1 /* 2 * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California. 3 * All rights reserved. 4 * 5 * %sccs.include.redist.c% 6 * 7 * @(#)spp_usrreq.c 7.16 (Berkeley) 10/11/92 8 */ 9 10 #include <sys/param.h> 11 #include <sys/systm.h> 12 #include <sys/malloc.h> 13 #include <sys/mbuf.h> 14 #include <sys/protosw.h> 15 #include <sys/socket.h> 16 #include <sys/socketvar.h> 17 #include <sys/errno.h> 18 19 #include <net/if.h> 20 #include <net/route.h> 21 #include <netinet/tcp_fsm.h> 22 23 #include <netns/ns.h> 24 #include <netns/ns_pcb.h> 25 #include <netns/idp.h> 26 #include <netns/idp_var.h> 27 #include <netns/ns_error.h> 28 #include <netns/sp.h> 29 #include <netns/spidp.h> 30 #include <netns/spp_timer.h> 31 #include <netns/spp_var.h> 32 #include <netns/spp_debug.h> 33 34 /* 35 * SP protocol implementation. 36 */ 37 spp_init() 38 { 39 40 spp_iss = 1; /* WRONG !! should fish it out of TODR */ 41 } 42 struct spidp spp_savesi; 43 int traceallspps = 0; 44 extern int sppconsdebug; 45 int spp_hardnosed; 46 int spp_use_delack = 0; 47 u_short spp_newchecks[50]; 48 49 /*ARGSUSED*/ 50 spp_input(m, nsp) 51 register struct mbuf *m; 52 register struct nspcb *nsp; 53 { 54 register struct sppcb *cb; 55 register struct spidp *si = mtod(m, struct spidp *); 56 register struct socket *so; 57 short ostate; 58 int dropsocket = 0; 59 60 61 sppstat.spps_rcvtotal++; 62 if (nsp == 0) { 63 panic("No nspcb in spp_input\n"); 64 return; 65 } 66 67 cb = nstosppcb(nsp); 68 if (cb == 0) goto bad; 69 70 if (m->m_len < sizeof(*si)) { 71 if ((m = m_pullup(m, sizeof(*si))) == 0) { 72 sppstat.spps_rcvshort++; 73 return; 74 } 75 si = mtod(m, struct spidp *); 76 } 77 si->si_seq = ntohs(si->si_seq); 78 si->si_ack = ntohs(si->si_ack); 79 si->si_alo = ntohs(si->si_alo); 80 81 so = nsp->nsp_socket; 82 if (so->so_options & SO_DEBUG || traceallspps) { 83 ostate = cb->s_state; 84 spp_savesi = *si; 85 } 86 if (so->so_options & SO_ACCEPTCONN) { 87 struct sppcb *ocb = cb; 88 89 so = sonewconn(so, 0); 90 if (so == 0) { 91 goto drop; 92 } 93 /* 94 * This is ugly, but .... 95 * 96 * Mark socket as temporary until we're 97 * committed to keeping it. The code at 98 * ``drop'' and ``dropwithreset'' check the 99 * flag dropsocket to see if the temporary 100 * socket created here should be discarded. 101 * We mark the socket as discardable until 102 * we're committed to it below in TCPS_LISTEN. 103 */ 104 dropsocket++; 105 nsp = (struct nspcb *)so->so_pcb; 106 nsp->nsp_laddr = si->si_dna; 107 cb = nstosppcb(nsp); 108 cb->s_mtu = ocb->s_mtu; /* preserve sockopts */ 109 cb->s_flags = ocb->s_flags; /* preserve sockopts */ 110 cb->s_flags2 = ocb->s_flags2; /* preserve sockopts */ 111 cb->s_state = TCPS_LISTEN; 112 } 113 114 /* 115 * Packet received on connection. 116 * reset idle time and keep-alive timer; 117 */ 118 cb->s_idle = 0; 119 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 120 121 switch (cb->s_state) { 122 123 case TCPS_LISTEN:{ 124 struct mbuf *am; 125 register struct sockaddr_ns *sns; 126 struct ns_addr laddr; 127 128 /* 129 * If somebody here was carying on a conversation 130 * and went away, and his pen pal thinks he can 131 * still talk, we get the misdirected packet. 132 */ 133 if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) { 134 spp_istat.gonawy++; 135 goto dropwithreset; 136 } 137 am = m_get(M_DONTWAIT, MT_SONAME); 138 if (am == NULL) 139 goto drop; 140 am->m_len = sizeof (struct sockaddr_ns); 141 sns = mtod(am, struct sockaddr_ns *); 142 sns->sns_len = sizeof(*sns); 143 sns->sns_family = AF_NS; 144 sns->sns_addr = si->si_sna; 145 laddr = nsp->nsp_laddr; 146 if (ns_nullhost(laddr)) 147 nsp->nsp_laddr = si->si_dna; 148 if (ns_pcbconnect(nsp, am)) { 149 nsp->nsp_laddr = laddr; 150 (void) m_free(am); 151 spp_istat.noconn++; 152 goto drop; 153 } 154 (void) m_free(am); 155 spp_template(cb); 156 dropsocket = 0; /* committed to socket */ 157 cb->s_did = si->si_sid; 158 cb->s_rack = si->si_ack; 159 cb->s_ralo = si->si_alo; 160 #define THREEWAYSHAKE 161 #ifdef THREEWAYSHAKE 162 cb->s_state = TCPS_SYN_RECEIVED; 163 cb->s_force = 1 + SPPT_KEEP; 164 sppstat.spps_accepts++; 165 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 166 } 167 break; 168 /* 169 * This state means that we have heard a response 170 * to our acceptance of their connection 171 * It is probably logically unnecessary in this 172 * implementation. 173 */ 174 case TCPS_SYN_RECEIVED: { 175 if (si->si_did!=cb->s_sid) { 176 spp_istat.wrncon++; 177 goto drop; 178 } 179 #endif 180 nsp->nsp_fport = si->si_sport; 181 cb->s_timer[SPPT_REXMT] = 0; 182 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 183 soisconnected(so); 184 cb->s_state = TCPS_ESTABLISHED; 185 sppstat.spps_accepts++; 186 } 187 break; 188 189 /* 190 * This state means that we have gotten a response 191 * to our attempt to establish a connection. 192 * We fill in the data from the other side, 193 * telling us which port to respond to, instead of the well- 194 * known one we might have sent to in the first place. 195 * We also require that this is a response to our 196 * connection id. 197 */ 198 case TCPS_SYN_SENT: 199 if (si->si_did!