xref: /original-bsd/share/doc/papers/sysperf/a1.t (revision a1c2194a)
Copyright (c) 1985 The Regents of the University of California.
All rights reserved.

%sccs.include.redist.man%

@(#)a1.t 5.1 (Berkeley) 04/17/91

.nr H2 1
..
.. .bp
\s+2Appendix A - Benchmark sources\s-2

The programs shown here run under 4.2 with only routines from the standard libraries. When run under 4.1 they were augmented with a getpagesize routine and a copy of the random function from the C library. The vforks and vexecs programs are constructed from the forks and execs programs, respectively, by substituting calls to fork with calls to vfork.

syscall

.vS /* * System call overhead benchmark. */ main(argc, argv) char *argv[]; { register int ncalls; if (argc < 2) { printf("usage: %s #syscalls\n", argv[0]); exit(1); } ncalls = atoi(argv[1]); while (ncalls-- > 0) (void) getpid(); } .vE

csw

.vS /* * Context switching benchmark. * * Force system to context switch 2*nsigs * times by forking and exchanging signals. * To calculate system overhead for a context * switch, the signocsw program must be run * with nsigs. Overhead is then estimated by * t1 = time csw <n> * t2 = time signocsw <n> * overhead = t1 - 2 * t2; */ #include <signal.h> int sigsub(); int otherpid; int nsigs; main(argc, argv) char *argv[]; { int pid; if (argc < 2) { printf("usage: %s nsignals\n", argv[0]); exit(1); } nsigs = atoi(argv[1]); signal(SIGALRM, sigsub); otherpid = getpid(); pid = fork(); if (pid != 0) { otherpid = pid; kill(otherpid, SIGALRM); } for (;;) sigpause(0); } sigsub() { signal(SIGALRM, sigsub); kill(otherpid, SIGALRM); if (--nsigs <= 0) exit(0); } .vE

signocsw

.vS /* * Signal without context switch benchmark. */ #include <signal.h> int pid; int nsigs; int sigsub(); main(argc, argv) char *argv[]; { register int i; if (argc < 2) { printf("usage: %s nsignals\n", argv[0]); exit(1); } nsigs = atoi(argv[1]); signal(SIGALRM, sigsub); pid = getpid(); for (i = 0; i < nsigs; i++) kill(pid, SIGALRM); } sigsub() { signal(SIGALRM, sigsub); } .vE

pipeself

.vS /* * IPC benchmark, * write to self using pipes. */ main(argc, argv) char *argv[]; { char buf[512]; int fd[2], msgsize; register int i, iter; if (argc < 3) { printf("usage: %s iterations message-size\n", argv[0]); exit(1); } argc--, argv++; iter = atoi(*argv); argc--, argv++; msgsize = atoi(*argv); if (msgsize > sizeof (buf) || msgsize <= 0) { printf("%s: Bad message size.\n", *argv); exit(2); } if (pipe(fd) < 0) { perror("pipe"); exit(3); } for (i = 0; i < iter; i++) { write(fd[1], buf, msgsize); read(fd[0], buf, msgsize); } } .vE

pipediscard

.vS /* * IPC benchmarkl, * write and discard using pipes. */ main(argc, argv) char *argv[]; { char buf[512]; int fd[2], msgsize; register int i, iter; if (argc < 3) { printf("usage: %s iterations message-size\n", argv[0]); exit(1); } argc--, argv++; iter = atoi(*argv); argc--, argv++; msgsize = atoi(*argv); if (msgsize > sizeof (buf) || msgsize <= 0) { printf("%s: Bad message size.\n", *argv); exit(2); } if (pipe(fd) < 0) { perror("pipe"); exit(3); } if (fork() == 0) for (i = 0; i < iter; i++) read(fd[0], buf, msgsize); else for (i = 0; i < iter; i++) write(fd[1], buf, msgsize); } .vE

