1 /*- 2 * Copyright (c) 1982, 1986, 1989 The Regents of the University of California. 3 * All rights reserved. 4 * 5 * This module is believed to contain source code proprietary to AT&T. 6 * Use and redistribution is subject to the Berkeley Software License 7 * Agreement and your Software Agreement with AT&T (Western Electric). 8 * 9 * @(#)vfs_bio.c 7.58 (Berkeley) 02/02/93 10 */ 11 12 #include <sys/param.h> 13 #include <sys/proc.h> 14 #include <sys/buf.h> 15 #include <sys/vnode.h> 16 #include <sys/mount.h> 17 #include <sys/trace.h> 18 #include <sys/resourcevar.h> 19 #include <sys/malloc.h> 20 #include <libkern/libkern.h> 21 22 /* 23 * Definitions for the buffer hash lists. 24 */ 25 #define BUFHASH(dvp, lbn) \ 26 (&bufhashtbl[((int)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) 27 struct list_entry *bufhashtbl, invalhash; 28 u_long bufhash; 29 30 /* 31 * Insq/Remq for the buffer hash lists. 32 */ 33 #define binshash(bp, dp) list_enter_head(dp, bp, struct buf *, b_hash) 34 #define bremhash(bp) list_remove(bp, struct buf *, b_hash) 35 36 /* 37 * Definitions for the buffer free lists. 38 */ 39 #define BQUEUES 4 /* number of free buffer queues */ 40 41 #define BQ_LOCKED 0 /* super-blocks &c */ 42 #define BQ_LRU 1 /* lru, useful buffers */ 43 #define BQ_AGE 2 /* rubbish */ 44 #define BQ_EMPTY 3 /* buffer headers with no memory */ 45 46 struct queue_entry bufqueues[BQUEUES]; 47 int needbuffer; 48 49 /* 50 * Insq/Remq for the buffer free lists. 51 */ 52 #define binsheadfree(bp, dp) \ 53 queue_enter_head(dp, bp, struct buf *, b_freelist) 54 #define binstailfree(bp, dp) \ 55 queue_enter_tail(dp, bp, struct buf *, b_freelist) 56 57 /* 58 * Local declarations 59 */ 60 struct buf *cluster_newbuf __P((struct vnode *, struct buf *, long, daddr_t, 61 daddr_t, long, int)); 62 struct buf *cluster_rbuild __P((struct vnode *, u_quad_t, struct buf *, 63 daddr_t, daddr_t, long, int, long)); 64 void cluster_wbuild __P((struct vnode *, struct buf *, long size, 65 daddr_t start_lbn, int len, daddr_t lbn)); 66 67 void 68 bremfree(bp) 69 struct buf *bp; 70 { 71 struct queue_entry *dp; 72 73 /* 74 * We only calculate the head of the freelist when removing 75 * the last element of the list as that is the only time that 76 * it is needed (e.g. to reset the tail pointer). 77 */ 78 if (bp->b_freelist.qe_next == NULL) { 79 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 80 if (dp->qe_prev == &bp->b_freelist.qe_next) 81 break; 82 if (dp == &bufqueues[BQUEUES]) 83 panic("bremfree: lost tail"); 84 } 85 queue_remove(dp, bp, struct buf *, b_freelist); 86 } 87 88 /* 89 * Initialize buffers and hash links for buffers. 90 */ 91 void 92 bufinit() 93 { 94 register struct buf *bp; 95 struct queue_entry *dp; 96 register int i; 97 int base, residual; 98 99 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 100 queue_init(dp); 101 bufhashtbl = (struct list_entry *)hashinit(nbuf, M_CACHE, &bufhash); 102 base = bufpages / nbuf; 103 residual = bufpages % nbuf; 104 for (i = 0; i < nbuf; i++) { 105 bp = &buf[i]; 106 bzero((char *)bp, sizeof *bp); 107 bp->b_dev = NODEV; 108 bp->b_rcred = NOCRED; 109 bp->b_wcred = NOCRED; 110 bp->b_un.b_addr = buffers + i * MAXBSIZE; 111 if (i < residual) 112 bp->b_bufsize = (base + 1) * CLBYTES; 113 else 114 bp->b_bufsize = base * CLBYTES; 115 bp->b_flags = B_INVAL; 116 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY]; 117 binsheadfree(bp, dp); 118 binshash(bp, &invalhash); 119 } 120 } 121 122 /* 123 * Find the block in the buffer pool. 124 * If the buffer is not present, allocate a new buffer and load 125 * its contents according to the filesystem fill routine. 126 */ 127 bread(vp, blkno, size, cred, bpp) 128 struct vnode *vp; 129 daddr_t blkno; 130 int size; 131 struct ucred *cred; 132 struct buf **bpp; 133 { 134 struct proc *p = curproc; /* XXX */ 135 register struct buf *bp; 136 137 if (size == 0) 138 panic("bread: size 0"); 139 *bpp = bp = getblk(vp, blkno, size, 0, 0); 140 if (bp->b_flags & (B_DONE | B_DELWRI)) { 141 trace(TR_BREADHIT, pack(vp, size), blkno); 142 return (0); 143 } 144 bp->b_flags |= B_READ; 145 if (bp->b_bcount > bp->b_bufsize) 146 panic("bread"); 147 if (bp->b_rcred == NOCRED && cred != NOCRED) { 148 crhold(cred); 149 bp->b_rcred = cred; 150 } 151 VOP_STRATEGY(bp); 152 trace(TR_BREADMISS, pack(vp, size), blkno); 153 p->p_stats->p_ru.ru_inblock++; /* pay for read */ 154 return (biowait(bp)); 155 } 156 157 /* 158 * Operates like bread, but also starts I/O on the N specified 159 * read-ahead blocks. 