=cb->s_sid) { 200 spp_istat.notme++; 201 goto drop; 202 } 203 sppstat.spps_connects++; 204 cb->s_did = si->si_sid; 205 cb->s_rack = si->si_ack; 206 cb->s_ralo = si->si_alo; 207 cb->s_dport = nsp->nsp_fport = si->si_sport; 208 cb->s_timer[SPPT_REXMT] = 0; 209 cb->s_flags |= SF_ACKNOW; 210 soisconnected(so); 211 cb->s_state = TCPS_ESTABLISHED; 212 /* Use roundtrip time of connection request for initial rtt */ 213 if (cb->s_rtt) { 214 cb->s_srtt = cb->s_rtt << 3; 215 cb->s_rttvar = cb->s_rtt << 1; 216 SPPT_RANGESET(cb->s_rxtcur, 217 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 218 SPPTV_MIN, SPPTV_REXMTMAX); 219 cb->s_rtt = 0; 220 } 221 } 222 if (so->so_options & SO_DEBUG || traceallspps) 223 spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0); 224 225 m->m_len -= sizeof (struct idp); 226 m->m_pkthdr.len -= sizeof (struct idp); 227 m->m_data += sizeof (struct idp); 228 229 if (spp_reass(cb, si)) { 230 (void) m_freem(m); 231 } 232 if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT))) 233 (void) spp_output(cb, (struct mbuf *)0); 234 cb->s_flags &= ~(SF_WIN|SF_RXT); 235 return; 236 237 dropwithreset: 238 if (dropsocket) 239 (void) soabort(so); 240 si->si_seq = ntohs(si->si_seq); 241 si->si_ack = ntohs(si->si_ack); 242 si->si_alo = ntohs(si->si_alo); 243 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 244 if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps) 245 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 246 return; 247 248 drop: 249 bad: 250 if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || 251 traceallspps) 252 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0); 253 m_freem(m); 254 } 255 256 int spprexmtthresh = 3; 257 258 /* 259 * This is structurally similar to the tcp reassembly routine 260 * but its function is somewhat different: It merely queues 261 * packets up, and suppresses duplicates. 262 */ 263 spp_reass(cb, si) 264 register struct sppcb *cb; 265 register struct spidp *si; 266 { 267 register struct spidp_q *q; 268 register struct mbuf *m; 269 register struct socket *so = cb->s_nspcb->nsp_socket; 270 char packetp = cb->s_flags & SF_HI; 271 int incr; 272 char wakeup = 0; 273 274 if (si == SI(0)) 275 goto present; 276 /* 277 * Update our news from them. 278 */ 279 if (si->si_cc & SP_SA) 280 cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW); 281 if (SSEQ_GT(si->si_alo, cb->s_ralo)) 282 cb->s_flags |= SF_WIN; 283 if (SSEQ_LEQ(si->si_ack, cb->s_rack)) { 284 if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) { 285 sppstat.spps_rcvdupack++; 286 /* 287 * If this is a completely duplicate ack 288 * and other conditions hold, we assume 289 * a packet has been dropped and retransmit 290 * it exactly as in tcp_input(). 291 */ 292 if (si->si_ack != cb->s_rack || 293 si->si_alo != cb->s_ralo) 294 cb->s_dupacks = 0; 295 else if (++cb->s_dupacks == spprexmtthresh) { 296 u_short onxt = cb->s_snxt; 297 int cwnd = cb->s_cwnd; 298 299 cb->s_snxt = si->si_ack; 300 cb->s_cwnd = CUNIT; 301 cb->s_force = 1 + SPPT_REXMT; 302 (void) spp_output(cb, (struct mbuf *)0); 303 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 304 cb->s_rtt = 0; 305 if (cwnd >= 4 * CUNIT) 306 cb->s_cwnd = cwnd / 2; 307 if (SSEQ_GT(onxt, cb->s_snxt)) 308 cb->s_snxt = onxt; 309 return (1); 310 } 311 } else 312 cb->s_dupacks = 0; 313 goto update_window; 314 } 315 cb->s_dupacks = 0; 316 /* 317 * If our correspondent acknowledges data we haven't sent 318 * TCP would drop the packet after acking. We'll be a little 319 * more permissive 320 */ 321 if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) { 322 sppstat.spps_rcvacktoomuch++; 323 si->si_ack = cb->s_smax + 1; 324 } 325 sppstat.spps_rcvackpack++; 326 /* 327 * If transmit timer is running and timed sequence 328 * number was acked, update smoothed round trip time. 329 * See discussion of algorithm in tcp_input.c 330 */ 331 if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) { 332 sppstat.spps_rttupdated++; 333 if (cb->s_srtt != 0) { 334 register short delta; 335 delta = cb->s_rtt - (cb->s_srtt >> 3); 336 if ((cb->s_srtt += delta) <= 0) 337 cb->s_srtt = 1; 338 if (delta < 0) 339 delta = -delta; 340 delta -= (cb->s_rttvar >> 2); 341 if ((cb->s_rttvar += delta) <= 0) 342 cb->s_rttvar = 1; 343 } else { 344 /* 345 * No rtt measurement yet 346 */ 347 cb->s_srtt = cb->s_rtt << 3; 348 cb->s_rttvar = cb->s_rtt << 1; 349 } 350 cb->s_rtt = 0; 351 cb->s_rxtshift = 0; 352 SPPT_RANGESET(cb->s_rxtcur, 353 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1, 354 SPPTV_MIN, SPPTV_REXMTMAX); 355 } 356 /* 357 * If all outstanding data is acked, stop retransmit 358 * timer and remember to restart (more output or persist). 359 * If there is more data to be acked, restart retransmit 360 * timer, using current (possibly backed-off) value; 361 */ 362 if (si->si_ack == cb->s_smax + 1) { 363 cb->s_timer[SPPT_REXMT] = 0; 364 cb->s_flags |= SF_RXT; 365 } else if (cb->s_timer[SPPT_PERSIST] == 0) 366 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 367 /* 368 * When new data is acked, open the congestion window. 369 * If the window gives us less than ssthresh packets 370 * in flight, open exponentially (maxseg at a time). 371 * Otherwise open linearly (maxseg^2 / cwnd at a time). 372 */ 373 incr = CUNIT; 374 if (cb->s_cwnd > cb->s_ssthresh) 375 incr = max(incr * incr / cb->s_cwnd, 1); 376 cb->s_cwnd = min(cb->s_cwnd + incr, cb->s_cwmx); 377 /* 378 * Trim Acked data from output queue. 379 */ 380 while ((m = so->so_snd.sb_mb) != NULL) { 381 if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack)) 382 sbdroprecord(&so->so_snd); 383 else 384 break; 385 } 386 sowwakeup(so); 387 cb->s_rack = si->si_ack; 388 update_window: 389 if (SSEQ_LT(cb->s_snxt, cb->s_rack)) 390 cb->s_snxt = cb->s_rack; 391 if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq && 392 (SSEQ_LT(cb->s_swl2, si->si_ack) || 393 cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) { 394 /* keep track of pure window updates */ 395 if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack 396 && SSEQ_LT(cb->s_ralo, si->si_alo)) { 397 sppstat.spps_rcvwinupd++; 398 sppstat.spps_rcvdupack--; 399 } 400 cb->s_ralo = si->si_alo; 401 cb->s_swl1 = si->si_seq; 402 cb->s_swl2 = si->si_ack; 403 cb->s_swnd = (1 + si->si_alo - si->si_ack); 404 if (cb->s_swnd > cb->s_smxw) 405 cb->s_smxw = cb->s_swnd; 406 cb->s_flags |= SF_WIN; 407 } 408 /* 409 * If this packet number is higher than that which 410 * we have allocated refuse it, unless urgent 411 */ 412 if (SSEQ_GT(si->si_seq, cb->s_alo)) { 413 if (si->si_cc & SP_SP) { 414 sppstat.spps_rcvwinprobe++; 415 return (1); 416 } else 417 sppstat.spps_rcvpackafterwin++; 418 if (si->si_cc & SP_OB) { 419 if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) { 420 ns_error(dtom(si), NS_ERR_FULLUP, 0); 421 return (0); 422 } /* else queue this packet; */ 423 } else { 424 /*register struct socket *so = cb->s_nspcb->nsp_socket; 425 if (so->so_state && SS_NOFDREF) { 426 ns_error(dtom(si), NS_ERR_NOSOCK, 0); 427 (void)spp_close(cb); 428 } else 429 would crash system*/ 430 spp_istat.notyet++; 431 ns_error(dtom(si), NS_ERR_FULLUP, 0); 432 return (0); 433 } 434 } 435 /* 436 * If this is a system packet, we don't need to 437 * queue it up, and won't update acknowledge # 438 */ 439 if (si->si_cc & SP_SP) { 440 return (1); 441 } 442 /* 443 * We have already seen this packet, so drop. 444 */ 445 if (SSEQ_LT(si->si_seq, cb->s_ack)) { 446 spp_istat.bdreas++; 447 sppstat.spps_rcvduppack++; 448 if (si->si_seq == cb->s_ack - 1) 449 spp_istat.lstdup++; 450 return (1); 451 } 452 /* 453 * Loop through all packets queued up to insert in 454 * appropriate sequence. 455 */ 456 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 457 if (si->si_seq == SI(q)->si_seq) { 458 sppstat.spps_rcvduppack++; 459 return (1); 460 } 461 if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) { 462 sppstat.spps_rcvoopack++; 463 break; 464 } 465 } 466 insque(si, q->si_prev); 467 /* 468 * If this packet is urgent, inform process 469 */ 470 if (si->si_cc & SP_OB) { 471 cb->s_iobc = ((char *)si)[1 + sizeof(*si)]; 472 sohasoutofband(so); 473 cb->s_oobflags |= SF_IOOB; 474 } 475 present: 476 #define SPINC sizeof(struct sphdr) 477 /* 478 * Loop through all packets queued up to update acknowledge 479 * number, and present all acknowledged data to user; 480 * If in packet interface mode, show packet headers. 481 */ 482 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) { 483 if (SI(q)->si_seq == cb->s_ack) { 484 cb->s_ack++; 485 m = dtom(q); 486 if (SI(q)->si_cc & SP_OB) { 487 cb->s_oobflags &= ~SF_IOOB; 488 if (so->so_rcv.sb_cc) 489 so->so_oobmark = so->so_rcv.sb_cc; 490 else 491 so->so_state |= SS_RCVATMARK; 492 } 493 q = q->si_prev; 494 remque(q->si_next); 495 wakeup = 1; 496 sppstat.spps_rcvpack++; 497 #ifdef SF_NEWCALL 498 if (cb->s_flags2 & SF_NEWCALL) { 499 struct sphdr *sp = mtod(m, struct sphdr *); 500 u_char dt = sp->sp_dt; 501 spp_newchecks[4]++; 502 if (dt != cb->s_rhdr.sp_dt) { 503 struct mbuf *mm = 504 m_getclr(M_DONTWAIT, MT_CONTROL); 505 spp_newchecks[0]++; 506 if (mm != NULL) { 507 u_short *s = 508 mtod(mm, u_short *); 509 cb->s_rhdr.sp_dt = dt; 510 mm->m_len = 5; /*XXX*/ 511 s[0] = 5; 512 s[1] = 1; 513 *(u_char *)(&s[2]) = dt; 514 sbappend(&so->so_rcv, mm); 515 } 516 } 517 if (sp->sp_cc & SP_OB) { 518 MCHTYPE(m, MT_OOBDATA); 519 spp_newchecks[1]++; 520 so->so_oobmark = 0; 521 so->so_state &= ~SS_RCVATMARK; 522 } 523 if (packetp == 0) { 524 m->m_data += SPINC; 525 m->m_len -= SPINC; 526 m->m_pkthdr.len -= SPINC; 527 } 528 if ((sp->sp_cc & SP_EM) || packetp) { 529 sbappendrecord(&so->so_rcv, m); 530 spp_newchecks[9]++; 531 } else 532 sbappend(&so->so_rcv, m); 533 } else 534 #endif 535 if (packetp) { 536 sbappendrecord(&so->so_rcv, m); 537 } else { 538 cb->s_rhdr = *mtod(m, struct sphdr *); 539 m->m_data += SPINC; 540 m->m_len -= SPINC; 541 m->m_pkthdr.len -= SPINC; 542 sbappend(&so->so_rcv, m); 543 } 544 } else 545 break; 546 } 547 if (wakeup) sorwakeup(so); 548 return (0); 549 } 550 551 spp_ctlinput(cmd, arg) 552 int cmd; 553 caddr_t arg; 554 { 555 struct ns_addr *na; 556 extern u_char nsctlerrmap[]; 557 extern spp_abort(), spp_quench(); 558 extern struct nspcb *idp_drop(); 559 struct ns_errp *errp; 560 struct nspcb *nsp; 561 struct sockaddr_ns *sns; 562 int type; 563 564 if (cmd < 0 || cmd > PRC_NCMDS) 565 return; 566 type = NS_ERR_UNREACH_HOST; 567 568 switch (cmd) { 569 570 case PRC_ROUTEDEAD: 571 return; 572 573 case PRC_IFDOWN: 574 case PRC_HOSTDEAD: 575 case PRC_HOSTUNREACH: 576 sns = (struct sockaddr_ns *)arg; 577 if (sns->sns_family != AF_NS) 578 return; 579 na = &sns->sns_addr; 580 break; 581 582 default: 583 errp = (struct ns_errp *)arg; 584 na = &errp->ns_err_idp.idp_dna; 585 type = errp->ns_err_num; 586 type = ntohs((u_short)type); 587 } 588 switch (type) { 589 590 case NS_ERR_UNREACH_HOST: 591 ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0); 592 break; 593 594 case NS_ERR_TOO_BIG: 595 case NS_ERR_NOSOCK: 596 nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port, 597 NS_WILDCARD); 598 if (nsp) { 599 if(nsp->nsp_pcb) 600 (void) spp_drop((struct sppcb *)nsp->nsp_pcb, 601 (int)nsctlerrmap[cmd]); 602 else 603 (void) idp_drop(nsp, (int)nsctlerrmap[cmd]); 604 } 605 break; 606 607 case NS_ERR_FULLUP: 608 ns_pcbnotify(na, 0, spp_quench, (long) 0); 609 } 610 } 611 /* 612 * When a source quench is received, close congestion window 613 * to one packet. We will gradually open it again as we proceed. 614 */ 615 spp_quench(nsp) 616 struct nspcb *nsp; 617 { 618 struct sppcb *cb = nstosppcb(nsp); 619 620 if (cb) 621 cb->s_cwnd = CUNIT; 622 } 623 624 #ifdef notdef 625 int 626 spp_fixmtu(nsp) 627 register struct nspcb *nsp; 628 { 629 register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb); 630 register struct mbuf *m; 631 register struct spidp *si; 632 struct ns_errp *ep; 633 struct sockbuf *sb; 634 int badseq, len; 635 struct mbuf *firstbad, *m0; 636 637 if (cb) { 638 /* 639 * The notification that we have sent 640 * too much is bad news -- we will 641 * have to go through queued up so far 642 * splitting ones which are too big and 643 * reassigning sequence numbers and checksums. 