1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.redist.c% 6 * 7 * @(#)tcp_input.c 7.35 (Berkeley) 04/07/93 8 */ 9 10 #ifndef TUBA_INCLUDE 11 #include <sys/param.h> 12 #include <sys/systm.h> 13 #include <sys/malloc.h> 14 #include <sys/mbuf.h> 15 #include <sys/protosw.h> 16 #include <sys/socket.h> 17 #include <sys/socketvar.h> 18 #include <sys/errno.h> 19 20 #include <net/if.h> 21 #include <net/route.h> 22 23 #include <netinet/in.h> 24 #include <netinet/in_systm.h> 25 #include <netinet/ip.h> 26 #include <netinet/in_pcb.h> 27 #include <netinet/ip_var.h> 28 #include <netinet/tcp.h> 29 #include <netinet/tcp_fsm.h> 30 #include <netinet/tcp_seq.h> 31 #include <netinet/tcp_timer.h> 32 #include <netinet/tcp_var.h> 33 #include <netinet/tcpip.h> 34 #include <netinet/tcp_debug.h> 35 36 int tcprexmtthresh = 3; 37 int tcppredack; /* XXX debugging: times hdr predict ok for acks */ 38 int tcppreddat; /* XXX # times header prediction ok for data packets */ 39 int tcppcbcachemiss; 40 struct tcpiphdr tcp_saveti; 41 struct inpcb *tcp_last_inpcb = &tcb; 42 43 struct tcpcb *tcp_newtcpcb(); 44 45 extern u_long sb_max; 46 47 #endif /* TUBA_INCLUDE */ 48 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ) 49 50 /* for modulo comparisons of timestamps */ 51 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0) 52 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0) 53 54 55 /* 56 * Insert segment ti into reassembly queue of tcp with 57 * control block tp. Return TH_FIN if reassembly now includes 58 * a segment with FIN. The macro form does the common case inline 59 * (segment is the next to be received on an established connection, 60 * and the queue is empty), avoiding linkage into and removal 61 * from the queue and repetition of various conversions. 62 * Set DELACK for segments received in order, but ack immediately 63 * when segments are out of order (so fast retransmit can work). 64 */ 65 #define TCP_REASS(tp, ti, m, so, flags) { \ 66 if ((ti)->ti_seq == (tp)->rcv_nxt && \ 67 (tp)->seg_next == (struct tcpiphdr *)(tp) && \ 68 (tp)->t_state == TCPS_ESTABLISHED) { \ 69 tp->t_flags |= TF_DELACK; \ 70 (tp)->rcv_nxt += (ti)->ti_len; \ 71 flags = (ti)->ti_flags & TH_FIN; \ 72 tcpstat.tcps_rcvpack++;\ 73 tcpstat.tcps_rcvbyte += (ti)->ti_len;\ 74 sbappend(&(so)->so_rcv, (m)); \ 75 sorwakeup(so); \ 76 } else { \ 77 (flags) = tcp_reass((tp), (ti), (m)); \ 78 tp->t_flags |= TF_ACKNOW; \ 79 } \ 80 } 81 #ifndef TUBA_INCLUDE 82 83 tcp_reass(tp, ti, m) 84 register struct tcpcb *tp; 85 register struct tcpiphdr *ti; 86 struct mbuf *m; 87 { 88 register struct tcpiphdr *q; 89 struct socket *so = tp->t_inpcb->inp_socket; 90 int flags; 91 92 /* 93 * Call with ti==0 after become established to 94 * force pre-ESTABLISHED data up to user socket. 95 */ 96 if (ti == 0) 97 goto present; 98 99 /* 100 * Find a segment which begins after this one does. 101 */ 102 for (q = tp->seg_next; q != (struct tcpiphdr *)tp; 103 q = (struct tcpiphdr *)q->ti_next) 104 if (SEQ_GT(q->ti_seq, ti->ti_seq)) 105 break; 106 107 /* 108 * If there is a preceding segment, it may provide some of 109 * our data already. If so, drop the data from the incoming 110 * segment. If it provides all of our data, drop us. 111 */ 112 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) { 113 register int i; 114 q = (struct tcpiphdr *)q->ti_prev; 115 /* conversion to int (in i) handles seq wraparound */ 116 i = q->ti_seq + q->ti_len - ti->ti_seq; 117 if (i > 0) { 118 if (i >= ti->ti_len) { 119 tcpstat.tcps_rcvduppack++; 120 tcpstat.tcps_rcvdupbyte += ti->ti_len; 121 m_freem(m); 122 return (0); 123 } 124 m_adj(m, i); 125 ti->ti_len -= i; 126 ti->ti_seq += i; 127 } 128 q = (struct tcpiphdr *)(q->ti_next); 129 } 130 tcpstat.tcps_rcvoopack++; 131 tcpstat.tcps_rcvoobyte += ti->ti_len; 132 REASS_MBUF(ti) = m; /* XXX */ 133 134 /* 135 * While we overlap succeeding segments trim them or, 136 * if they are completely covered, dequeue them. 137 */ 138 while (q != (struct tcpiphdr *)tp) { 139 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq; 140 if (i <= 0) 141 break; 142 if (i < q->ti_len) { 143 q->ti_seq += i; 144 q->ti_len -= i; 145 m_adj(REASS_MBUF(q), i); 146 break; 147 } 148 q = (struct tcpiphdr *)q->ti_next; 149 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev); 150 remque(q->ti_prev); 151 m_freem(m); 152 } 153 154 /* 155 * Stick new segment in its place. 156 */ 157 insque(ti, q->ti_prev); 158 159 present: 160 /* 161 * Present data to user, advancing rcv_nxt through 162 * completed sequence space. 163 */ 164 if (TCPS_HAVERCVDSYN(tp->t_state) == 0) 165 return (0); 166 ti = tp->seg_next; 167 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt) 168 return (0); 169 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len) 170 return (0); 171 do { 172 tp->rcv_nxt += ti->ti_len; 173 flags = ti->ti_flags & TH_FIN; 174 remque(ti); 175 m = REASS_MBUF(ti); 176 ti = (struct tcpiphdr *)ti->ti_next; 177 if (so->so_state & SS_CANTRCVMORE) 178 m_freem(m); 179 else 180 sbappend(&so->so_rcv, m); 181 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt); 182 sorwakeup(so); 183 return (flags); 184 } 185 186 /* 187 * TCP input routine, follows pages 65-76 of the 188 * protocol specification dated September, 1981 very closely. 