160 */ 161 breadn(vp, blkno, size, rablkno, rabsize, num, cred, bpp) 162 struct vnode *vp; 163 daddr_t blkno; int size; 164 daddr_t rablkno[]; int rabsize[]; 165 int num; 166 struct ucred *cred; 167 struct buf **bpp; 168 { 169 struct proc *p = curproc; /* XXX */ 170 register struct buf *bp, *rabp; 171 register int i; 172 173 bp = NULL; 174 /* 175 * If the block is not memory resident, 176 * allocate a buffer and start I/O. 177 */ 178 if (!incore(vp, blkno)) { 179 *bpp = bp = getblk(vp, blkno, size, 0, 0); 180 if ((bp->b_flags & (B_DONE | B_DELWRI)) == 0) { 181 bp->b_flags |= B_READ; 182 if (bp->b_bcount > bp->b_bufsize) 183 panic("breadn"); 184 if (bp->b_rcred == NOCRED && cred != NOCRED) { 185 crhold(cred); 186 bp->b_rcred = cred; 187 } 188 VOP_STRATEGY(bp); 189 trace(TR_BREADMISS, pack(vp, size), blkno); 190 p->p_stats->p_ru.ru_inblock++; /* pay for read */ 191 } else { 192 trace(TR_BREADHIT, pack(vp, size), blkno); 193 } 194 } 195 196 /* 197 * If there's read-ahead block(s), start I/O 198 * on them also (as above). 199 */ 200 for (i = 0; i < num; i++) { 201 if (incore(vp, rablkno[i])) 202 continue; 203 rabp = getblk(vp, rablkno[i], rabsize[i], 0, 0); 204 if (rabp->b_flags & (B_DONE | B_DELWRI)) { 205 brelse(rabp); 206 trace(TR_BREADHITRA, pack(vp, rabsize[i]), rablkno[i]); 207 } else { 208 rabp->b_flags |= B_ASYNC | B_READ; 209 if (rabp->b_bcount > rabp->b_bufsize) 210 panic("breadrabp"); 211 if (rabp->b_rcred == NOCRED && cred != NOCRED) { 212 crhold(cred); 213 rabp->b_rcred = cred; 214 } 215 VOP_STRATEGY(rabp); 216 trace(TR_BREADMISSRA, pack(vp, rabsize[i]), rablkno[i]); 217 p->p_stats->p_ru.ru_inblock++; /* pay in advance */ 218 } 219 } 220 221 /* 222 * If block was memory resident, let bread get it. 223 * If block was not memory resident, the read was 224 * started above, so just wait for the read to complete. 225 */ 226 if (bp == NULL) 227 return (bread(vp, blkno, size, cred, bpp)); 228 return (biowait(bp)); 229 } 230 231 /* 232 * We could optimize this by keeping track of where the last read-ahead 233 * was, but it would involve adding fields to the vnode. For now, let's 234 * just get it working. 235 * 236 * This replaces bread. If this is a bread at the beginning of a file and 237 * lastr is 0, we assume this is the first read and we'll read up to two 238 * blocks if they are sequential. After that, we'll do regular read ahead 239 * in clustered chunks. 240 * 241 * There are 4 or 5 cases depending on how you count: 242 * Desired block is in the cache: 243 * 1 Not sequential access (0 I/Os). 244 * 2 Access is sequential, do read-ahead (1 ASYNC). 245 * Desired block is not in cache: 246 * 3 Not sequential access (1 SYNC). 247 * 4 Sequential access, next block is contiguous (1 SYNC). 248 * 5 Sequential access, next block is not contiguous (1 SYNC, 1 ASYNC) 249 * 250 * There are potentially two buffers that require I/O. 251 * bp is the block requested. 252 * rbp is the read-ahead block. 253 * If either is NULL, then you don't have to do the I/O. 254 */ 255 cluster_read(vp, filesize, lblkno, size, cred, bpp) 256 struct vnode *vp; 257 u_quad_t filesize; 258 daddr_t lblkno; 259 long size; 260 struct ucred *cred; 261 struct buf **bpp; 262 { 263 struct buf *bp, *rbp; 264 daddr_t blkno, ioblkno; 265 long flags; 266 int error, num_ra, alreadyincore; 267 268 #ifdef DIAGNOSTIC 269 if (size == 0) 270 panic("cluster_read: size = 0"); 271 #endif 272 273 error = 0; 274 flags = B_READ; 275 *bpp = bp = getblk(vp, lblkno, size, 0, 0); 276 if (bp->b_flags & (B_CACHE | B_DONE | B_DELWRI)) { 277 /* 278 * Desired block is in cache; do any readahead ASYNC. 279 * Case 1, 2. 