pipeback

.vS /* * IPC benchmark, * read and reply using pipes. * * Process forks and exchanges messages * over a pipe in a request-response fashion. */ main(argc, argv) char *argv[]; { char buf[512]; int fd[2], fd2[2], msgsize; register int i, iter; if (argc < 3) { printf("usage: %s iterations message-size\n", argv[0]); exit(1); } argc--, argv++; iter = atoi(*argv); argc--, argv++; msgsize = atoi(*argv); if (msgsize > sizeof (buf) || msgsize <= 0) { printf("%s: Bad message size.\n", *argv); exit(2); } if (pipe(fd) < 0) { perror("pipe"); exit(3); } if (pipe(fd2) < 0) { perror("pipe"); exit(3); } if (fork() == 0) for (i = 0; i < iter; i++) { read(fd[0], buf, msgsize); write(fd2[1], buf, msgsize); } else for (i = 0; i < iter; i++) { write(fd[1], buf, msgsize); read(fd2[0], buf, msgsize); } } .vE

forks

.vS /* * Benchmark program to calculate fork+wait * overhead (approximately). Process * forks and exits while parent waits. * The time to run this program is used * in calculating exec overhead. */ main(argc, argv) char *argv[]; { register int nforks, i; char *cp; int pid, child, status, brksize; if (argc < 2) { printf("usage: %s number-of-forks sbrk-size\n", argv[0]); exit(1); } nforks = atoi(argv[1]); if (nforks < 0) { printf("%s: bad number of forks\n", argv[1]); exit(2); } brksize = atoi(argv[2]); if (brksize < 0) { printf("%s: bad size to sbrk\n", argv[2]); exit(3); } cp = (char *)sbrk(brksize); if ((int)cp == -1) { perror("sbrk"); exit(4); } for (i = 0; i < brksize; i += 1024) cp[i] = i; while (nforks-- > 0) { child = fork(); if (child == -1) { perror("fork"); exit(-1); } if (child == 0) _exit(-1); while ((pid = wait(&status)) != -1 && pid != child) ; } exit(0); } .vE

execs

.vS /* * Benchmark program to calculate exec * overhead (approximately). Process * forks and execs "null" test program. * The time to run the fork program should * then be deducted from this one to * estimate the overhead for the exec. */ main(argc, argv) char *argv[]; { register int nexecs, i; char *cp, *sbrk(); int pid, child, status, brksize; if (argc < 3) { printf("usage: %s number-of-execs sbrk-size job-name\n", argv[0]); exit(1); } nexecs = atoi(argv[1]); if (nexecs < 0) { printf("%s: bad number of execs\n", argv[1]); exit(2); } brksize = atoi(argv[2]); if (brksize < 0) { printf("%s: bad size to sbrk\n", argv[2]); exit(3); } cp = sbrk(brksize); if ((int)cp == -1) { perror("sbrk"); exit(4); } for (i = 0; i < brksize; i += 1024) cp[i] = i; while (nexecs-- > 0) { child = fork(); if (child == -1) { perror("fork"); exit(-1); } if (child == 0) { execv(argv[3], argv); perror("execv"); _exit(-1); } while ((pid = wait(&status)) != -1 && pid != child) ; } exit(0); } .vE

nulljob

.vS /* * Benchmark "null job" program. */ main(argc, argv) char *argv[]; { exit(0); } .vE

bigjob

.vS /* * Benchmark "null big job" program. */ /* 250 here is intended to approximate vi's text+data size */ char space[1024 * 250] = "force into data segment"; main(argc, argv) char *argv[]; { exit(0); } .vE .bp

seqpage

.vS /* * Sequential page access benchmark. */ #include <sys/vadvise.h> char *valloc(); main(argc, argv) char *argv[]; { register i, niter; register char *pf, *lastpage; int npages = 4096, pagesize, vflag = 0; char *pages, *name; name = argv[0]; argc--, argv++; again: if (argc < 1) { usage: printf("usage: %s [ -v ] [ -p #pages ] niter\n", name); exit(1); } if (strcmp(*argv, "-p") == 0) { argc--, argv++; if (argc < 1) goto usage; npages = atoi(*argv); if (npages <= 0) { printf("%s: Bad page count.\n", *argv); exit(2); } argc--, argv++; goto again; } if (strcmp(*argv, "-v") == 0) { argc--, argv++; vflag++; goto again; } niter = atoi(*argv); pagesize = getpagesize(); pages = valloc(npages * pagesize); if (pages == (char *)0) { printf("Can't allocate %d pages (%2.1f megabytes).\n", npages, (npages * pagesize) / (1024. * 1024.)); exit(3); } lastpage = pages + (npages * pagesize); if (vflag) vadvise(VA_SEQL); for (i = 0; i < niter; i++) for (pf = pages; pf < lastpage; pf += pagesize) *pf = 1; } .vE