644 * we should then retransmit all packets from 645 * one above the offending packet to the last one 646 * we had sent (or our allocation) 647 * then the offending one so that the any queued 648 * data at our destination will be discarded. 649 */ 650 ep = (struct ns_errp *)nsp->nsp_notify_param; 651 sb = &nsp->nsp_socket->so_snd; 652 cb->s_mtu = ep->ns_err_param; 653 badseq = SI(&ep->ns_err_idp)->si_seq; 654 for (m = sb->sb_mb; m; m = m->m_act) { 655 si = mtod(m, struct spidp *); 656 if (si->si_seq == badseq) 657 break; 658 } 659 if (m == 0) return; 660 firstbad = m; 661 /*for (;;) {*/ 662 /* calculate length */ 663 for (m0 = m, len = 0; m ; m = m->m_next) 664 len += m->m_len; 665 if (len > cb->s_mtu) { 666 } 667 /* FINISH THIS 668 } */ 669 } 670 } 671 #endif 672 673 spp_output(cb, m0) 674 register struct sppcb *cb; 675 struct mbuf *m0; 676 { 677 struct socket *so = cb->s_nspcb->nsp_socket; 678 register struct mbuf *m; 679 register struct spidp *si = (struct spidp *) 0; 680 register struct sockbuf *sb = &so->so_snd; 681 int len = 0, win, rcv_win; 682 short span, off, recordp = 0; 683 u_short alo; 684 int error = 0, sendalot; 685 #ifdef notdef 686 int idle; 687 #endif 688 struct mbuf *mprev; 689 extern int idpcksum; 690 691 if (m0) { 692 int mtu = cb->s_mtu; 693 int datalen; 694 /* 695 * Make sure that packet isn't too big. 696 */ 697 for (m = m0; m ; m = m->m_next) { 698 mprev = m; 699 len += m->m_len; 700 if (m->m_flags & M_EOR) 701 recordp = 1; 702 } 703 datalen = (cb->s_flags & SF_HO) ? 704 len - sizeof (struct sphdr) : len; 705 if (datalen > mtu) { 706 if (cb->s_flags & SF_PI) { 707 m_freem(m0); 708 return (EMSGSIZE); 709 } else { 710 int oldEM = cb->s_cc & SP_EM; 711 712 cb->s_cc &= ~SP_EM; 713 while (len > mtu) { 714 /* 715 * Here we are only being called 716 * from usrreq(), so it is OK to 717 * block. 718 */ 719 m = m_copym(m0, 0, mtu, M_WAIT); 720 if (cb->s_flags & SF_NEWCALL) { 721 struct mbuf *mm = m; 722 spp_newchecks[7]++; 723 while (mm) { 724 mm->m_flags &= ~M_EOR; 725 mm = mm->m_next; 726 } 727 } 728 error = spp_output(cb, m); 729 if (error) { 730 cb->s_cc |= oldEM; 731 m_freem(m0); 732 return(error); 733 } 734 m_adj(m0, mtu); 735 len -= mtu; 736 } 737 cb->s_cc |= oldEM; 738 } 739 } 740 /* 741 * Force length even, by adding a "garbage byte" if 742 * necessary. 743 */ 744 if (len & 1) { 745 m = mprev; 746 if (M_TRAILINGSPACE(m) >= 1) 747 m->m_len++; 748 else { 749 struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA); 750 751 if (m1 == 0) { 752 m_freem(m0); 753 return (ENOBUFS); 754 } 755 m1->m_len = 1; 756 *(mtod(m1, u_char *)) = 0; 757 m->m_next = m1; 758 } 759 } 760 m = m_gethdr(M_DONTWAIT, MT_HEADER); 761 if (m == 0) { 762 m_freem(m0); 763 return (ENOBUFS); 764 } 765 /* 766 * Fill in mbuf with extended SP header 767 * and addresses and length put into network format. 768 */ 769 MH_ALIGN(m, sizeof (struct spidp)); 770 m->m_len = sizeof (struct spidp); 771 m->m_next = m0; 772 si = mtod(m, struct spidp *); 773 si->si_i = *cb->s_idp; 774 si->si_s = cb->s_shdr; 775 if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) { 776 register struct sphdr *sh; 777 if (m0->m_len < sizeof (*sh)) { 778 if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) { 779 (void) m_free(m); 780 m_freem(m0); 781 return (EINVAL); 782 } 783 m->m_next = m0; 784 } 785 sh = mtod(m0, struct sphdr *); 786 si->si_dt = sh->sp_dt; 787 si->si_cc |= sh->sp_cc & SP_EM; 788 m0->m_len -= sizeof (*sh); 789 m0->m_data += sizeof (*sh); 790 len -= sizeof (*sh); 791 } 792 len += sizeof(*si); 793 if ((cb->s_flags2 & SF_NEWCALL) && recordp) { 794 si->si_cc |= SP_EM; 795 spp_newchecks[8]++; 796 } 797 if (cb->s_oobflags & SF_SOOB) { 798 /* 799 * Per jqj@cornell: 800 * make sure OB packets convey exactly 1 byte. 801 * If the packet is 1 byte or larger, we 802 * have already guaranted there to be at least 803 * one garbage byte for the checksum, and 804 * extra bytes shouldn't hurt! 805 */ 806 if (len > sizeof(*si)) { 807 si->si_cc |= SP_OB; 808 len = (1 + sizeof(*si)); 809 } 810 } 811 si->si_len = htons((u_short)len); 812 m->m_pkthdr.len = ((len - 1) | 1) + 1; 813 /* 814 * queue stuff up for output 815 */ 816 sbappendrecord(sb, m); 817 cb->s_seq++; 818 } 819 #ifdef notdef 820 idle = (cb->s_smax == (cb->s_rack - 1)); 821 #endif 822 again: 823 sendalot = 0; 824 off = cb->s_snxt - cb->s_rack; 825 win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)); 826 827 /* 828 * If in persist timeout with window of 0, send a probe. 829 * Otherwise, if window is small but nonzero 830 * and timer expired, send what we can and go into 831 * transmit state. 832 */ 833 if (cb->s_force == 1 + SPPT_PERSIST) { 834 if (win != 0) { 835 cb->s_timer[SPPT_PERSIST] = 0; 836 cb->s_rxtshift = 0; 837 } 838 } 839 span = cb->s_seq - cb->s_rack; 840 len = min(span, win) - off; 841 842 if (len < 0) { 843 /* 844 * Window shrank after we went into it. 845 * If window shrank to 0, cancel pending 846 * restransmission and pull s_snxt back 847 * to (closed) window. We will enter persist 848 * state below. If the widndow didn't close completely, 849 * just wait for an ACK. 850 */ 851 len = 0; 852 if (win == 0) { 853 cb->s_timer[SPPT_REXMT] = 0; 854 cb->s_snxt = cb->s_rack; 855 } 856 } 857 if (len > 1) 858 sendalot = 1; 859 rcv_win = sbspace(&so->so_rcv); 860 861 /* 862 * Send if we owe peer an ACK. 863 */ 864 if (cb->s_oobflags & SF_SOOB) { 865 /* 866 * must transmit this out of band packet 867 */ 868 cb->s_oobflags &= ~ SF_SOOB; 869 sendalot = 1; 870 sppstat.spps_sndurg++; 871 goto found; 872 } 873 if (cb->s_flags & SF_ACKNOW) 874 goto send; 875 if (cb->s_state < TCPS_ESTABLISHED) 876 goto send; 877 /* 878 * Silly window can't happen in spp. 879 * Code from tcp deleted. 