189 */ 190 tcp_input(m, iphlen) 191 register struct mbuf *m; 192 int iphlen; 193 { 194 register struct tcpiphdr *ti; 195 register struct inpcb *inp; 196 caddr_t optp = NULL; 197 int optlen; 198 int len, tlen, off; 199 register struct tcpcb *tp = 0; 200 register int tiflags; 201 struct socket *so; 202 int todrop, acked, ourfinisacked, needoutput = 0; 203 short ostate; 204 struct in_addr laddr; 205 int dropsocket = 0; 206 int iss = 0; 207 u_long tiwin, ts_val, ts_ecr; 208 int ts_present = 0; 209 210 tcpstat.tcps_rcvtotal++; 211 /* 212 * Get IP and TCP header together in first mbuf. 213 * Note: IP leaves IP header in first mbuf. 214 */ 215 ti = mtod(m, struct tcpiphdr *); 216 if (iphlen > sizeof (struct ip)) 217 ip_stripoptions(m, (struct mbuf *)0); 218 if (m->m_len < sizeof (struct tcpiphdr)) { 219 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { 220 tcpstat.tcps_rcvshort++; 221 return; 222 } 223 ti = mtod(m, struct tcpiphdr *); 224 } 225 226 /* 227 * Checksum extended TCP header and data. 228 */ 229 tlen = ((struct ip *)ti)->ip_len; 230 len = sizeof (struct ip) + tlen; 231 ti->ti_next = ti->ti_prev = 0; 232 ti->ti_x1 = 0; 233 ti->ti_len = (u_short)tlen; 234 HTONS(ti->ti_len); 235 if (ti->ti_sum = in_cksum(m, len)) { 236 tcpstat.tcps_rcvbadsum++; 237 goto drop; 238 } 239 #endif /* TUBA_INCLUDE */ 240 241 /* 242 * Check that TCP offset makes sense, 243 * pull out TCP options and adjust length. XXX 244 */ 245 off = ti->ti_off << 2; 246 if (off < sizeof (struct tcphdr) || off > tlen) { 247 tcpstat.tcps_rcvbadoff++; 248 goto drop; 249 } 250 tlen -= off; 251 ti->ti_len = tlen; 252 if (off > sizeof (struct tcphdr)) { 253 if (m->m_len < sizeof(struct ip) + off) { 254 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { 255 tcpstat.tcps_rcvshort++; 256 return; 257 } 258 ti = mtod(m, struct tcpiphdr *); 259 } 260 optlen = off - sizeof (struct tcphdr); 261 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr); 262 /* 263 * Do quick retrieval of timestamp options ("options 264 * prediction?"). If timestamp is the only option and it's 265 * formatted as recommended in RFC 1323 appendix A, we 266 * quickly get the values now and not bother calling 267 * tcp_dooptions(), etc. 268 */ 269 if ((optlen == TCPOLEN_TSTAMP_APPA || 270 (optlen > TCPOLEN_TSTAMP_APPA && 271 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && 272 *(u_long *)optp == htonl(TCPOPT_TSTAMP_HDR) && 273 (ti->ti_flags & TH_SYN) == 0) { 274 ts_present = 1; 275 ts_val = ntohl(*(u_long *)(optp + 4)); 276 ts_ecr = ntohl(*(u_long *)(optp + 8)); 277 optp = NULL; /* we've parsed the options */ 278 } 279 } 280 tiflags = ti->ti_flags; 281 282 /* 283 * Convert TCP protocol specific fields to host format. 284 */ 285 NTOHL(ti->ti_seq); 286 NTOHL(ti->ti_ack); 287 NTOHS(ti->ti_win); 288 NTOHS(ti->ti_urp); 289 290 /* 291 * Locate pcb for segment. 292 */ 293 findpcb: 294 inp = tcp_last_inpcb; 295 if (inp->inp_lport != ti->ti_dport || 296 inp->inp_fport != ti->ti_sport || 297 inp->inp_faddr.s_addr != ti->ti_src.s_addr || 298 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) { 299 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport, 300 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD); 301 if (inp) 302 tcp_last_inpcb = inp; 303 ++tcppcbcachemiss; 304 } 305 306 /* 307 * If the state is CLOSED (i.e., TCB does not exist) then 308 * all data in the incoming segment is discarded. 309 * If the TCB exists but is in CLOSED state, it is embryonic, 310 * but should either do a listen or a connect soon. 311 */ 312 if (inp == 0) 313 goto dropwithreset; 314 tp = intotcpcb(inp); 315 if (tp == 0) 316 goto dropwithreset; 317 if (tp->t_state == TCPS_CLOSED) 318 goto drop; 319 320 /* Unscale the window into a 32-bit value. */ 321 if ((tiflags & TH_SYN) == 0) 322 tiwin = ti->ti_win << tp->snd_scale; 323 else 324 tiwin = ti->ti_win; 325 326 so = inp->inp_socket; 327 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { 328 if (so->so_options & SO_DEBUG) { 329 ostate = tp->t_state; 330 tcp_saveti = *ti; 331 } 332 if (so->so_options & SO_ACCEPTCONN) { 333 so = sonewconn(so, 0); 334 if (so == 0) 335 goto drop; 336 /* 337 * This is ugly, but .... 338 * 339 * Mark socket as temporary until we're 340 * committed to keeping it. The code at 341 * ``drop'' and ``dropwithreset'' check the 342 * flag dropsocket to see if the temporary 343 * socket created here should be discarded. 344 * We mark the socket as discardable until 345 * we're committed to it below in TCPS_LISTEN. 346 */ 347 dropsocket++; 348 inp = (struct inpcb *)so->so_pcb; 349 inp->inp_laddr = ti->ti_dst; 350 inp->inp_lport = ti->ti_dport; 351 #if BSD>=43 352 inp->inp_options = ip_srcroute(); 353 #endif 354 tp = intotcpcb(inp); 355 tp->t_state = TCPS_LISTEN; 356 357 /* Compute proper scaling value from buffer space 358 */ 359 while (tp->request_r_scale < TCP_MAX_WINSHIFT && 360 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat) 361 tp->request_r_scale++; 362 } 363 } 364 365 /* 366 * Segment received on connection. 367 * Reset idle time and keep-alive timer. 368 */ 369 tp->t_idle = 0; 370 tp->t_timer[TCPT_KEEP] = tcp_keepidle; 371 372 /* 373 * Process options if not in LISTEN state, 374 * else do it below (after getting remote address). 375 */ 376 if (optp && tp->t_state != TCPS_LISTEN) 377 tcp_dooptions(tp, optp, optlen, ti, 378 &ts_present, &ts_val, &ts_ecr); 379 380 /* 381 * Header prediction: check for the two common cases 382 * of a uni-directional data xfer. If the packet has 383 * no control flags, is in-sequence, the window didn't 384 * change and we're not retransmitting, it's a 385 * candidate. If the length is zero and the ack moved 386 * forward, we're the sender side of the xfer. Just 387 * free the data acked & wake any higher level process 388 * that was blocked waiting for space. If the length 389 * is non-zero and the ack didn't move, we're the 390 * receiver side. If we're getting packets in-order 391 * (the reassembly queue is empty), add the data to 392 * the socket buffer and note that we need a delayed ack. 393 */ 394 if (tp->t_state == TCPS_ESTABLISHED && 395 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 396 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && 397 ti->ti_seq == tp->rcv_nxt && 398 tiwin && tiwin == tp->snd_wnd && 399 tp->snd_nxt == tp->snd_max) { 400 401 /* 402 * If last ACK falls within this segment's sequence numbers, 403 * record the timestamp. 404 */ 405 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && 406 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) { 407 tp->ts_recent_age = tcp_now; 408 tp->ts_recent = ts_val; 409 } 410 411 if (ti->ti_len == 0) { 412 if (SEQ_GT(ti->ti_ack, tp->snd_una) && 413 SEQ_LEQ(ti->ti_ack, tp->snd_max) && 414 tp->snd_cwnd >= tp->snd_wnd) { 415 /* 416 * this is a pure ack for outstanding data. 417 */ 418 ++tcppredack; 419 if (ts_present) 420 tcp_xmit_timer(tp, tcp_now-ts_ecr+1); 421 else if (tp->t_rtt && 422 SEQ_GT(ti->ti_ack, tp->t_rtseq)) 423 tcp_xmit_timer(tp, tp->t_rtt); 424 acked = ti->ti_ack - tp->snd_una; 425 tcpstat.tcps_rcvackpack++; 426 tcpstat.tcps_rcvackbyte += acked; 427 sbdrop(&so->so_snd, acked); 428 tp->snd_una = ti->ti_ack; 429 m_freem(m); 430 431 /* 432 * If all outstanding data are acked, stop 433 * retransmit timer, otherwise restart timer 434 * using current (possibly backed-off) value. 