randpage

.vS /* * Random page access benchmark. */ #include <sys/vadvise.h> char *valloc(); int rand(); main(argc, argv) char *argv[]; { register int npages = 4096, pagesize, pn, i, niter; int vflag = 0, debug = 0; char *pages, *name; name = argv[0]; argc--, argv++; again: if (argc < 1) { usage: printf("usage: %s [ -d ] [ -v ] [ -p #pages ] niter\n", name); exit(1); } if (strcmp(*argv, "-p") == 0) { argc--, argv++; if (argc < 1) goto usage; npages = atoi(*argv); if (npages <= 0) { printf("%s: Bad page count.\n", *argv); exit(2); } argc--, argv++; goto again; } if (strcmp(*argv, "-v") == 0) { argc--, argv++; vflag++; goto again; } if (strcmp(*argv, "-d") == 0) { argc--, argv++; debug++; goto again; } niter = atoi(*argv); pagesize = getpagesize(); pages = valloc(npages * pagesize); if (pages == (char *)0) { printf("Can't allocate %d pages (%2.1f megabytes).\n", npages, (npages * pagesize) / (1024. * 1024.)); exit(3); } if (vflag) vadvise(VA_ANOM); for (i = 0; i < niter; i++) { pn = random() % npages; if (debug) printf("touch page %d\n", pn); pages[pagesize * pn] = 1; } } .vE

gausspage

.vS /* * Random page access with * a gaussian distribution. * * Allocate a large (zero fill on demand) address * space and fault the pages in a random gaussian * order. */ float sqrt(), log(), rnd(), cos(), gauss(); char *valloc(); int rand(); main(argc, argv) char *argv[]; { register int pn, i, niter, delta; register char *pages; float sd = 10.0; int npages = 4096, pagesize, debug = 0; char *name; name = argv[0]; argc--, argv++; again: if (argc < 1) { usage: printf( "usage: %s [ -d ] [ -p #pages ] [ -s standard-deviation ] iterations\n", name); exit(1); } if (strcmp(*argv, "-s") == 0) { argc--, argv++; if (argc < 1) goto usage; sscanf(*argv, "%f", &sd); if (sd <= 0) { printf("%s: Bad standard deviation.\n", *argv); exit(2); } argc--, argv++; goto again; } if (strcmp(*argv, "-p") == 0) { argc--, argv++; if (argc < 1) goto usage; npages = atoi(*argv); if (npages <= 0) { printf("%s: Bad page count.\n", *argv); exit(2); } argc--, argv++; goto again; } if (strcmp(*argv, "-d") == 0) { argc--, argv++; debug++; goto again; } niter = atoi(*argv); pagesize = getpagesize(); pages = valloc(npages*pagesize); if (pages == (char *)0) { printf("Can't allocate %d pages (%2.1f megabytes).\n", npages, (npages*pagesize) / (1024. * 1024.)); exit(3); } pn = 0; for (i = 0; i < niter; i++) { delta = gauss(sd, 0.0); while (pn + delta < 0 || pn + delta > npages) delta = gauss(sd, 0.0); pn += delta; if (debug) printf("touch page %d\n", pn); else pages[pn * pagesize] = 1; } } float gauss(sd, mean) float sd, mean; { register float qa, qb; qa = sqrt(log(rnd()) * -2.0); qb = 3.14159 * rnd(); return (qa * cos(qb) * sd + mean); } float rnd() { static int seed = 1; static int biggest = 0x7fffffff; return ((float)rand(seed) / (float)biggest); } .vE