880 */ 881 if (len) 882 goto send; 883 /* 884 * Compare available window to amount of window 885 * known to peer (as advertised window less 886 * next expected input.) If the difference is at least two 887 * packets or at least 35% of the mximum possible window, 888 * then want to send a window update to peer. 889 */ 890 if (rcv_win > 0) { 891 u_short delta = 1 + cb->s_alo - cb->s_ack; 892 int adv = rcv_win - (delta * cb->s_mtu); 893 894 if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) || 895 (100 * adv / so->so_rcv.sb_hiwat >= 35)) { 896 sppstat.spps_sndwinup++; 897 cb->s_flags |= SF_ACKNOW; 898 goto send; 899 } 900 901 } 902 /* 903 * Many comments from tcp_output.c are appropriate here 904 * including . . . 905 * If send window is too small, there is data to transmit, and no 906 * retransmit or persist is pending, then go to persist state. 907 * If nothing happens soon, send when timer expires: 908 * if window is nonzero, transmit what we can, 909 * otherwise send a probe. 910 */ 911 if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 && 912 cb->s_timer[SPPT_PERSIST] == 0) { 913 cb->s_rxtshift = 0; 914 spp_setpersist(cb); 915 } 916 /* 917 * No reason to send a packet, just return. 918 */ 919 cb->s_outx = 1; 920 return (0); 921 922 send: 923 /* 924 * Find requested packet. 925 */ 926 si = 0; 927 if (len > 0) { 928 cb->s_want = cb->s_snxt; 929 for (m = sb->sb_mb; m; m = m->m_act) { 930 si = mtod(m, struct spidp *); 931 if (SSEQ_LEQ(cb->s_snxt, si->si_seq)) 932 break; 933 } 934 found: 935 if (si) { 936 if (si->si_seq == cb->s_snxt) 937 cb->s_snxt++; 938 else 939 sppstat.spps_sndvoid++, si = 0; 940 } 941 } 942 /* 943 * update window 944 */ 945 if (rcv_win < 0) 946 rcv_win = 0; 947 alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu)); 948 if (SSEQ_LT(alo, cb->s_alo)) 949 alo = cb->s_alo; 950 951 if (si) { 952 /* 953 * must make a copy of this packet for 954 * idp_output to monkey with 955 */ 956 m = m_copy(dtom(si), 0, (int)M_COPYALL); 957 if (m == NULL) { 958 return (ENOBUFS); 959 } 960 si = mtod(m, struct spidp *); 961 if (SSEQ_LT(si->si_seq, cb->s_smax)) 962 sppstat.spps_sndrexmitpack++; 963 else 964 sppstat.spps_sndpack++; 965 } else if (cb->s_force || cb->s_flags & SF_ACKNOW) { 966 /* 967 * Must send an acknowledgement or a probe 968 */ 969 if (cb->s_force) 970 sppstat.spps_sndprobe++; 971 if (cb->s_flags & SF_ACKNOW) 972 sppstat.spps_sndacks++; 973 m = m_gethdr(M_DONTWAIT, MT_HEADER); 974 if (m == 0) 975 return (ENOBUFS); 976 /* 977 * Fill in mbuf with extended SP header 978 * and addresses and length put into network format. 979 */ 980 MH_ALIGN(m, sizeof (struct spidp)); 981 m->m_len = sizeof (*si); 982 m->m_pkthdr.len = sizeof (*si); 983 si = mtod(m, struct spidp *); 984 si->si_i = *cb->s_idp; 985 si->si_s = cb->s_shdr; 986 si->si_seq = cb->s_smax + 1; 987 si->si_len = htons(sizeof (*si)); 988 si->si_cc |= SP_SP; 989 } else { 990 cb->s_outx = 3; 991 if (so->so_options & SO_DEBUG || traceallspps) 992 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 993 return (0); 994 } 995 /* 996 * Stuff checksum and output datagram. 997 */ 998 if ((si->si_cc & SP_SP) == 0) { 999 if (cb->s_force != (1 + SPPT_PERSIST) || 1000 cb->s_timer[SPPT_PERSIST] == 0) { 1001 /* 1002 * If this is a new packet and we are not currently 1003 * timing anything, time this one. 1004 */ 1005 if (SSEQ_LT(cb->s_smax, si->si_seq)) { 1006 cb->s_smax = si->si_seq; 1007 if (cb->s_rtt == 0) { 1008 sppstat.spps_segstimed++; 1009 cb->s_rtseq = si->si_seq; 1010 cb->s_rtt = 1; 1011 } 1012 } 1013 /* 1014 * Set rexmt timer if not currently set, 1015 * Initial value for retransmit timer is smoothed 1016 * round-trip time + 2 * round-trip time variance. 1017 * Initialize shift counter which is used for backoff 1018 * of retransmit time. 1019 */ 1020 if (cb->s_timer[SPPT_REXMT] == 0 && 1021 cb->s_snxt != cb->s_rack) { 1022 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1023 if (cb->s_timer[SPPT_PERSIST]) { 1024 cb->s_timer[SPPT_PERSIST] = 0; 1025 cb->s_rxtshift = 0; 1026 } 1027 } 1028 } else if (SSEQ_LT(cb->s_smax, si->si_seq)) { 1029 cb->s_smax = si->si_seq; 1030 } 1031 } else if (cb->s_state < TCPS_ESTABLISHED) { 1032 if (cb->s_rtt == 0) 1033 cb->s_rtt = 1; /* Time initial handshake */ 1034 if (cb->s_timer[SPPT_REXMT] == 0) 1035 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1036 } 1037 { 1038 /* 1039 * Do not request acks when we ack their data packets or 1040 * when we do a gratuitous window update. 1041 */ 1042 if (((si->si_cc & SP_SP) == 0) || cb->s_force) 1043 si->si_cc |= SP_SA; 1044 si->si_seq = htons(si->si_seq); 1045 si->si_alo = htons(alo); 1046 si->si_ack = htons(cb->s_ack); 1047 1048 if (idpcksum) { 1049 si->si_sum = 0; 1050 len = ntohs(si->si_len); 1051 if (len & 1) 1052 len++; 1053 si->si_sum = ns_cksum(m, len); 1054 } else 1055 si->si_sum = 0xffff; 1056 1057 cb->s_outx = 4; 1058 if (so->so_options & SO_DEBUG || traceallspps) 1059 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0); 1060 1061 if (so->so_options & SO_DONTROUTE) 1062 error = ns_output(m, (struct route *)0, NS_ROUTETOIF); 1063 else 1064 error = ns_output(m, &cb->s_nspcb->nsp_route, 0); 1065 } 1066 if (error) { 1067 return (error); 1068 } 1069 sppstat.spps_sndtotal++; 1070 /* 1071 * Data sent (as far as we can tell). 1072 * If this advertises a larger window than any other segment, 1073 * then remember the size of the advertized window. 1074 * Any pending ACK has now been sent. 1075 */ 1076 cb->s_force = 0; 1077 cb->s_flags &= ~(SF_ACKNOW|SF_DELACK); 1078 if (SSEQ_GT(alo, cb->s_alo)) 1079 cb->s_alo = alo; 1080 if (sendalot) 1081 goto again; 1082 cb->s_outx = 5; 1083 return (0); 1084 } 1085 1086 int spp_do_persist_panics = 0; 1087 1088 spp_setpersist(cb) 1089 register struct sppcb *cb; 1090 { 1091 register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1092 extern int spp_backoff[]; 1093 1094 if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics) 1095 panic("spp_output REXMT"); 1096 /* 1097 * Start/restart persistance timer. 