435 * If process is waiting for space, 436 * wakeup/selwakeup/signal. If data 437 * are ready to send, let tcp_output 438 * decide between more output or persist. 439 */ 440 if (tp->snd_una == tp->snd_max) 441 tp->t_timer[TCPT_REXMT] = 0; 442 else if (tp->t_timer[TCPT_PERSIST] == 0) 443 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; 444 445 if (so->so_snd.sb_flags & SB_NOTIFY) 446 sowwakeup(so); 447 if (so->so_snd.sb_cc) 448 (void) tcp_output(tp); 449 return; 450 } 451 } else if (ti->ti_ack == tp->snd_una && 452 tp->seg_next == (struct tcpiphdr *)tp && 453 ti->ti_len <= sbspace(&so->so_rcv)) { 454 /* 455 * this is a pure, in-sequence data packet 456 * with nothing on the reassembly queue and 457 * we have enough buffer space to take it. 458 */ 459 ++tcppreddat; 460 tp->rcv_nxt += ti->ti_len; 461 tcpstat.tcps_rcvpack++; 462 tcpstat.tcps_rcvbyte += ti->ti_len; 463 /* 464 * Drop TCP, IP headers and TCP options then add data 465 * to socket buffer. 466 */ 467 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 468 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 469 sbappend(&so->so_rcv, m); 470 sorwakeup(so); 471 tp->t_flags |= TF_DELACK; 472 return; 473 } 474 } 475 476 /* 477 * Drop TCP, IP headers and TCP options. 478 */ 479 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 480 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 481 482 /* 483 * Calculate amount of space in receive window, 484 * and then do TCP input processing. 485 * Receive window is amount of space in rcv queue, 486 * but not less than advertised window. 487 */ 488 { int win; 489 490 win = sbspace(&so->so_rcv); 491 if (win < 0) 492 win = 0; 493 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 494 } 495 496 switch (tp->t_state) { 497 498 /* 499 * If the state is LISTEN then ignore segment if it contains an RST. 500 * If the segment contains an ACK then it is bad and send a RST. 501 * If it does not contain a SYN then it is not interesting; drop it. 502 * Don't bother responding if the destination was a broadcast. 503 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial 504 * tp->iss, and send a segment: 505 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> 506 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. 507 * Fill in remote peer address fields if not previously specified. 508 * Enter SYN_RECEIVED state, and process any other fields of this 509 * segment in this state. 510 */ 511 case TCPS_LISTEN: { 512 struct mbuf *am; 513 register struct sockaddr_in *sin; 514 515 if (tiflags & TH_RST) 516 goto drop; 517 if (tiflags & TH_ACK) 518 goto dropwithreset; 519 if ((tiflags & TH_SYN) == 0) 520 goto drop; 521 /* 522 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN 523 * in_broadcast() should never return true on a received 524 * packet with M_BCAST not set. 525 */ 526 if (m->m_flags & (M_BCAST|M_MCAST) || 527 IN_MULTICAST(ti->ti_dst.s_addr)) 528 goto drop; 529 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */ 530 if (am == NULL) 531 goto drop; 532 am->m_len = sizeof (struct sockaddr_in); 533 sin = mtod(am, struct sockaddr_in *); 534 sin->sin_family = AF_INET; 535 sin->sin_len = sizeof(*sin); 536 sin->sin_addr = ti->ti_src; 537 sin->sin_port = ti->ti_sport; 538 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); 539 laddr = inp->inp_laddr; 540 if (inp->inp_laddr.s_addr == INADDR_ANY) 541 inp->inp_laddr = ti->ti_dst; 542 if (in_pcbconnect(inp, am)) { 543 inp->inp_laddr = laddr; 544 (void) m_free(am); 545 goto drop; 546 } 547 (void) m_free(am); 548 tp->t_template = tcp_template(tp); 549 if (tp->t_template == 0) { 550 tp = tcp_drop(tp, ENOBUFS); 551 dropsocket = 0; /* socket is already gone */ 552 goto drop; 553 } 554 if (optp) 555 tcp_dooptions(tp, optp, optlen, ti, 556 &ts_present, &ts_val, &ts_ecr); 557 if (iss) 558 tp->iss = iss; 559 else 560 tp->iss = tcp_iss; 561 tcp_iss += TCP_ISSINCR/2; 562 tp->irs = ti->ti_seq; 563 tcp_sendseqinit(tp); 564 tcp_rcvseqinit(tp); 565 tp->t_flags |= TF_ACKNOW; 566 tp->t_state = TCPS_SYN_RECEIVED; 567 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; 568 dropsocket = 0; /* committed to socket */ 569 tcpstat.tcps_accepts++; 570 goto trimthenstep6; 571 } 572 573 /* 574 * If the state is SYN_SENT: 575 * if seg contains an ACK, but not for our SYN, drop the input. 576 * if seg contains a RST, then drop the connection. 577 * if seg does not contain SYN, then drop it. 578 * Otherwise this is an acceptable SYN segment 579 * initialize tp->rcv_nxt and tp->irs 580 * if seg contains ack then advance tp->snd_una 581 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 582 * arrange for segment to be acked (eventually) 583 * continue processing rest of data/controls, beginning with URG 584 */ 585 case TCPS_SYN_SENT: 586 if ((tiflags & TH_ACK) && 587 (SEQ_LEQ(ti->ti_ack, tp->iss) || 588 SEQ_GT(ti->ti_ack, tp->snd_max))) 589 goto dropwithreset; 590 if (tiflags & TH_RST) { 591 if (tiflags & TH_ACK) 592 tp = tcp_drop(tp, ECONNREFUSED); 593 goto drop; 594 } 595 if ((tiflags & TH_SYN) == 0) 596 goto drop; 597 if (tiflags & TH_ACK) { 598 tp->snd_una = ti->ti_ack; 599 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 600 tp->snd_nxt = tp->snd_una; 601 } 602 tp->t_timer[TCPT_REXMT] = 0; 603 tp->irs = ti->ti_seq; 604 tcp_rcvseqinit(tp); 605 tp->t_flags |= TF_ACKNOW; 606 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { 607 tcpstat.tcps_connects++; 608 soisconnected(so); 609 tp->t_state = TCPS_ESTABLISHED; 610 /* Do window scaling on this connection? */ 611 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 612 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 613 tp->snd_scale = tp->requested_s_scale; 614 tp->rcv_scale = tp->request_r_scale; 615 } 616 (void) tcp_reass(tp, (struct tcpiphdr *)0, 617 (struct mbuf *)0); 618 /* 619 * if we didn't have to retransmit the SYN, 620 * use its rtt as our initial srtt & rtt var. 621 */ 622 if (tp->t_rtt) 623 tcp_xmit_timer(tp, tp->t_rtt); 624 } else 625 tp->t_state = TCPS_SYN_RECEIVED; 626 627 trimthenstep6: 628 /* 629 * Must not talk to ourselves. 