280 */ 281 trace(TR_BREADHIT, pack(vp, size), lblkno); 282 flags |= B_ASYNC; 283 ioblkno = lblkno + 284 (lblkno < vp->v_ralen ? vp->v_ralen >> 1 : vp->v_ralen); 285 alreadyincore = (int)incore(vp, ioblkno); 286 bp = NULL; 287 } else { 288 /* Block wasn't in cache, case 3, 4, 5. */ 289 trace(TR_BREADMISS, pack(vp, size), lblkno); 290 ioblkno = lblkno; 291 bp->b_flags |= flags; 292 alreadyincore = 0; 293 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 294 } 295 /* 296 * XXX 297 * Replace 1 with a window size based on some permutation of 298 * maxcontig and rot_delay. This will let you figure out how 299 * many blocks you should read-ahead (case 2, 4, 5). 300 * 301 * If the access isn't sequential, cut the window size in half. 302 */ 303 rbp = NULL; 304 if (lblkno != vp->v_lastr + 1 && lblkno != 0) 305 vp->v_ralen = max(vp->v_ralen >> 1, 1); 306 else if ((ioblkno + 1) * size < filesize && !alreadyincore && 307 !(error = VOP_BMAP(vp, ioblkno, NULL, &blkno, &num_ra))) { 308 /* 309 * Reading sequentially, and the next block is not in the 310 * cache. We are going to try reading ahead. If this is 311 * the first read of a file, then limit read-ahead to a 312 * single block, else read as much as we're allowed. 313 */ 314 if (num_ra > vp->v_ralen) { 315 num_ra = vp->v_ralen; 316 vp->v_ralen = min(MAXPHYS / size, vp->v_ralen << 1); 317 } else 318 vp->v_ralen = num_ra + 1; 319 320 321 if (num_ra) /* case 2, 4 */ 322 rbp = cluster_rbuild(vp, filesize, 323 bp, ioblkno, blkno, size, num_ra, flags); 324 else if (lblkno != 0 && ioblkno == lblkno) { 325 /* Case 5: check how many blocks to read ahead */ 326 ++ioblkno; 327 if ((ioblkno + 1) * size > filesize || 328 (error = VOP_BMAP(vp, 329 ioblkno, NULL, &blkno, &num_ra))) 330 goto skip_readahead; 331 flags |= B_ASYNC; 332 if (num_ra) 333 rbp = cluster_rbuild(vp, filesize, 334 NULL, ioblkno, blkno, size, num_ra, flags); 335 else { 336 rbp = getblk(vp, ioblkno, size, 0, 0); 337 rbp->b_flags |= flags; 338 rbp->b_blkno = blkno; 339 } 340 } else if (lblkno != 0) { 341 /* case 2; read ahead single block */ 342 rbp = getblk(vp, ioblkno, size, 0, 0); 343 rbp->b_flags |= flags; 344 rbp->b_blkno = blkno; 345 } else if (bp) /* case 1, 3, block 0 */ 346 bp->b_blkno = blkno; 347 /* Case 1 on block 0; not really doing sequential I/O */ 348 349 if (rbp == bp) /* case 4 */ 350 rbp = NULL; 351 else if (rbp) { /* case 2, 5 */ 352 trace(TR_BREADMISSRA, 353 pack(vp, (num_ra + 1) * size), ioblkno); 354 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 355 } 356 } 357 358 /* XXX Kirk, do we need to make sure the bp has creds? */ 359 skip_readahead: 360 if (bp) 361 if (bp->b_flags & (B_DONE | B_DELWRI)) 362 panic("cluster_read: DONE bp"); 363 else 364 error = VOP_STRATEGY(bp); 365 366 if (rbp) 367 if (error || rbp->b_flags & (B_DONE | B_DELWRI)) { 368 rbp->b_flags &= ~(B_ASYNC | B_READ); 369 brelse(rbp); 370 } else 371 (void) VOP_STRATEGY(rbp); 372 373 if (bp) 374 return(biowait(bp)); 375 return(error); 376 } 377 378 /* 379 * If blocks are contiguous on disk, use this to provide clustered 380 * read ahead. We will read as many blocks as possible sequentially 381 * and then parcel them up into logical blocks in the buffer hash table. 382 */ 383 struct buf * 384 cluster_rbuild(vp, filesize, bp, lbn, blkno, size, run, flags) 385 struct vnode *vp; 386 u_quad_t filesize; 387 struct buf *bp; 388 daddr_t lbn; 389 daddr_t blkno; 390 long size; 391 int run; 392 long flags; 393 { 394 struct cluster_save *b_save; 395 struct buf *tbp; 396 daddr_t bn; 397 int i, inc; 398 399 if (size * (lbn + run + 1) > filesize) 400 --run; 401 if (run == 0) { 402 if (!bp) { 403 bp = getblk(vp, lbn, size, 0, 0); 404 bp->b_blkno = blkno; 405 bp->b_flags |= flags; 406 } 407 return(bp); 408 } 409 410 bp = cluster_newbuf(vp, bp, flags, blkno, lbn, size, run + 1); 411 if (bp->b_flags & (B_DONE | B_DELWRI)) 412 return (bp); 413 414 b_save = malloc(sizeof(struct buf *) * run + sizeof(struct cluster_save), 415 M_SEGMENT, M_WAITOK); 416 b_save->bs_bufsize = b_save->bs_bcount = size; 417 b_save->bs_nchildren = 0; 418 b_save->bs_children = (struct buf **)(b_save + 1); 419 b_save->bs_saveaddr = bp->b_saveaddr; 420 bp->b_saveaddr = (caddr_t) b_save; 421 422 inc = size / DEV_BSIZE; 423 for (bn = blkno + inc, i = 1; i <= run; ++i, bn += inc) { 424 if (incore(vp, lbn + i)) { 425 if (i == 1) { 426 bp->b_saveaddr = b_save->bs_saveaddr; 427 bp->b_flags &= ~B_CALL; 428 bp->b_iodone = NULL; 429 allocbuf(bp, size); 430 free(b_save, M_SEGMENT); 431 } else 432 allocbuf(bp, size * i); 433 break; 434 } 435 tbp = getblk(vp, lbn + i, 0, 0, 0); 436 tbp->b_bcount = tbp->b_bufsize = size; 437 tbp->b_blkno = bn; 438 tbp->b_flags |= flags | B_READ | B_ASYNC; 439 ++b_save->bs_nchildren; 440 b_save->bs_children[i - 1] = tbp; 441 } 442 if (!