
132 	return (u1 + u2);
133 }
134 
135 /* Extra precision variant, returning
136  * struct {double a, b;}; log(x) = a+b to 63 bits, with
137  * a is rounded to 26 bits.
138  */
139 struct Double
140 #ifdef _ANSI_SOURCE
141 log__D(double x)
142 #else
143 log__D(x) double x;
144 #endif
145 {
146 	int m, j;
147 	double F, f, g, q, u, v, u2;
148 	double logb(), ldexp();
149 	volatile double u1;
150 	struct Double r;
151 
152 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
153 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
154 
155 	m = logb(x);
156 	g = ldexp(x, -m);
157 	if (_IEEE && m == -1022) {
158 		j = logb(g), m += j;
159 		g = ldexp(g, -j);
160 	}
161 	j = N*(g-1) + .5;
162 	F = (1.0/N) * j + 1;
163 	f = g - F;
164 
165 	g = 1/(2*F+f);
166 	u = 2*f*g;
167 	v = u*u;
168 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
169 	if (m | j)
170 		u1 = u + 513, u1 -= 513;
171 	else
172 		u1 = u, TRUNC(u1);
173 	u2 = (2.0*(f - F*u1) - u1*f) * g;
174 
175 	u1 += m*logF_head[N] + logF_head[j];
176 
177 	u2 +=  logF_tail[j]; u2 += q;
178 	u2 += logF_tail[N]*m;
179 	r.a = u1 + u2;			/* Only difference is here */
180 	TRUNC(r.a);
181 	r.b = (u1 - r.a) + u2;
182 	return (r);
183 }
184