1098 */ 1099 SPPT_RANGESET(cb->s_timer[SPPT_PERSIST], 1100 t*spp_backoff[cb->s_rxtshift], 1101 SPPTV_PERSMIN, SPPTV_PERSMAX); 1102 if (cb->s_rxtshift < SPP_MAXRXTSHIFT) 1103 cb->s_rxtshift++; 1104 } 1105 /*ARGSUSED*/ 1106 spp_ctloutput(req, so, level, name, value) 1107 int req; 1108 struct socket *so; 1109 int name; 1110 struct mbuf **value; 1111 { 1112 register struct mbuf *m; 1113 struct nspcb *nsp = sotonspcb(so); 1114 register struct sppcb *cb; 1115 int mask, error = 0; 1116 1117 if (level != NSPROTO_SPP) { 1118 /* This will have to be changed when we do more general 1119 stacking of protocols */ 1120 return (idp_ctloutput(req, so, level, name, value)); 1121 } 1122 if (nsp == NULL) { 1123 error = EINVAL; 1124 goto release; 1125 } else 1126 cb = nstosppcb(nsp); 1127 1128 switch (req) { 1129 1130 case PRCO_GETOPT: 1131 if (value == NULL) 1132 return (EINVAL); 1133 m = m_get(M_DONTWAIT, MT_DATA); 1134 if (m == NULL) 1135 return (ENOBUFS); 1136 switch (name) { 1137 1138 case SO_HEADERS_ON_INPUT: 1139 mask = SF_HI; 1140 goto get_flags; 1141 1142 case SO_HEADERS_ON_OUTPUT: 1143 mask = SF_HO; 1144 get_flags: 1145 m->m_len = sizeof(short); 1146 *mtod(m, short *) = cb->s_flags & mask; 1147 break; 1148 1149 case SO_MTU: 1150 m->m_len = sizeof(u_short); 1151 *mtod(m, short *) = cb->s_mtu; 1152 break; 1153 1154 case SO_LAST_HEADER: 1155 m->m_len = sizeof(struct sphdr); 1156 *mtod(m, struct sphdr *) = cb->s_rhdr; 1157 break; 1158 1159 case SO_DEFAULT_HEADERS: 1160 m->m_len = sizeof(struct spidp); 1161 *mtod(m, struct sphdr *) = cb->s_shdr; 1162 break; 1163 1164 default: 1165 error = EINVAL; 1166 } 1167 *value = m; 1168 break; 1169 1170 case PRCO_SETOPT: 1171 if (value == 0 || *value == 0) { 1172 error = EINVAL; 1173 break; 1174 } 1175 switch (name) { 1176 int *ok; 1177 1178 case SO_HEADERS_ON_INPUT: 1179 mask = SF_HI; 1180 goto set_head; 1181 1182 case SO_HEADERS_ON_OUTPUT: 1183 mask = SF_HO; 1184 set_head: 1185 if (cb->s_flags & SF_PI) { 1186 ok = mtod(*value, int *); 1187 if (*ok) 1188 cb->s_flags |= mask; 1189 else 1190 cb->s_flags &= ~mask; 1191 } else error = EINVAL; 1192 break; 1193 1194 case SO_MTU: 1195 cb->s_mtu = *(mtod(*value, u_short *)); 1196 break; 1197 1198 #ifdef SF_NEWCALL 1199 case SO_NEWCALL: 1200 ok = mtod(*value, int *); 1201 if (*ok) { 1202 cb->s_flags2 |= SF_NEWCALL; 1203 spp_newchecks[5]++; 1204 } else { 1205 cb->s_flags2 &= ~SF_NEWCALL; 1206 spp_newchecks[6]++; 1207 } 1208 break; 1209 #endif 1210 1211 case SO_DEFAULT_HEADERS: 1212 { 1213 register struct sphdr *sp 1214 = mtod(*value, struct sphdr *); 1215 cb->s_dt = sp->sp_dt; 1216 cb->s_cc = sp->sp_cc & SP_EM; 1217 } 1218 break; 1219 1220 default: 1221 error = EINVAL; 1222 } 1223 m_freem(*value); 1224 break; 1225 } 1226 release: 1227 return (error); 1228 } 1229 1230 /*ARGSUSED*/ 1231 spp_usrreq(so, req, m, nam, controlp) 1232 struct socket *so; 1233 int req; 1234 struct mbuf *m, *nam, *controlp; 1235 { 1236 struct nspcb *nsp = sotonspcb(so); 1237 register struct sppcb *cb; 1238 int s = splnet(); 1239 int error = 0, ostate; 1240 struct mbuf *mm; 1241 register struct sockbuf *sb; 1242 1243 if (req == PRU_CONTROL) 1244 return (ns_control(so, (int)m, (caddr_t)nam, 1245 (struct ifnet *)controlp)); 1246 if (nsp == NULL) { 1247 if (req != PRU_ATTACH) { 1248 error = EINVAL; 1249 goto release; 1250 } 1251 } else 1252 cb = nstosppcb(nsp); 1253 1254 ostate = cb ? cb->s_state : 0; 1255 1256 switch (req) { 1257 1258 case PRU_ATTACH: 1259 if (nsp != NULL) { 1260 error = EISCONN; 1261 break; 1262 } 1263 error = ns_pcballoc(so, &nspcb); 1264 if (error) 1265 break; 1266 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 1267 error = soreserve(so, (u_long) 3072, (u_long) 3072); 1268 if (error) 1269 break; 1270 } 1271 nsp = sotonspcb(so); 1272 1273 mm = m_getclr(M_DONTWAIT, MT_PCB); 1274 sb = &so->so_snd; 1275 1276 if (mm == NULL) { 1277 error = ENOBUFS; 1278 break; 1279 } 1280 cb = mtod(mm, struct sppcb *); 1281 mm = m_getclr(M_DONTWAIT, MT_HEADER); 1282 if (mm == NULL) { 1283 (void) m_free(dtom(m)); 1284 error = ENOBUFS; 1285 break; 1286 } 1287 cb->s_idp = mtod(mm, struct idp *); 1288 cb->s_state = TCPS_LISTEN; 1289 cb->s_smax = -1; 1290 cb->s_swl1 = -1; 1291 cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q; 1292 cb->s_nspcb = nsp; 1293 cb->s_mtu = 576 - sizeof (struct spidp); 1294 cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu; 1295 cb->s_ssthresh = cb->s_cwnd; 1296 cb->s_cwmx = sbspace(sb) * CUNIT / 1297 (2 * sizeof (struct spidp)); 1298 /* Above is recomputed when connecting to account 1299 for changed buffering or mtu's */ 1300 cb->s_rtt = SPPTV_SRTTBASE; 1301 cb->s_rttvar = SPPTV_SRTTDFLT << 2; 1302 SPPT_RANGESET(cb->s_rxtcur, 1303 ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1, 1304 SPPTV_MIN, SPPTV_REXMTMAX); 1305 nsp->nsp_pcb = (caddr_t) cb; 1306 break; 1307 1308 case PRU_DETACH: 1309 if (nsp == NULL) { 1310 error = ENOTCONN; 1311 break; 1312 } 1313 if (cb->s_state > TCPS_LISTEN) 1314 cb = spp_disconnect(cb); 1315 else 1316 cb = spp_close(cb); 1317 break; 1318 1319 case PRU_BIND: 1320 error = ns_pcbbind(nsp, nam); 1321 break; 1322 1323 case PRU_LISTEN: 1324 if (nsp->nsp_lport == 0) 1325 error = ns_pcbbind(nsp, (struct mbuf *)0); 1326 if (error == 0) 1327 cb->s_state = TCPS_LISTEN; 1328 break; 1329 1330 /* 1331 * Initiate connection to peer. 1332 * Enter SYN_SENT state, and mark socket as connecting. 1333 * Start keep-alive timer, setup prototype header, 1334 * Send initial system packet requesting connection. 