(bp->b_flags & B_ASYNC)) 443 vp->v_ralen = max(vp->v_ralen - 1, 1); 444 return(bp); 445 } 446 447 /* 448 * Either get a new buffer or grow the existing one. 449 */ 450 struct buf * 451 cluster_newbuf(vp, bp, flags, blkno, lblkno, size, run) 452 struct vnode *vp; 453 struct buf *bp; 454 long flags; 455 daddr_t blkno; 456 daddr_t lblkno; 457 long size; 458 int run; 459 { 460 if (!bp) { 461 bp = getblk(vp, lblkno, size, 0, 0); 462 if (bp->b_flags & (B_DONE | B_DELWRI)) { 463 bp->b_blkno = blkno; 464 return(bp); 465 } 466 } 467 allocbuf(bp, run * size); 468 bp->b_blkno = blkno; 469 bp->b_iodone = cluster_callback; 470 bp->b_flags |= flags | B_CALL; 471 return(bp); 472 } 473 474 /* 475 * Cleanup after a clustered read or write. 476 */ 477 void 478 cluster_callback(bp) 479 struct buf *bp; 480 { 481 struct cluster_save *b_save; 482 struct buf **tbp; 483 long bsize; 484 caddr_t cp; 485 b_save = (struct cluster_save *)(bp->b_saveaddr); 486 bp->b_saveaddr = b_save->bs_saveaddr; 487 488 cp = bp->b_un.b_addr + b_save->bs_bufsize; 489 for (tbp = b_save->bs_children; b_save->bs_nchildren--; ++tbp) { 490 pagemove(cp, (*tbp)->b_un.b_addr, (*tbp)->b_bufsize); 491 cp += (*tbp)->b_bufsize; 492 bp->b_bufsize -= (*tbp)->b_bufsize; 493 biodone(*tbp); 494 } 495 #ifdef DIAGNOSTIC 496 if (bp->b_bufsize != b_save->bs_bufsize) 497 panic ("cluster_callback: more space to reclaim"); 498 #endif 499 bp->b_bcount = bp->b_bufsize; 500 bp->b_iodone = NULL; 501 free(b_save, M_SEGMENT); 502 if (bp->b_flags & B_ASYNC) 503 brelse(bp); 504 else 505 wakeup((caddr_t)bp); 506 } 507 508 /* 509 * Synchronous write. 510 * Release buffer on completion. 511 */ 512 bwrite(bp) 513 register struct buf *bp; 514 { 515 struct proc *p = curproc; /* XXX */ 516 register int flag; 517 int s, error = 0; 518 519 flag = bp->b_flags; 520 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI); 521 if (flag & B_ASYNC) { 522 if ((flag & B_DELWRI) == 0) 523 p->p_stats->p_ru.ru_oublock++; /* no one paid yet */ 524 else 525 reassignbuf(bp, bp->b_vp); 526 } 527 trace(TR_BWRITE, pack(bp->b_vp, bp->b_bcount), bp->b_lblkno); 528 if (bp->b_bcount > bp->b_bufsize) 529 panic("bwrite"); 530 s = splbio(); 531 bp->b_vp->v_numoutput++; 532 bp->b_flags |= B_WRITEINPROG; 533 splx(s); 534 VOP_STRATEGY(bp); 535 536 /* 537 * If the write was synchronous, then await I/O completion. 538 * If the write was "delayed", then we put the buffer on 539 * the queue of blocks awaiting I/O completion status. 540 */ 541 if ((flag & B_ASYNC) == 0) { 542 error = biowait(bp); 543 if ((flag&B_DELWRI) == 0) 544 p->p_stats->p_ru.ru_oublock++; /* no one paid yet */ 545 else 546 reassignbuf(bp, bp->b_vp); 547 if (bp->b_flags & B_EINTR) { 548 bp->b_flags &= ~B_EINTR; 549 error = EINTR; 550 } 551 brelse(bp); 552 } else if (flag & B_DELWRI) { 553 s = splbio(); 554 bp->b_flags |= B_AGE; 555 splx(s); 556 } 557 return (error); 558 } 559 560 int 561 vn_bwrite(ap) 562 struct vop_bwrite_args *ap; 563 { 564 return (bwrite(ap->a_bp)); 565 } 566 567 568 /* 569 * Delayed write. 570 * 571 * The buffer is marked dirty, but is not queued for I/O. 572 * This routine should be used when the buffer is expected 573 * to be modified again soon, typically a small write that 574 * partially fills a buffer. 575 * 576 * NB: magnetic tapes cannot be delayed; they must be 577 * written in the order that the writes are requested. 578 */ 579 bdwrite(bp) 580 register struct buf *bp; 581 { 582 struct proc *p = curproc; /* XXX */ 583 584 if ((bp->b_flags & B_DELWRI) == 0) { 585 bp->b_flags |= B_DELWRI; 586 reassignbuf(bp, bp->b_vp); 587 p->p_stats->p_ru.ru_oublock++; /* no one paid yet */ 588 } 589 /* 590 * If this is a tape drive, the write must be initiated. 