xref: /original-bsd/lib/libm/vax/sqrt.s (revision 6d57652c)
1# Copyright (c) 1985 Regents of the University of California.
2# All rights reserved.
3#
4# %sccs.include.redist.sh%
5#
6#	@(#)sqrt.s	5.4 (Berkeley) 10/09/90
7#
8	.data
9	.align	2
10_sccsid:
11.asciz	"@(#)sqrt.s	1.1 (Berkeley) 8/21/85; 5.4 (ucb.elefunt) 10/09/90"
12
13/*
14 * double sqrt(arg)   revised August 15,1982
15 * double arg;
16 * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
17 * if arg is a reserved operand it is returned as it is
18 * W. Kahan's magic square root
19 * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
20 *
21 * entry points:_d_sqrt		address of double arg is on the stack
22 *		_sqrt		double arg is on the stack
23 */
24	.text
25	.align	1
26	.globl	_sqrt
27	.globl	_d_sqrt
28	.globl	libm$dsqrt_r5
29	.set	EDOM,33
30
31_d_sqrt:
32	.word	0x003c          # save r5,r4,r3,r2
33	movq	*4(ap),r0
34	jmp  	dsqrt2
35_sqrt:
36	.word	0x003c          # save r5,r4,r3,r2
37	movq    4(ap),r0
38dsqrt2:	bicw3	$0x807f,r0,r2	# check exponent of input
39	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
40	bsbb	libm$dsqrt_r5
41noexp:	ret
42
43/* **************************** internal procedure */
44
45libm$dsqrt_r5:			# ENTRY POINT FOR cdabs and cdsqrt
46				# returns double square root scaled by
47				# 2^r6
48
49	movd	r0,r4
50	jleq	nonpos		# argument is not positive
51	movzwl	r4,r2
52	ashl	$-1,r2,r0
53	addw2	$0x203c,r0	# r0 has magic initial approximation
54/*
55 * Do two steps of Heron's rule
56 * ((arg/guess) + guess) / 2 = better guess
57 */
58	divf3	r0,r4,r2
59	addf2	r2,r0
60	subw2	$0x80,r0	# divide by two
61
62	divf3	r0,r4,r2
63	addf2	r2,r0
64	subw2	$0x80,r0	# divide by two
65
66/* Scale argument and approximation to prevent over/underflow */
67
68	bicw3	$0x807f,r4,r1
69	subw2	$0x4080,r1		# r1 contains scaling factor
70	subw2	r1,r4
71	movl	r0,r2
72	subw2	r1,r2
73
74/* Cubic step
75 *
76 * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
77 * a is approximation, and n is the original argument.
78 * (let s be scale factor in the following comments)
79 */
80	clrl	r1
81	clrl	r3
82	muld2	r0,r2			# r2:r3 = a*a/s
83	subd2	r2,r4			# r4:r5 = n/s - a*a/s
84	addw2	$0x100,r2		# r2:r3 = 4*a*a/s
85	addd2	r4,r2			# r2:r3 = n/s + 3*a*a/s
86	muld2	r0,r4			# r4:r5 = a*n/s - a*a*a/s
87	divd2	r2,r4			# r4:r5 = a*(n-a*a)/(n+3*a*a)
88	addw2	$0x80,r4		# r4:r5 = 2*a*(n-a*a)/(n+3*a*a)
89	addd2	r4,r0			# r0:r1 = a + 2*a*(n-a*a)/(n+3*a*a)
90	rsb				# DONE!
91nonpos:
92	jneq	negarg
93	ret			# argument and root are zero
94negarg:
95	pushl	$EDOM
96	calls	$1,_infnan	# generate the reserved op fault
97	ret
98