1335 */ 1336 case PRU_CONNECT: 1337 if (nsp->nsp_lport == 0) { 1338 error = ns_pcbbind(nsp, (struct mbuf *)0); 1339 if (error) 1340 break; 1341 } 1342 error = ns_pcbconnect(nsp, nam); 1343 if (error) 1344 break; 1345 soisconnecting(so); 1346 sppstat.spps_connattempt++; 1347 cb->s_state = TCPS_SYN_SENT; 1348 cb->s_did = 0; 1349 spp_template(cb); 1350 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 1351 cb->s_force = 1 + SPPTV_KEEP; 1352 /* 1353 * Other party is required to respond to 1354 * the port I send from, but he is not 1355 * required to answer from where I am sending to, 1356 * so allow wildcarding. 1357 * original port I am sending to is still saved in 1358 * cb->s_dport. 1359 */ 1360 nsp->nsp_fport = 0; 1361 error = spp_output(cb, (struct mbuf *) 0); 1362 break; 1363 1364 case PRU_CONNECT2: 1365 error = EOPNOTSUPP; 1366 break; 1367 1368 /* 1369 * We may decide later to implement connection closing 1370 * handshaking at the spp level optionally. 1371 * here is the hook to do it: 1372 */ 1373 case PRU_DISCONNECT: 1374 cb = spp_disconnect(cb); 1375 break; 1376 1377 /* 1378 * Accept a connection. Essentially all the work is 1379 * done at higher levels; just return the address 1380 * of the peer, storing through addr. 1381 */ 1382 case PRU_ACCEPT: { 1383 struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *); 1384 1385 nam->m_len = sizeof (struct sockaddr_ns); 1386 sns->sns_family = AF_NS; 1387 sns->sns_addr = nsp->nsp_faddr; 1388 break; 1389 } 1390 1391 case PRU_SHUTDOWN: 1392 socantsendmore(so); 1393 cb = spp_usrclosed(cb); 1394 if (cb) 1395 error = spp_output(cb, (struct mbuf *) 0); 1396 break; 1397 1398 /* 1399 * After a receive, possibly send acknowledgment 1400 * updating allocation. 1401 */ 1402 case PRU_RCVD: 1403 cb->s_flags |= SF_RVD; 1404 (void) spp_output(cb, (struct mbuf *) 0); 1405 cb->s_flags &= ~SF_RVD; 1406 break; 1407 1408 case PRU_ABORT: 1409 (void) spp_drop(cb, ECONNABORTED); 1410 break; 1411 1412 case PRU_SENSE: 1413 case PRU_CONTROL: 1414 m = NULL; 1415 error = EOPNOTSUPP; 1416 break; 1417 1418 case PRU_RCVOOB: 1419 if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark || 1420 (so->so_state & SS_RCVATMARK)) { 1421 m->m_len = 1; 1422 *mtod(m, caddr_t) = cb->s_iobc; 1423 break; 1424 } 1425 error = EINVAL; 1426 break; 1427 1428 case PRU_SENDOOB: 1429 if (sbspace(&so->so_snd) < -512) { 1430 error = ENOBUFS; 1431 break; 1432 } 1433 cb->s_oobflags |= SF_SOOB; 1434 /* fall into */ 1435 case PRU_SEND: 1436 if (controlp) { 1437 u_short *p = mtod(controlp, u_short *); 1438 spp_newchecks[2]++; 1439 if ((p[0] == 5) && p[1] == 1) { /* XXXX, for testing */ 1440 cb->s_shdr.sp_dt = *(u_char *)(&p[2]); 1441 spp_newchecks[3]++; 1442 } 1443 m_freem(controlp); 1444 } 1445 controlp = NULL; 1446 error = spp_output(cb, m); 1447 m = NULL; 1448 break; 1449 1450 case PRU_SOCKADDR: 1451 ns_setsockaddr(nsp, nam); 1452 break; 1453 1454 case PRU_PEERADDR: 1455 ns_setpeeraddr(nsp, nam); 1456 break; 1457 1458 case PRU_SLOWTIMO: 1459 cb = spp_timers(cb, (int)nam); 1460 req |= ((int)nam) << 8; 1461 break; 1462 1463 case PRU_FASTTIMO: 1464 case PRU_PROTORCV: 1465 case PRU_PROTOSEND: 1466 error = EOPNOTSUPP; 1467 break; 1468 1469 default: 1470 panic("sp_usrreq"); 1471 } 1472 if (cb && (so->so_options & SO_DEBUG || traceallspps)) 1473 spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req); 1474 release: 1475 if (controlp != NULL) 1476 m_freem(controlp); 1477 if (m != NULL) 1478 m_freem(m); 1479 splx(s); 1480 return (error); 1481 } 1482 1483 spp_usrreq_sp(so, req, m, nam, controlp) 1484 struct socket *so; 1485 int req; 1486 struct mbuf *m, *nam, *controlp; 1487 { 1488 int error = spp_usrreq(so, req, m, nam, controlp); 1489 1490 if (req == PRU_ATTACH && error == 0) { 1491 struct nspcb *nsp = sotonspcb(so); 1492 ((struct sppcb *)nsp->nsp_pcb)->s_flags |= 1493 (SF_HI | SF_HO | SF_PI); 1494 } 1495 return (error); 1496 } 1497 1498 /* 1499 * Create template to be used to send spp packets on a connection. 1500 * Called after host entry created, fills 1501 * in a skeletal spp header (choosing connection id), 1502 * minimizing the amount of work necessary when the connection is used. 1503 */ 1504 spp_template(cb) 1505 register struct sppcb *cb; 1506 { 1507 register struct nspcb *nsp = cb->s_nspcb; 1508 register struct idp *idp = cb->s_idp; 1509 register struct sockbuf *sb = &(nsp->nsp_socket->so_snd); 1510 1511 idp->idp_pt = NSPROTO_SPP; 1512 idp->idp_sna = nsp->nsp_laddr; 1513 idp->idp_dna = nsp->nsp_faddr; 1514 cb->s_sid = htons(spp_iss); 1515 spp_iss += SPP_ISSINCR/2; 1516 cb->s_alo = 1; 1517 cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu; 1518 cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement 1519 of large packets */ 1520 cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spidp)); 1521 cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd); 1522 /* But allow for lots of little packets as well */ 1523 } 1524 1525 /* 1526 * Close a SPIP control block: 1527 * discard spp control block itself 1528 * discard ns protocol control block 1529 * wake up any sleepers 1530 */ 1531 struct sppcb * 1532 spp_close(cb) 1533 register struct sppcb *cb; 1534 { 1535 register struct spidp_q *s; 1536 struct nspcb *nsp = cb->s_nspcb; 1537 struct socket *so = nsp->nsp_socket; 1538 register struct mbuf *m; 1539 1540 s = cb->s_q.si_next; 1541 while (s != &(cb->s_q)) { 1542 s = s->si_next; 1543 m = dtom(s->si_prev); 1544 remque(s->si_prev); 1545 m_freem(m); 1546 } 1547 (void) m_free(dtom(cb->s_idp)); 1548 (void) m_free(dtom(cb)); 1549 nsp->nsp_pcb = 0; 1550 soisdisconnected(so); 1551 ns_pcbdetach(nsp); 1552 sppstat.spps_closed++; 1553 return ((struct sppcb *)0); 1554 } 1555 /* 1556 * Someday we may do level 3 handshaking 1557 * to close a connection or send a xerox style error. 