591 */ 592 if (VOP_IOCTL(bp->b_vp, 0, (caddr_t)B_TAPE, 0, NOCRED, p) == 0) { 593 bawrite(bp); 594 } else { 595 bp->b_flags |= (B_DONE | B_DELWRI); 596 brelse(bp); 597 } 598 } 599 600 /* 601 * Asynchronous write. 602 * Start I/O on a buffer, but do not wait for it to complete. 603 * The buffer is released when the I/O completes. 604 */ 605 bawrite(bp) 606 register struct buf *bp; 607 { 608 609 /* 610 * Setting the ASYNC flag causes bwrite to return 611 * after starting the I/O. 612 */ 613 bp->b_flags |= B_ASYNC; 614 (void) VOP_BWRITE(bp); 615 } 616 617 /* 618 * Do clustered write for FFS. 619 * 620 * Three cases: 621 * 1. Write is not sequential (write asynchronously) 622 * Write is sequential: 623 * 2. beginning of cluster - begin cluster 624 * 3. middle of a cluster - add to cluster 625 * 4. end of a cluster - asynchronously write cluster 626 */ 627 void 628 cluster_write(bp, filesize) 629 struct buf *bp; 630 u_quad_t filesize; 631 { 632 struct vnode *vp; 633 daddr_t lbn; 634 int clen, error, maxrun; 635 636 vp = bp->b_vp; 637 lbn = bp->b_lblkno; 638 clen = 0; 639 640 /* 641 * Handle end of file first. If we are appending, we need to check 642 * if the current block was allocated contiguously. If it wasn't, 643 * then we need to fire off a previous cluster if it existed. 644 * Additionally, when we're appending, we need to figure out how 645 * to initialize vp->v_clen. 646 */ 647 if ((lbn + 1) * bp->b_bcount == filesize) { 648 if (bp->b_blkno != vp->v_lasta + bp->b_bcount / DEV_BSIZE) { 649 /* This block was not allocated contiguously */ 650 if (vp->v_clen) 651 cluster_wbuild(vp, NULL, bp->b_bcount, vp->v_cstart, 652 vp->v_lastw - vp->v_cstart + 1, lbn); 653 vp->v_cstart = lbn; 654 clen = vp->v_clen = 655 MAXBSIZE / vp->v_mount->mnt_stat.f_iosize - 1; 656 /* 657 * Next cluster started. Write this buffer and return. 658 */ 659 vp->v_lastw = lbn; 660 vp->v_lasta = bp->b_blkno; 661 bdwrite(bp); 662 return; 663 } 664 vp->v_lasta = bp->b_blkno; 665 } else if (lbn == 0) { 666 vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 667 } 668 if (vp->v_clen == 0 || lbn != vp->v_lastw + 1) { 669 if (vp->v_clen != 0) 670 /* 671 * Write is not sequential. 672 */ 673 cluster_wbuild(vp, NULL, bp->b_bcount, vp->v_cstart, 674 vp->v_lastw - vp->v_cstart + 1, lbn); 675 /* 676 * Consider beginning a cluster. 677 */ 678 if (error = VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &clen)) { 679 bawrite(bp); 680 vp->v_cstart = lbn + 1; 681 vp->v_lastw = lbn; 682 return; 683 } 684 vp->v_clen = clen; 685 if (clen == 0) { /* I/O not contiguous */ 686 vp->v_cstart = lbn + 1; 687 bawrite(bp); 688 } else { /* Wait for rest of cluster */ 689 vp->v_cstart = lbn; 690 bdwrite(bp); 691 } 692 } else if (lbn == vp->v_cstart + vp->v_clen) { 693 /* 694 * At end of cluster, write it out. 695 */ 696 cluster_wbuild(vp, bp, bp->b_bcount, vp->v_cstart, 697 vp->v_clen + 1, lbn); 698 vp->v_clen = 0; 699 vp->v_cstart = lbn + 1; 700 } else 701 /* 702 * In the middle of a cluster, so just delay the 703 * I/O for now. 704 */ 705 bdwrite(bp); 706 vp->v_lastw = lbn; 707 } 708 709 710 /* 711 * This is an awful lot like cluster_rbuild...wish they could be combined. 712 * The last lbn argument is the current block on which I/O is being 713 * performed. Check to see that it doesn't fall in the middle of 714 * the current block. 715 */ 716 void 717 cluster_wbuild(vp, last_bp, size, start_lbn, len, lbn) 718 struct vnode *vp; 719 struct buf *last_bp; 720 long size; 721 daddr_t start_lbn; 722 int len; 723 daddr_t lbn; 724 { 725 struct cluster_save *b_save; 726 struct buf *bp, *tbp; 727 caddr_t cp; 728 int i, s; 729 730 redo: 731 while ((!incore(vp, start_lbn) || start_lbn == lbn) && len) { 732 ++start_lbn; 733 --len; 734 } 735 736 /* Get more memory for current buffer */ 737 if (len <= 1) { 738 if (last_bp) 739 bawrite(last_bp); 740 return; 741 } 742 743 bp = getblk(vp, start_lbn, size, 0, 0); 744 if (!