630 */ 631 if (inp->inp_laddr.s_addr == inp->inp_faddr.s_addr && 632 inp->inp_lport == inp->inp_fport) { 633 dropsocket = 1; /* do an ECONNRESET */ 634 goto dropwithreset; 635 } 636 /* 637 * Advance ti->ti_seq to correspond to first data byte. 638 * If data, trim to stay within window, 639 * dropping FIN if necessary. 640 */ 641 ti->ti_seq++; 642 if (ti->ti_len > tp->rcv_wnd) { 643 todrop = ti->ti_len - tp->rcv_wnd; 644 m_adj(m, -todrop); 645 ti->ti_len = tp->rcv_wnd; 646 tiflags &= ~TH_FIN; 647 tcpstat.tcps_rcvpackafterwin++; 648 tcpstat.tcps_rcvbyteafterwin += todrop; 649 } 650 tp->snd_wl1 = ti->ti_seq - 1; 651 tp->rcv_up = ti->ti_seq; 652 goto step6; 653 } 654 655 /* 656 * States other than LISTEN or SYN_SENT. 657 * First check timestamp, if present. 658 * Then check that at least some bytes of segment are within 659 * receive window. If segment begins before rcv_nxt, 660 * drop leading data (and SYN); if nothing left, just ack. 661 * 662 * RFC 1323 PAWS: If we have a timestamp reply on this segment 663 * and it's less than ts_recent, drop it. 664 */ 665 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent && 666 TSTMP_LT(ts_val, tp->ts_recent)) { 667 668 /* Check to see if ts_recent is over 24 days old. */ 669 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { 670 /* 671 * Invalidate ts_recent. If this segment updates 672 * ts_recent, the age will be reset later and ts_recent 673 * will get a valid value. If it does not, setting 674 * ts_recent to zero will at least satisfy the 675 * requirement that zero be placed in the timestamp 676 * echo reply when ts_recent isn't valid. The 677 * age isn't reset until we get a valid ts_recent 678 * because we don't want out-of-order segments to be 679 * dropped when ts_recent is old. 680 */ 681 tp->ts_recent = 0; 682 } else { 683 tcpstat.tcps_rcvduppack++; 684 tcpstat.tcps_rcvdupbyte += ti->ti_len; 685 tcpstat.tcps_pawsdrop++; 686 goto dropafterack; 687 } 688 } 689 690 todrop = tp->rcv_nxt - ti->ti_seq; 691 if (todrop > 0) { 692 if (tiflags & TH_SYN) { 693 tiflags &= ~TH_SYN; 694 ti->ti_seq++; 695 if (ti->ti_urp > 1) 696 ti->ti_urp--; 697 else 698 tiflags &= ~TH_URG; 699 todrop--; 700 } 701 if (todrop > ti->ti_len || 702 todrop == ti->ti_len && (tiflags&TH_FIN) == 0) { 703 tcpstat.tcps_rcvduppack++; 704 tcpstat.tcps_rcvdupbyte += ti->ti_len; 705 /* 706 * If segment is just one to the left of the window, 707 * check two special cases: 708 * 1. Don't toss RST in response to 4.2-style keepalive. 709 * 2. If the only thing to drop is a FIN, we can drop 710 * it, but check the ACK or we will get into FIN 711 * wars if our FINs crossed (both CLOSING). 712 * In either case, send ACK to resynchronize, 713 * but keep on processing for RST or ACK. 714 */ 715 if ((tiflags & TH_FIN && todrop == ti->ti_len + 1) 716 #ifdef TCP_COMPAT_42 717 || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1) 718 #endif 719 ) { 720 todrop = ti->ti_len; 721 tiflags &= ~TH_FIN; 722 tp->t_flags |= TF_ACKNOW; 723 } else { 724 /* 725 * Handle the case when a bound socket connects 726 * to itself. Allow packets with a SYN and 727 * an ACK to continue with the processing. 728 */ 729 if (todrop != 0 || (tiflags & TH_ACK) == 0) 730 goto dropafterack; 731 } 732 } else { 733 tcpstat.tcps_rcvpartduppack++; 734 tcpstat.tcps_rcvpartdupbyte += todrop; 735 } 736 m_adj(m, todrop); 737 ti->ti_seq += todrop; 738 ti->ti_len -= todrop; 739 if (ti->ti_urp > todrop) 740 ti->ti_urp -= todrop; 741 else { 742 tiflags &= ~TH_URG; 743 ti->ti_urp = 0; 744 } 745 } 746 747 /* 748 * If new data are received on a connection after the 749 * user processes are gone, then RST the other end. 750 */ 751 if ((so->so_state & SS_NOFDREF) && 752 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { 753 tp = tcp_close(tp); 754 tcpstat.tcps_rcvafterclose++; 755 goto dropwithreset; 756 } 757 758 /* 759 * If segment ends after window, drop trailing data 760 * (and PUSH and FIN); if nothing left, just ACK. 761 */ 762 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); 763 if (todrop > 0) { 764 tcpstat.tcps_rcvpackafterwin++; 765 if (todrop >= ti->ti_len) { 766 tcpstat.tcps_rcvbyteafterwin += ti->ti_len; 767 /* 768 * If a new connection request is received 769 * while in TIME_WAIT, drop the old connection 770 * and start over if the sequence numbers 771 * are above the previous ones. 772 */ 773 if (tiflags & TH_SYN && 774 tp->t_state == TCPS_TIME_WAIT && 775 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { 776 iss = tp->rcv_nxt + TCP_ISSINCR; 777 tp = tcp_close(tp); 778 goto findpcb; 779 } 780 /* 781 * If window is closed can only take segments at 782 * window edge, and have to drop data and PUSH from 783 * incoming segments. Continue processing, but 784 * remember to ack. Otherwise, drop segment 785 * and ack. 786 */ 787 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { 788 tp->t_flags |= TF_ACKNOW; 789 tcpstat.tcps_rcvwinprobe++; 790 } else 791 goto dropafterack; 792 } else 793 tcpstat.tcps_rcvbyteafterwin += todrop; 794 m_adj(m, -todrop); 795 ti->ti_len -= todrop; 796 tiflags &= ~(TH_PUSH|TH_FIN); 797 } 798 799 /* 800 * If last ACK falls within this segment's sequence numbers, 801 * record its timestamp. 802 */ 803 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && 804 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len + 805 ((tiflags & (TH_SYN|TH_FIN)) != 0))) { 806 tp->ts_recent_age = tcp_now; 807 tp->ts_recent = ts_val; 808 } 809 810 /* 811 * If the RST bit is set examine the state: 812 * SYN_RECEIVED STATE: 813 * If passive open, return to LISTEN state. 814 * If active open, inform user that connection was refused. 