1558 * For now, just close. 1559 */ 1560 struct sppcb * 1561 spp_usrclosed(cb) 1562 register struct sppcb *cb; 1563 { 1564 return (spp_close(cb)); 1565 } 1566 struct sppcb * 1567 spp_disconnect(cb) 1568 register struct sppcb *cb; 1569 { 1570 return (spp_close(cb)); 1571 } 1572 /* 1573 * Drop connection, reporting 1574 * the specified error. 1575 */ 1576 struct sppcb * 1577 spp_drop(cb, errno) 1578 register struct sppcb *cb; 1579 int errno; 1580 { 1581 struct socket *so = cb->s_nspcb->nsp_socket; 1582 1583 /* 1584 * someday, in the xerox world 1585 * we will generate error protocol packets 1586 * announcing that the socket has gone away. 1587 */ 1588 if (TCPS_HAVERCVDSYN(cb->s_state)) { 1589 sppstat.spps_drops++; 1590 cb->s_state = TCPS_CLOSED; 1591 /*(void) tcp_output(cb);*/ 1592 } else 1593 sppstat.spps_conndrops++; 1594 so->so_error = errno; 1595 return (spp_close(cb)); 1596 } 1597 1598 spp_abort(nsp) 1599 struct nspcb *nsp; 1600 { 1601 1602 (void) spp_close((struct sppcb *)nsp->nsp_pcb); 1603 } 1604 1605 int spp_backoff[SPP_MAXRXTSHIFT+1] = 1606 { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; 1607 /* 1608 * Fast timeout routine for processing delayed acks 1609 */ 1610 spp_fasttimo() 1611 { 1612 register struct nspcb *nsp; 1613 register struct sppcb *cb; 1614 int s = splnet(); 1615 1616 nsp = nspcb.nsp_next; 1617 if (nsp) 1618 for (; nsp != &nspcb; nsp = nsp->nsp_next) 1619 if ((cb = (struct sppcb *)nsp->nsp_pcb) && 1620 (cb->s_flags & SF_DELACK)) { 1621 cb->s_flags &= ~SF_DELACK; 1622 cb->s_flags |= SF_ACKNOW; 1623 sppstat.spps_delack++; 1624 (void) spp_output(cb, (struct mbuf *) 0); 1625 } 1626 splx(s); 1627 } 1628 1629 /* 1630 * spp protocol timeout routine called every 500 ms. 1631 * Updates the timers in all active pcb's and 1632 * causes finite state machine actions if timers expire. 1633 */ 1634 spp_slowtimo() 1635 { 1636 register struct nspcb *ip, *ipnxt; 1637 register struct sppcb *cb; 1638 int s = splnet(); 1639 register int i; 1640 1641 /* 1642 * Search through tcb's and update active timers. 1643 */ 1644 ip = nspcb.nsp_next; 1645 if (ip == 0) { 1646 splx(s); 1647 return; 1648 } 1649 while (ip != &nspcb) { 1650 cb = nstosppcb(ip); 1651 ipnxt = ip->nsp_next; 1652 if (cb == 0) 1653 goto tpgone; 1654 for (i = 0; i < SPPT_NTIMERS; i++) { 1655 if (cb->s_timer[i] && --cb->s_timer[i] == 0) { 1656 (void) spp_usrreq(cb->s_nspcb->nsp_socket, 1657 PRU_SLOWTIMO, (struct mbuf *)0, 1658 (struct mbuf *)i, (struct mbuf *)0, 1659 (struct mbuf *)0); 1660 if (ipnxt->nsp_prev != ip) 1661 goto tpgone; 1662 } 1663 } 1664 cb->s_idle++; 1665 if (cb->s_rtt) 1666 cb->s_rtt++; 1667 tpgone: 1668 ip = ipnxt; 1669 } 1670 spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */ 1671 splx(s); 1672 } 1673 /* 1674 * SPP timer processing. 1675 */ 1676 struct sppcb * 1677 spp_timers(cb, timer) 1678 register struct sppcb *cb; 1679 int timer; 1680 { 1681 long rexmt; 1682 int win; 1683 1684 cb->s_force = 1 + timer; 1685 switch (timer) { 1686 1687 /* 1688 * 2 MSL timeout in shutdown went off. TCP deletes connection 1689 * control block. 1690 */ 1691 case SPPT_2MSL: 1692 printf("spp: SPPT_2MSL went off for no reason\n"); 1693 cb->s_timer[timer] = 0; 1694 break; 1695 1696 /* 1697 * Retransmission timer went off. Message has not 1698 * been acked within retransmit interval. Back off 1699 * to a longer retransmit interval and retransmit one packet. 1700 */ 1701 case SPPT_REXMT: 1702 if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) { 1703 cb->s_rxtshift = SPP_MAXRXTSHIFT; 1704 sppstat.spps_timeoutdrop++; 1705 cb = spp_drop(cb, ETIMEDOUT); 1706 break; 1707 } 1708 sppstat.spps_rexmttimeo++; 1709 rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1; 1710 rexmt *= spp_backoff[cb->s_rxtshift]; 1711 SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX); 1712 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur; 1713 /* 1714 * If we have backed off fairly far, our srtt 1715 * estimate is probably bogus. Clobber it 1716 * so we'll take the next rtt measurement as our srtt; 1717 * move the current srtt into rttvar to keep the current 1718 * retransmit times until then. 1719 */ 1720 if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) { 1721 cb->s_rttvar += (cb->s_srtt >> 2); 1722 cb->s_srtt = 0; 1723 } 1724 cb->s_snxt = cb->s_rack; 1725 /* 1726 * If timing a packet, stop the timer. 1727 */ 1728 cb->s_rtt = 0; 1729 /* 1730 * See very long discussion in tcp_timer.c about congestion 1731 * window and sstrhesh 1732 */ 1733 win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2; 1734 if (win < 2) 1735 win = 2; 1736 cb->s_cwnd = CUNIT; 1737 cb->s_ssthresh = win * CUNIT; 1738 (void) spp_output(cb, (struct mbuf *) 0); 1739 break; 1740 1741 /* 1742 * Persistance timer into zero window. 1743 * Force a probe to be sent. 1744 */ 1745 case SPPT_PERSIST: 1746 sppstat.spps_persisttimeo++; 1747 spp_setpersist(cb); 1748 (void) spp_output(cb, (struct mbuf *) 0); 1749 break; 1750 1751 /* 1752 * Keep-alive timer went off; send something 1753 * or drop connection if idle for too long. 1754 */ 1755 case SPPT_KEEP: 1756 sppstat.spps_keeptimeo++; 1757 if (cb->s_state < TCPS_ESTABLISHED) 1758 goto dropit; 1759 if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) { 1760 if (cb->s_idle >= SPPTV_MAXIDLE) 1761 goto dropit; 1762 sppstat.spps_keepprobe++; 1763 (void) spp_output(cb, (struct mbuf *) 0); 1764 } else 1765 cb->s_idle = 0; 1766 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP; 1767 break; 1768 dropit: 1769 sppstat.spps_keepdrops++; 1770 cb = spp_drop(cb, ETIMEDOUT); 1771 break; 1772 } 1773 return (cb); 1774 } 1775 #ifndef lint 1776 int SppcbSize = sizeof (struct sppcb); 1777 int NspcbSize = sizeof (struct nspcb); 1778 #endif lint 1779