(bp->b_flags & B_DELWRI)) { 745 ++start_lbn; 746 --len; 747 brelse(bp); 748 goto redo; 749 } 750 751 --len; 752 b_save = malloc(sizeof(struct buf *) * len + sizeof(struct cluster_save), 753 M_SEGMENT, M_WAITOK); 754 b_save->bs_bcount = bp->b_bcount; 755 b_save->bs_bufsize = bp->b_bufsize; 756 b_save->bs_nchildren = 0; 757 b_save->bs_children = (struct buf **)(b_save + 1); 758 b_save->bs_saveaddr = bp->b_saveaddr; 759 bp->b_saveaddr = (caddr_t) b_save; 760 761 762 bp->b_flags |= B_CALL; 763 bp->b_iodone = cluster_callback; 764 cp = bp->b_un.b_addr + bp->b_bufsize; 765 for (++start_lbn, i = 0; i < len; ++i, ++start_lbn) { 766 if (!incore(vp, start_lbn) || start_lbn == lbn) 767 break; 768 769 if (last_bp == NULL || start_lbn != last_bp->b_lblkno) { 770 tbp = getblk(vp, start_lbn, size, 0, 0); 771 #ifdef DIAGNOSTIC 772 if (tbp->b_bcount != tbp->b_bufsize) 773 panic("cluster_wbuild: Buffer too big"); 774 #endif 775 if (!(tbp->b_flags & B_DELWRI)) { 776 brelse(tbp); 777 break; 778 } 779 } else 780 tbp = last_bp; 781 782 ++b_save->bs_nchildren; 783 784 /* Move memory from children to parent */ 785 pagemove(tbp->b_un.b_daddr, cp, size); 786 bp->b_bcount += size; 787 bp->b_bufsize += size; 788 789 tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI); 790 tbp->b_flags |= B_ASYNC; 791 s = splbio(); 792 reassignbuf(tbp, tbp->b_vp); /* put on clean list */ 793 ++tbp->b_vp->v_numoutput; 794 splx(s); 795 b_save->bs_children[i] = tbp; 796 797 cp += tbp->b_bufsize; 798 } 799 800 if (i == 0) { 801 /* None to cluster */ 802 bp->b_saveaddr = b_save->bs_saveaddr; 803 bp->b_flags &= ~B_CALL; 804 bp->b_iodone = NULL; 805 free(b_save, M_SEGMENT); 806 } 807 bawrite(bp); 808 if (i < len) { 809 len -= i + 1; 810 start_lbn += 1; 811 goto redo; 812 } 813 } 814 815 /* 816 * Release a buffer. 817 * Even if the buffer is dirty, no I/O is started. 818 */ 819 brelse(bp) 820 register struct buf *bp; 821 { 822 register struct queue_entry *flist; 823 int s; 824 825 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno); 826 /* 827 * If a process is waiting for the buffer, or 828 * is waiting for a free buffer, awaken it. 829 */ 830 if (bp->b_flags & B_WANTED) 831 wakeup((caddr_t)bp); 832 if (needbuffer) { 833 needbuffer = 0; 834 wakeup((caddr_t)&needbuffer); 835 } 836 /* 837 * Retry I/O for locked buffers rather than invalidating them. 838 */ 839 s = splbio(); 840 if ((bp->b_flags & B_ERROR) && (bp->b_flags & B_LOCKED)) 841 bp->b_flags &= ~B_ERROR; 842 /* 843 * Disassociate buffers that are no longer valid. 844 */ 845 if (bp->b_flags & (B_NOCACHE | B_ERROR)) 846 bp->b_flags |= B_INVAL; 847 if ((bp->b_bufsize <= 0) || (bp->b_flags & (B_ERROR | B_INVAL))) { 848 if (bp->b_vp) 849 brelvp(bp); 850 bp->b_flags &= ~B_DELWRI; 851 } 852 /* 853 * Stick the buffer back on a free list. 854 */ 855 if (bp->b_bufsize <= 0) { 856 /* block has no buffer ... put at front of unused buffer list */ 857 flist = &bufqueues[BQ_EMPTY]; 858 binsheadfree(bp, flist); 859 } else if (bp->b_flags & (B_ERROR | B_INVAL)) { 860 /* block has no info ... put at front of most free list */ 861 flist = &bufqueues[BQ_AGE]; 862 binsheadfree(bp, flist); 863 } else { 864 if (bp->b_flags & B_LOCKED) 865 flist = &bufqueues[BQ_LOCKED]; 866 else if (bp->b_flags & B_AGE) 867 flist = &bufqueues[BQ_AGE]; 868 else 869 flist = &bufqueues[BQ_LRU]; 870 binstailfree(bp, flist); 871 } 872 bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_AGE | B_NOCACHE); 873 splx(s); 874 } 875 876 /* 877 * Check to see if a block is currently memory resident. 878 */ 879 struct buf * 880 incore(vp, blkno) 881 struct vnode *vp; 882 daddr_t blkno; 883 { 884 register struct buf *bp; 885 886 for (bp = BUFHASH(vp, blkno)->le_next; bp; bp = bp->b_hash.qe_next) 887 if (bp->b_lblkno == blkno && bp->b_vp == vp && 888 (bp->b_flags & B_INVAL) == 0) 889 return (bp); 890 return (NULL); 891 } 892 893 /* 894 * Check to see if a block is currently memory resident. 895 * If it is resident, return it. If it is not resident, 896 * allocate a new buffer and assign it to the block. 