815 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: 816 * Inform user that connection was reset, and close tcb. 817 * CLOSING, LAST_ACK, TIME_WAIT STATES 818 * Close the tcb. 819 */ 820 if (tiflags&TH_RST) switch (tp->t_state) { 821 822 case TCPS_SYN_RECEIVED: 823 so->so_error = ECONNREFUSED; 824 goto close; 825 826 case TCPS_ESTABLISHED: 827 case TCPS_FIN_WAIT_1: 828 case TCPS_FIN_WAIT_2: 829 case TCPS_CLOSE_WAIT: 830 so->so_error = ECONNRESET; 831 close: 832 tp->t_state = TCPS_CLOSED; 833 tcpstat.tcps_drops++; 834 tp = tcp_close(tp); 835 goto drop; 836 837 case TCPS_CLOSING: 838 case TCPS_LAST_ACK: 839 case TCPS_TIME_WAIT: 840 tp = tcp_close(tp); 841 goto drop; 842 } 843 844 /* 845 * If a SYN is in the window, then this is an 846 * error and we send an RST and drop the connection. 847 */ 848 if (tiflags & TH_SYN) { 849 tp = tcp_drop(tp, ECONNRESET); 850 goto dropwithreset; 851 } 852 853 /* 854 * If the ACK bit is off we drop the segment and return. 855 */ 856 if ((tiflags & TH_ACK) == 0) 857 goto drop; 858 859 /* 860 * Ack processing. 861 */ 862 switch (tp->t_state) { 863 864 /* 865 * In SYN_RECEIVED state if the ack ACKs our SYN then enter 866 * ESTABLISHED state and continue processing, otherwise 867 * send an RST. 868 */ 869 case TCPS_SYN_RECEIVED: 870 if (SEQ_GT(tp->snd_una, ti->ti_ack) || 871 SEQ_GT(ti->ti_ack, tp->snd_max)) 872 goto dropwithreset; 873 tcpstat.tcps_connects++; 874 soisconnected(so); 875 tp->t_state = TCPS_ESTABLISHED; 876 /* Do window scaling? */ 877 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 878 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 879 tp->snd_scale = tp->requested_s_scale; 880 tp->rcv_scale = tp->request_r_scale; 881 } 882 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); 883 tp->snd_wl1 = ti->ti_seq - 1; 884 /* fall into ... */ 885 886 /* 887 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 888 * ACKs. If the ack is in the range 889 * tp->snd_una < ti->ti_ack <= tp->snd_max 890 * then advance tp->snd_una to ti->ti_ack and drop 891 * data from the retransmission queue. If this ACK reflects 892 * more up to date window information we update our window information. 893 */ 894 case TCPS_ESTABLISHED: 895 case TCPS_FIN_WAIT_1: 896 case TCPS_FIN_WAIT_2: 897 case TCPS_CLOSE_WAIT: 898 case TCPS_CLOSING: 899 case TCPS_LAST_ACK: 900 case TCPS_TIME_WAIT: 901 902 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { 903 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { 904 tcpstat.tcps_rcvdupack++; 905 /* 906 * If we have outstanding data (other than 907 * a window probe), this is a completely 908 * duplicate ack (ie, window info didn't 909 * change), the ack is the biggest we've 910 * seen and we've seen exactly our rexmt 911 * threshhold of them, assume a packet 912 * has been dropped and retransmit it. 913 * Kludge snd_nxt & the congestion 914 * window so we send only this one 915 * packet. 916 * 917 * We know we're losing at the current 918 * window size so do congestion avoidance 919 * (set ssthresh to half the current window 920 * and pull our congestion window back to 921 * the new ssthresh). 922 * 923 * Dup acks mean that packets have left the 924 * network (they're now cached at the receiver) 925 * so bump cwnd by the amount in the receiver 926 * to keep a constant cwnd packets in the 927 * network. 928 */ 929 if (tp->t_timer[TCPT_REXMT] == 0 || 930 ti->ti_ack != tp->snd_una) 931 tp->t_dupacks = 0; 932 else if (++tp->t_dupacks == tcprexmtthresh) { 933 tcp_seq onxt = tp->snd_nxt; 934 u_int win = 935 min(tp->snd_wnd, tp->snd_cwnd) / 2 / 936 tp->t_maxseg; 937 938 if (win < 2) 939 win = 2; 940 tp->snd_ssthresh = win * tp->t_maxseg; 941 tp->t_timer[TCPT_REXMT] = 0; 942 tp->t_rtt = 0; 943 tp->snd_nxt = ti->ti_ack; 944 tp->snd_cwnd = tp->t_maxseg; 945 (void) tcp_output(tp); 946 tp->snd_cwnd = tp->snd_ssthresh + 947 tp->t_maxseg * tp->t_dupacks; 948 if (SEQ_GT(onxt, tp->snd_nxt)) 949 tp->snd_nxt = onxt; 950 goto drop; 951 } else if (tp->t_dupacks > tcprexmtthresh) { 952 tp->snd_cwnd += tp->t_maxseg; 953 (void) tcp_output(tp); 954 goto drop; 955 } 956 } else 957 tp->t_dupacks = 0; 958 break; 959 } 960 /* 961 * If the congestion window was inflated to account 962 * for the other side's cached packets, retract it. 963 */ 964 if (tp->t_dupacks > tcprexmtthresh && 965 tp->snd_cwnd > tp->snd_ssthresh) 966 tp->snd_cwnd = tp->snd_ssthresh; 967 tp->t_dupacks = 0; 968 if (SEQ_GT(ti->ti_ack, tp->snd_max)) { 969 tcpstat.tcps_rcvacktoomuch++; 970 goto dropafterack; 971 } 972 acked = ti->ti_ack - tp->snd_una; 973 tcpstat.tcps_rcvackpack++; 974 tcpstat.tcps_rcvackbyte += acked; 975 976 /* 977 * If we have a timestamp reply, update smoothed 978 * round trip time. If no timestamp is present but 979 * transmit timer is running and timed sequence 980 * number was acked, update smoothed round trip time. 981 * Since we now have an rtt measurement, cancel the 982 * timer backoff (cf., Phil Karn's retransmit alg.). 983 * Recompute the initial retransmit timer. 984 */ 985 if (ts_present) 986 tcp_xmit_timer(tp, tcp_now-ts_ecr+1); 987 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) 988 tcp_xmit_timer(tp,tp->t_rtt); 989 990 /* 991 * If all outstanding data is acked, stop retransmit 992 * timer and remember to restart (more output or persist). 993 * If there is more data to be acked, restart retransmit 994 * timer, using current (possibly backed-off) value. 995 */ 996 if (ti->ti_ack == tp->snd_max) { 997 tp->t_timer[TCPT_REXMT] = 0; 998 needoutput = 1; 999 } else if (tp->t_timer[TCPT_PERSIST] == 0) 1000 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; 1001 /* 1002 * When new data is acked, open the congestion window. 1003 * If the window gives us less than ssthresh packets 1004 * in flight, open exponentially (maxseg per packet). 1005 * Otherwise open linearly: maxseg per window 1006 * (maxseg^2 / cwnd per packet), plus a constant 1007 * fraction of a packet (maxseg/8) to help larger windows 1008 * open quickly enough. 1009 */ 1010 { 1011 register u_int cw = tp->snd_cwnd; 1012 register u_int incr = tp->t_maxseg; 1013 1014 if (cw > tp->snd_ssthresh) 1015 incr = incr * incr / cw + incr / 8; 1016 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale); 1017 } 1018 if (acked > so->so_snd.sb_cc) { 1019 tp->snd_wnd -= so->so_snd.sb_cc; 1020 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); 1021 ourfinisacked = 1; 1022 } else { 1023 sbdrop(&so->so_snd, acked); 1024 tp->snd_wnd -= acked; 1025 ourfinisacked = 0; 1026 } 1027 if (so->so_snd.sb_flags & SB_NOTIFY) 1028 sowwakeup(so); 1029 tp->snd_una = ti->ti_ack; 1030 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 1031 tp->snd_nxt = tp->snd_una; 1032 1033 switch (tp->t_state) { 1034 1035 /* 1036 * In FIN_WAIT_1 STATE in addition to the processing 1037 * for the ESTABLISHED state if our FIN is now acknowledged 1038 * then enter FIN_WAIT_2. 