897 */ 898 struct buf * 899 getblk(vp, blkno, size, slpflag, slptimeo) 900 register struct vnode *vp; 901 daddr_t blkno; 902 int size, slpflag, slptimeo; 903 { 904 register struct buf *bp; 905 struct list_entry *dp; 906 int s, error; 907 908 if (size > MAXBSIZE) 909 panic("getblk: size too big"); 910 /* 911 * Search the cache for the block. If the buffer is found, 912 * but it is currently locked, the we must wait for it to 913 * become available. 914 */ 915 dp = BUFHASH(vp, blkno); 916 loop: 917 for (bp = dp->le_next; bp; bp = bp->b_hash.qe_next) { 918 if (bp->b_lblkno != blkno || bp->b_vp != vp) 919 continue; 920 s = splbio(); 921 if (bp->b_flags & B_BUSY) { 922 bp->b_flags |= B_WANTED; 923 error = tsleep((caddr_t)bp, slpflag | (PRIBIO + 1), 924 "getblk", slptimeo); 925 splx(s); 926 if (error) 927 return (NULL); 928 goto loop; 929 } 930 /* 931 * The test for B_INVAL is moved down here, since there 932 * are cases where B_INVAL is set before VOP_BWRITE() is 933 * called and for NFS, the process cannot be allowed to 934 * allocate a new buffer for the same block until the write 935 * back to the server has been completed. (ie. B_BUSY clears) 936 */ 937 if (bp->b_flags & B_INVAL) { 938 splx(s); 939 continue; 940 } 941 bremfree(bp); 942 bp->b_flags |= B_BUSY; 943 splx(s); 944 if (bp->b_bcount != size) { 945 printf("getblk: stray size"); 946 bp->b_flags |= B_INVAL; 947 VOP_BWRITE(bp); 948 goto loop; 949 } 950 bp->b_flags |= B_CACHE; 951 return (bp); 952 } 953 /* 954 * The loop back to the top when getnewbuf() fails is because 955 * stateless filesystems like NFS have no node locks. Thus, 956 * there is a slight chance that more than one process will 957 * try and getnewbuf() for the same block concurrently when 958 * the first sleeps in getnewbuf(). So after a sleep, go back 959 * up to the top to check the hash lists again. 960 */ 961 if ((bp = getnewbuf(slpflag, slptimeo)) == 0) 962 goto loop; 963 bremhash(bp); 964 bgetvp(vp, bp); 965 bp->b_bcount = 0; 966 bp->b_lblkno = blkno; 967 bp->b_blkno = blkno; 968 bp->b_error = 0; 969 bp->b_resid = 0; 970 binshash(bp, dp); 971 allocbuf(bp, size); 972 return (bp); 973 } 974 975 /* 976 * Allocate a buffer. 977 * The caller will assign it to a block. 978 */ 979 struct buf * 980 geteblk(size) 981 int size; 982 { 983 register struct buf *bp; 984 985 if (size > MAXBSIZE) 986 panic("geteblk: size too big"); 987 while ((bp = getnewbuf(0, 0)) == NULL) 988 /* void */; 989 bp->b_flags |= B_INVAL; 990 bremhash(bp); 991 binshash(bp, &invalhash); 992 bp->b_bcount = 0; 993 bp->b_error = 0; 994 bp->b_resid = 0; 995 allocbuf(bp, size); 996 return (bp); 997 } 998 999 /* 1000 * Expand or contract the actual memory allocated to a buffer. 1001 * If no memory is available, release buffer and take error exit. 1002 */ 1003 allocbuf(tp, size) 1004 register struct buf *tp; 1005 int size; 1006 { 1007 register struct buf *bp, *ep; 1008 int sizealloc, take, s; 1009 1010 sizealloc = roundup(size, CLBYTES); 1011 /* 1012 * Buffer size does not change 1013 */ 1014 if (sizealloc == tp->b_bufsize) 1015 goto out; 1016 /* 1017 * Buffer size is shrinking. 1018 * Place excess space in a buffer header taken from the 1019 * BQ_EMPTY buffer list and placed on the "most free" list. 1020 * If no extra buffer headers are available, leave the 1021 * extra space in the present buffer. 1022 */ 1023 if (sizealloc < tp->b_bufsize) { 1024 if ((ep = bufqueues[BQ_EMPTY].qe_next) == NULL) 1025 goto out; 1026 s = splbio(); 1027 bremfree(ep); 1028 ep->b_flags |= B_BUSY; 1029 splx(s); 1030 pagemove(tp->b_un.b_addr + sizealloc, ep->b_un.b_addr, 1031 (int)tp->b_bufsize - sizealloc); 1032 ep->b_bufsize = tp->b_bufsize - sizealloc; 1033 tp->b_bufsize = sizealloc; 1034 ep->b_flags |= B_INVAL; 1035 ep->b_bcount = 0; 1036 brelse(ep); 1037 goto out; 1038 } 1039 /* 1040 * More buffer space is needed. Get it out of buffers on 1041 * the "most free" list, placing the empty headers on the 1042 * BQ_EMPTY buffer header list. 1043 */ 1044 while (tp->b_bufsize < sizealloc) { 1045 take = sizealloc - tp->b_bufsize; 1046 while ((bp = getnewbuf(0, 0)) == NULL) 1047 /* void */; 1048 if (take >= bp->b_bufsize) 1049 take = bp->b_bufsize; 1050 pagemove(&bp->b_un.b_addr[bp->b_bufsize - take], 1051 &tp->b_un.b_addr[tp->b_bufsize], take); 1052 tp->b_bufsize += take; 1053 bp->b_bufsize = bp->b_bufsize - take; 1054 if (bp->b_bcount > bp->b_bufsize) 1055 bp->b_bcount = bp->b_bufsize; 1056 if (bp->b_bufsize <= 0) { 1057 bremhash(bp); 1058 binshash(bp, &invalhash); 1059 bp->b_dev = NODEV; 1060 bp->b_error = 0; 1061 bp->b_flags |= B_INVAL; 1062 } 1063 brelse(bp); 1064 } 1065 out: 1066 tp->b_bcount = size; 1067 return (1); 1068 } 1069 1070 /* 1071 * Find a buffer which is available for use. 1072 * Select something from a free list. 1073 * Preference is to AGE list, then LRU list. 1074 */ 1075 struct buf * 1076 getnewbuf(slpflag, slptimeo) 1077 int slpflag, slptimeo; 1078 { 1079 register struct buf *bp; 1080 register struct queue_entry *dp; 1081 register struct ucred *cred; 1082 int s; 1083 1084 loop: 1085 s = splbio(); 1086 for (dp = &bufqueues[BQ_AGE]; dp > bufqueues; dp--) 1087 if (dp->qe_next) 1088 break; 1089 if (dp == bufqueues) { /* no free blocks */ 1090 needbuffer = 1; 1091 (void) tsleep((caddr_t)&needbuffer, slpflag | (PRIBIO + 1), 1092 "getnewbuf", slptimeo); 1093 splx(s); 1094 return (NULL); 1095 } 1096 bp = dp->qe_next; 1097 bremfree(bp); 1098 bp->b_flags |= B_BUSY; 1099 splx(s); 1100 if (bp->b_flags & B_DELWRI) { 1101 (void) bawrite(bp); 1102 goto loop; 1103 } 1104 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno); 1105 if (bp->b_vp) 1106 brelvp(bp); 1107 if (bp->b_rcred != NOCRED) { 1108 cred = bp->b_rcred; 1109 bp->b_rcred = NOCRED; 1110 crfree(cred); 1111 } 1112 if (bp->b_wcred != NOCRED) { 1113 cred = bp->b_wcred; 1114 bp->b_wcred = NOCRED; 1115 crfree(cred); 1116 } 1117 bp->b_flags = B_BUSY; 1118 bp->b_dirtyoff = bp->b_dirtyend = 0; 1119 bp->b_validoff = bp->b_validend = 0; 1120 return (bp); 1121 } 1122 1123 /* 1124 * Wait for I/O to complete. 1125 * 1126 * Extract and return any errors associated with the I/O. 1127 * If the error flag is set, but no specific error is 1128 * given, return EIO. 1129 */ 1130 biowait(bp) 1131 register struct buf *bp; 1132 { 1133 int s; 1134 1135 s = splbio(); 1136 while ((bp->b_flags & B_DONE) == 0) 1137 sleep((caddr_t)bp, PRIBIO); 1138 splx(s); 1139 if ((bp->b_flags & B_ERROR) == 0) 1140 return (0); 1141 if (bp->b_error) 1142 return (bp->b_error); 1143 return (EIO); 1144 } 1145 1146 /* 1147 * Mark I/O complete on a buffer. 1148 * 1149 * If a callback has been requested, e.g. the pageout 1150 * daemon, do so. Otherwise, awaken waiting processes. 1151 */ 1152 void 1153 biodone(bp) 1154 register struct buf *bp; 1155 { 1156 1157 if (bp->b_flags & B_DONE) 1158 panic("dup biodone"); 1159 bp->b_flags |= B_DONE; 1160 if ((bp->b_flags & B_READ) == 0) 1161 vwakeup(bp); 1162 if (bp->b_flags & B_CALL) { 1163 bp->b_flags &= ~B_CALL; 1164 (*bp->b_iodone)(bp); 1165 return; 1166 } 1167 if (bp->b_flags & B_ASYNC) 1168 brelse(bp); 1169 else { 1170 bp->b_flags &= ~B_WANTED; 1171 wakeup((caddr_t)bp); 1172 } 1173 } 1174 1175 int 1176 count_lock_queue() 1177 { 1178 register struct buf *bp; 1179 register int ret; 1180 1181 for (ret = 0, bp = (struct buf *)bufqueues[BQ_LOCKED].qe_next; 1182 bp; bp = (struct buf *)bp->b_freelist.qe_next) 1183 ++ret; 1184 return(ret); 1185 } 1186 1187 #ifdef DIAGNOSTIC 1188 /* 1189 * Print out statistics on the current allocation of the buffer pool. 1190 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1191 * above. 1192 */ 1193 void 1194 vfs_bufstats() 1195 { 1196 int s, i, j, count; 1197 register struct buf *bp; 1198 register struct queue_entry *dp; 1199 int counts[MAXBSIZE/CLBYTES+1]; 1200 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" }; 1201 1202 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1203 count = 0; 1204 for (j = 0; j <= MAXBSIZE/CLBYTES; j++) 1205 counts[j] = 0; 1206 s = splbio(); 1207 for (bp = dp->qe_next; bp; bp = bp->b_freelist.qe_next) { 1208 counts[bp->b_bufsize/CLBYTES]++; 1209 count++; 1210 } 1211 splx(s); 1212 printf("%s: total-%d", bname[i], count); 1213 for (j = 0; j <= MAXBSIZE/CLBYTES; j++) 1214 if (counts[j] != 0) 1215 printf(", %d-%d", j * CLBYTES, counts[j]); 1216 printf("\n"); 1217 } 1218 } 1219 #endif /* DIAGNOSTIC */ 1220