1039 */ 1040 case TCPS_FIN_WAIT_1: 1041 if (ourfinisacked) { 1042 /* 1043 * If we can't receive any more 1044 * data, then closing user can proceed. 1045 * Starting the timer is contrary to the 1046 * specification, but if we don't get a FIN 1047 * we'll hang forever. 1048 */ 1049 if (so->so_state & SS_CANTRCVMORE) { 1050 soisdisconnected(so); 1051 tp->t_timer[TCPT_2MSL] = tcp_maxidle; 1052 } 1053 tp->t_state = TCPS_FIN_WAIT_2; 1054 } 1055 break; 1056 1057 /* 1058 * In CLOSING STATE in addition to the processing for 1059 * the ESTABLISHED state if the ACK acknowledges our FIN 1060 * then enter the TIME-WAIT state, otherwise ignore 1061 * the segment. 1062 */ 1063 case TCPS_CLOSING: 1064 if (ourfinisacked) { 1065 tp->t_state = TCPS_TIME_WAIT; 1066 tcp_canceltimers(tp); 1067 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1068 soisdisconnected(so); 1069 } 1070 break; 1071 1072 /* 1073 * In LAST_ACK, we may still be waiting for data to drain 1074 * and/or to be acked, as well as for the ack of our FIN. 1075 * If our FIN is now acknowledged, delete the TCB, 1076 * enter the closed state and return. 1077 */ 1078 case TCPS_LAST_ACK: 1079 if (ourfinisacked) { 1080 tp = tcp_close(tp); 1081 goto drop; 1082 } 1083 break; 1084 1085 /* 1086 * In TIME_WAIT state the only thing that should arrive 1087 * is a retransmission of the remote FIN. Acknowledge 1088 * it and restart the finack timer. 1089 */ 1090 case TCPS_TIME_WAIT: 1091 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1092 goto dropafterack; 1093 } 1094 } 1095 1096 step6: 1097 /* 1098 * Update window information. 1099 * Don't look at window if no ACK: TAC's send garbage on first SYN. 1100 */ 1101 if ((tiflags & TH_ACK) && 1102 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq && 1103 (SEQ_LT(tp->snd_wl2, ti->ti_ack) || 1104 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) { 1105 /* keep track of pure window updates */ 1106 if (ti->ti_len == 0 && 1107 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) 1108 tcpstat.tcps_rcvwinupd++; 1109 tp->snd_wnd = tiwin; 1110 tp->snd_wl1 = ti->ti_seq; 1111 tp->snd_wl2 = ti->ti_ack; 1112 if (tp->snd_wnd > tp->max_sndwnd) 1113 tp->max_sndwnd = tp->snd_wnd; 1114 needoutput = 1; 1115 } 1116 1117 /* 1118 * Process segments with URG. 1119 */ 1120 if ((tiflags & TH_URG) && ti->ti_urp && 1121 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1122 /* 1123 * This is a kludge, but if we receive and accept 1124 * random urgent pointers, we'll crash in 1125 * soreceive. It's hard to imagine someone 1126 * actually wanting to send this much urgent data. 1127 */ 1128 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) { 1129 ti->ti_urp = 0; /* XXX */ 1130 tiflags &= ~TH_URG; /* XXX */ 1131 goto dodata; /* XXX */ 1132 } 1133 /* 1134 * If this segment advances the known urgent pointer, 1135 * then mark the data stream. This should not happen 1136 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 1137 * a FIN has been received from the remote side. 1138 * In these states we ignore the URG. 1139 * 1140 * According to RFC961 (Assigned Protocols), 1141 * the urgent pointer points to the last octet 1142 * of urgent data. We continue, however, 1143 * to consider it to indicate the first octet 1144 * of data past the urgent section as the original 1145 * spec states (in one of two places). 1146 */ 1147 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { 1148 tp->rcv_up = ti->ti_seq + ti->ti_urp; 1149 so->so_oobmark = so->so_rcv.sb_cc + 1150 (tp->rcv_up - tp->rcv_nxt) - 1; 1151 if (so->so_oobmark == 0) 1152 so->so_state |= SS_RCVATMARK; 1153 sohasoutofband(so); 1154 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 1155 } 1156 /* 1157 * Remove out of band data so doesn't get presented to user. 1158 * This can happen independent of advancing the URG pointer, 1159 * but if two URG's are pending at once, some out-of-band 1160 * data may creep in... ick. 1161 */ 1162 if (ti->ti_urp <= ti->ti_len 1163 #ifdef SO_OOBINLINE 1164 && (so->so_options & SO_OOBINLINE) == 0 1165 #endif 1166 ) 1167 tcp_pulloutofband(so, ti, m); 1168 } else 1169 /* 1170 * If no out of band data is expected, 1171 * pull receive urgent pointer along 1172 * with the receive window. 1173 */ 1174 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 1175 tp->rcv_up = tp->rcv_nxt; 1176 dodata: /* XXX */ 1177 1178 /* 1179 * Process the segment text, merging it into the TCP sequencing queue, 1180 * and arranging for acknowledgment of receipt if necessary. 1181 * This process logically involves adjusting tp->rcv_wnd as data 1182 * is presented to the user (this happens in tcp_usrreq.c, 1183 * case PRU_RCVD). If a FIN has already been received on this 1184 * connection then we just ignore the text. 1185 */ 1186 if ((ti->ti_len || (tiflags&TH_FIN)) && 1187 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1188 TCP_REASS(tp, ti, m, so, tiflags); 1189 /* 1190 * Note the amount of data that peer has sent into 1191 * our window, in order to estimate the sender's 1192 * buffer size. 1193 */ 1194 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 1195 } else { 1196 m_freem(m); 1197 tiflags &= ~TH_FIN; 1198 } 1199 1200 /* 1201 * If FIN is received ACK the FIN and let the user know 1202 * that the connection is closing. 1203 */ 1204 if (tiflags & TH_FIN) { 1205 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1206 socantrcvmore(so); 1207 tp->t_flags |= TF_ACKNOW; 1208 tp->rcv_nxt++; 1209 } 1210 switch (tp->t_state) { 1211 1212 /* 1213 * In SYN_RECEIVED and ESTABLISHED STATES 1214 * enter the CLOSE_WAIT state. 1215 */ 1216 case TCPS_SYN_RECEIVED: 1217 case TCPS_ESTABLISHED: 1218 tp->t_state = TCPS_CLOSE_WAIT; 1219 break; 1220 1221 /* 1222 * If still in FIN_WAIT_1 STATE FIN has not been acked so 1223 * enter the CLOSING state. 1224 */ 1225 case TCPS_FIN_WAIT_1: 1226 tp->t_state = TCPS_CLOSING; 1227 break; 1228 1229 /* 1230 * In FIN_WAIT_2 state enter the TIME_WAIT state, 1231 * starting the time-wait timer, turning off the other 1232 * standard timers. 1233 */ 1234 case TCPS_FIN_WAIT_2: 1235 tp->t_state = TCPS_TIME_WAIT; 1236 tcp_canceltimers(tp); 1237 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1238 soisdisconnected(so); 1239 break; 1240 1241 /* 1242 * In TIME_WAIT state restart the 2 MSL time_wait timer. 1243 */ 1244 case TCPS_TIME_WAIT: 1245 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1246 break; 1247 } 1248 } 1249 if (so->so_options & SO_DEBUG) 1250 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0); 1251 1252 /* 1253 * Return any desired output. 1254 */ 1255 if (needoutput || (tp->t_flags & TF_ACKNOW)) 1256 (void) tcp_output(tp); 1257 return; 1258 1259 dropafterack: 1260 /* 1261 * Generate an ACK dropping incoming segment if it occupies 1262 * sequence space, where the ACK reflects our state. 1263 */ 1264 if (tiflags & TH_RST) 1265 goto drop; 1266 m_freem(m); 1267 tp->t_flags |= TF_ACKNOW; 1268 (void) tcp_output(tp); 1269 return; 1270 1271 dropwithreset: 1272 /* 1273 * Generate a RST, dropping incoming segment. 1274 * Make ACK acceptable to originator of segment. 1275 * Don't bother to respond if destination was broadcast/multicast. 1276 */ 1277 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) || 1278 IN_MULTICAST(ti->ti_dst.s_addr)) 1279 goto drop; 1280 if (tiflags & TH_ACK) 1281 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); 1282 else { 1283 if (tiflags & TH_SYN) 1284 ti->ti_len++; 1285 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, 1286 TH_RST|TH_ACK); 1287 } 1288 /* destroy temporarily created socket */ 1289 if (dropsocket) 1290 (void) soabort(so); 1291 return; 1292 1293 drop: 1294 /* 1295 * Drop space held by incoming segment and return. 1296 */ 1297 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 1298 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0); 1299 m_freem(m); 1300 /* destroy temporarily created socket */ 1301 if (dropsocket) 1302 (void) soabort(so); 1303 return; 1304 #ifndef TUBA_INCLUDE 1305 } 1306 1307 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr) 1308 struct tcpcb *tp; 1309 u_char *cp; 1310 int cnt; 1311 struct tcpiphdr *ti; 1312 int *ts_present; 1313 u_long *ts_val, *ts_ecr; 1314 { 1315 u_short mss; 1316 int opt, optlen; 1317 1318 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1319 opt = cp[0]; 1320 if (opt == TCPOPT_EOL) 1321 break; 1322 if (opt == TCPOPT_NOP) 1323 optlen = 1; 1324 else { 1325 optlen = cp[1]; 1326 if (optlen <= 0) 1327 break; 1328 } 1329 switch (opt) { 1330 1331 default: 1332 continue; 1333 1334 case TCPOPT_MAXSEG: 1335 if (optlen != TCPOLEN_MAXSEG) 1336 continue; 1337 if (!(ti->ti_flags & TH_SYN)) 1338 continue; 1339 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss)); 1340 NTOHS(mss); 1341 (void) tcp_mss(tp, mss); /* sets t_maxseg */ 1342 break; 1343 1344 case TCPOPT_WINDOW: 1345 if (optlen != TCPOLEN_WINDOW) 1346 continue; 1347 if (!(ti->ti_flags & TH_SYN)) 1348 continue; 1349 tp->t_flags |= TF_RCVD_SCALE; 1350 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); 1351 break; 1352 1353 case TCPOPT_TIMESTAMP: 1354 if (optlen != TCPOLEN_TIMESTAMP) 1355 continue; 1356 *ts_present = 1; 1357 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val)); 1358 NTOHL(*ts_val); 1359 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr)); 1360 NTOHL(*ts_ecr); 1361 1362 /* 1363 * A timestamp received in a SYN makes 1364 * it ok to send timestamp requests and replies. 1365 */ 1366 if (ti->ti_flags & TH_SYN) { 1367 tp->t_flags |= TF_RCVD_TSTMP; 1368 tp->ts_recent = *ts_val; 1369 tp->ts_recent_age = tcp_now; 1370 } 1371 break; 1372 } 1373 } 1374 } 1375 1376 /* 1377 * Pull out of band byte out of a segment so 1378 * it doesn't appear in the user's data queue. 1379 * It is still reflected in the segment length for 1380 * sequencing purposes. 1381 */ 1382 tcp_pulloutofband(so, ti, m) 1383 struct socket *so; 1384 struct tcpiphdr *ti; 1385 register struct mbuf *m; 1386 { 1387 int cnt = ti->ti_urp - 1; 1388 1389 while (cnt >= 0) { 1390 if (m->m_len > cnt) { 1391 char *cp = mtod(m, caddr_t) + cnt; 1392 struct tcpcb *tp = sototcpcb(so); 1393 1394 tp->t_iobc = *cp; 1395 tp->t_oobflags |= TCPOOB_HAVEDATA; 1396 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 1397 m->m_len--; 1398 return; 1399 } 1400 cnt -= m->m_len; 1401 m = m->m_next; 1402 if (m == 0) 1403 break; 1404 } 1405 panic("tcp_pulloutofband"); 1406 } 1407 1408 /* 1409 * Collect new round-trip time estimate 1410 * and update averages and current timeout. 1411 */ 1412 tcp_xmit_timer(tp, rtt) 1413 register struct tcpcb *tp; 1414 short rtt; 1415 { 1416 register short delta; 1417 1418 tcpstat.tcps_rttupdated++; 1419 if (tp->t_srtt != 0) { 1420 /* 1421 * srtt is stored as fixed point with 3 bits after the 1422 * binary point (i.e., scaled by 8). The following magic 1423 * is equivalent to the smoothing algorithm in rfc793 with 1424 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 1425 * point). Adjust rtt to origin 0. 1426 */ 1427 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT); 1428 if ((tp->t_srtt += delta) <= 0) 1429 tp->t_srtt = 1; 1430 /* 1431 * We accumulate a smoothed rtt variance (actually, a 1432 * smoothed mean difference), then set the retransmit 1433 * timer to smoothed rtt + 4 times the smoothed variance. 1434 * rttvar is stored as fixed point with 2 bits after the 1435 * binary point (scaled by 4). The following is 1436 * equivalent to rfc793 smoothing with an alpha of .75 1437 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 1438 * rfc793's wired-in beta. 1439 */ 1440 if (delta < 0) 1441 delta = -delta; 1442 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); 1443 if ((tp->t_rttvar += delta) <= 0) 1444 tp->t_rttvar = 1; 1445 } else { 1446 /* 1447 * No rtt measurement yet - use the unsmoothed rtt. 1448 * Set the variance to half the rtt (so our first 1449 * retransmit happens at 3*rtt). 1450 */ 1451 tp->t_srtt = rtt << TCP_RTT_SHIFT; 1452 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 1453 } 1454 tp->t_rtt = 0; 1455 tp->t_rxtshift = 0; 1456 1457 /* 1458 * the retransmit should happen at rtt + 4 * rttvar. 1459 * Because of the way we do the smoothing, srtt and rttvar 1460 * will each average +1/2 tick of bias. When we compute 1461 * the retransmit timer, we want 1/2 tick of rounding and 1462 * 1 extra tick because of +-1/2 tick uncertainty in the 1463 * firing of the timer. The bias will give us exactly the 1464 * 1.5 tick we need. But, because the bias is 1465 * statistical, we have to test that we don't drop below 1466 * the minimum feasible timer (which is 2 ticks). 1467 */ 1468 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 1469 tp->t_rttmin, TCPTV_REXMTMAX); 1470 1471 /* 1472 * We received an ack for a packet that wasn't retransmitted; 1473 * it is probably safe to discard any error indications we've 1474 * received recently. This isn't quite right, but close enough 1475 * for now (a route might have failed after we sent a segment, 1476 * and the return path might not be symmetrical). 1477 */ 1478 tp->t_softerror = 0; 1479 } 1480 1481 /* 1482 * Determine a reasonable value for maxseg size. 1483 * If the route is known, check route for mtu. 1484 * If none, use an mss that can be handled on the outgoing 1485 * interface without forcing IP to fragment; if bigger than 1486 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES 1487 * to utilize large mbufs. If no route is found, route has no mtu, 1488 * or the destination isn't local, use a default, hopefully conservative 1489 * size (usually 512 or the default IP max size, but no more than the mtu 1490 * of the interface), as we can't discover anything about intervening 1491 * gateways or networks. We also initialize the congestion/slow start 1492 * window to be a single segment if the destination isn't local. 1493 * While looking at the routing entry, we also initialize other path-dependent 1494 * parameters from pre-set or cached values in the routing entry. 1495 */ 1496 1497 tcp_mss(tp, offer) 1498 register struct tcpcb *tp; 1499 u_short offer; 1500 { 1501 struct route *ro; 1502 register struct rtentry *rt; 1503 struct ifnet *ifp; 1504 register int rtt, mss; 1505 u_long bufsize; 1506 struct inpcb *inp; 1507 struct socket *so; 1508 extern int tcp_mssdflt, tcp_rttdflt; 1509 1510 inp = tp->t_inpcb; 1511 ro = &inp->inp_route; 1512 1513 if ((rt = ro->ro_rt) == (struct rtentry *)0) { 1514 /* No route yet, so try to acquire one */ 1515 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1516 ro->ro_dst.sa_family = AF_INET; 1517 ro->ro_dst.sa_len = sizeof(ro->ro_dst); 1518 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1519 inp->inp_faddr; 1520 rtalloc(ro); 1521 } 1522 if ((rt = ro->ro_rt) == (struct rtentry *)0) 1523 return (tcp_mssdflt); 1524 } 1525 ifp = rt->rt_ifp; 1526 so = inp->inp_socket; 1527 1528 #ifdef RTV_MTU /* if route characteristics exist ... */ 1529 /* 1530 * While we're here, check if there's an initial rtt 1531 * or rttvar. Convert from the route-table units 1532 * to scaled multiples of the slow timeout timer. 1533 */ 1534 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) { 1535 /* 1536 * XXX the lock bit for MTU indicates that the value 1537 * is also a minimum value; this is subject to time. 1538 */ 1539 if (rt->rt_rmx.rmx_locks & RTV_RTT) 1540 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ); 1541 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE)); 1542 if (rt->rt_rmx.rmx_rttvar) 1543 tp->t_rttvar = rt->rt_rmx.rmx_rttvar / 1544 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE)); 1545 else 1546 /* default variation is +- 1 rtt */ 1547 tp->t_rttvar = 1548 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 1549 TCPT_RANGESET(tp->t_rxtcur, 1550 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 1551 tp->t_rttmin, TCPTV_REXMTMAX); 1552 } 1553 /* 1554 * if there's an mtu associated with the route, use it 1555 */ 1556 if (rt->rt_rmx.rmx_mtu) 1557 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr); 1558 else 1559 #endif /* RTV_MTU */ 1560 { 1561 mss = ifp->if_mtu - sizeof(struct tcpiphdr); 1562 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1563 if (mss > MCLBYTES) 1564 mss &= ~(MCLBYTES-1); 1565 #else 1566 if (mss > MCLBYTES) 1567 mss = mss / MCLBYTES * MCLBYTES; 1568 #endif 1569 if (!in_localaddr(inp->inp_faddr)) 1570 mss = min(mss, tcp_mssdflt); 1571 } 1572 /* 1573 * The current mss, t_maxseg, is initialized to the default value. 1574 * If we compute a smaller value, reduce the current mss. 1575 * If we compute a larger value, return it for use in sending 1576 * a max seg size option, but don't store it for use 1577 * unless we received an offer at least that large from peer. 1578 * However, do not accept offers under 32 bytes. 1579 */ 1580 if (offer) 1581 mss = min(mss, offer); 1582 mss = max(mss, 32); /* sanity */ 1583 if (mss < tp->t_maxseg || offer != 0) { 1584 /* 1585 * If there's a pipesize, change the socket buffer 1586 * to that size. Make the socket buffers an integral 1587 * number of mss units; if the mss is larger than 1588 * the socket buffer, decrease the mss. 1589 */ 1590 #ifdef RTV_SPIPE 1591 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0) 1592 #endif 1593 bufsize = so->so_snd.sb_hiwat; 1594 if (bufsize < mss) 1595 mss = bufsize; 1596 else { 1597 bufsize = roundup(bufsize, mss); 1598 if (bufsize > sb_max) 1599 bufsize = sb_max; 1600 (void)sbreserve(&so->so_snd, bufsize); 1601 } 1602 tp->t_maxseg = mss; 1603 1604 #ifdef RTV_RPIPE 1605 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0) 1606 #endif 1607 bufsize = so->so_rcv.sb_hiwat; 1608 if (bufsize > mss) { 1609 bufsize = roundup(bufsize, mss); 1610 if (bufsize > sb_max) 1611 bufsize = sb_max; 1612 (void)sbreserve(&so->so_rcv, bufsize); 1613 } 1614 } 1615 tp->snd_cwnd = mss; 1616 1617 #ifdef RTV_SSTHRESH 1618 if (rt->rt_rmx.rmx_ssthresh) { 1619 /* 1620 * There's some sort of gateway or interface 1621 * buffer limit on the path. Use this to set 1622 * the slow start threshhold, but set the 1623 * threshold to no less than 2*mss. 1624 */ 1625 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); 1626 } 1627 #endif /* RTV_MTU */ 1628 return (mss); 1629 } 1630 #endif /* TUBA_INCLUDE */ 1631