xref: /original-bsd/sys/sparc/fpu/fpu.c (revision d4dfefc4)
1 /*
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratories.
13  *
14  * %sccs.include.redist.c%
15  *
16  *	@(#)fpu.c	7.3 (Berkeley) 10/11/92
17  *
18  * from: $Header: fpu.c,v 1.2 92/06/17 05:41:27 torek Exp $
19  */
20 
21 #include <sys/param.h>
22 #include <sys/proc.h>
23 #include <sys/signal.h>
24 #include <sys/systm.h>
25 #include <sys/syslog.h>
26 
27 #include <machine/instr.h>
28 #include <machine/reg.h>
29 
30 #include <sparc/fpu/fpu_emu.h>
31 
32 /*
33  * fpu_execute returns the following error numbers (0 = no error):
34  */
35 #define	FPE		1	/* take a floating point exception */
36 #define	NOTFPU		2	/* not an FPU instruction */
37 
38 /*
39  * Translate current exceptions into `first' exception.  The
40  * bits go the wrong way for ffs() (0x10 is most important, etc).
41  * There are only 5, so do it the obvious way.
42  */
43 #define	X1(x) x
44 #define	X2(x) x,x
45 #define	X4(x) x,x,x,x
46 #define	X8(x) X4(x),X4(x)
47 #define	X16(x) X8(x),X8(x)
48 
49 static char cx_to_trapx[] = {
50 	X1(FSR_NX),
51 	X2(FSR_DZ),
52 	X4(FSR_UF),
53 	X8(FSR_OF),
54 	X16(FSR_NV)
55 };
56 static u_char fpu_codes[] = {
57 	X1(FPE_FLTINEX_TRAP),
58 	X2(FPE_FLTDIV_TRAP),
59 	X4(FPE_FLTUND_TRAP),
60 	X8(FPE_FLTOVF_TRAP),
61 	X16(FPE_FLTOPERR_TRAP)
62 };
63 
64 /*
65  * The FPU gave us an exception.  Clean up the mess.  Note that the
66  * fp queue can only have FPops in it, never load/store FP registers
67  * nor FBfcc instructions.  Experiments with `crashme' prove that
68  * unknown FPops do enter the queue, however.
69  */
70 fpu_cleanup(p, fs)
71 	register struct proc *p;
72 	register struct fpstate *fs;
73 {
74 	register int i, fsr = fs->fs_fsr, error;
75 	union instr instr;
76 	struct fpemu fe;
77 
78 	switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
79 
80 	case FSR_TT_NONE:
81 		panic("fpu_cleanup 1");	/* ??? */
82 		break;
83 
84 	case FSR_TT_IEEE:
85 		/* XXX missing trap address! */
86 		if ((i = fsr & FSR_CX) == 0)
87 			panic("fpu ieee trap, but no exception");
88 		trapsignal(p, SIGFPE, fpu_codes[i - 1]);
89 		break;		/* XXX should return, but queue remains */
90 
91 	case FSR_TT_UNFIN:
92 	case FSR_TT_UNIMP:
93 		if (fs->fs_qsize == 0)
94 			panic("fpu_cleanup 2");
95 		break;
96 
97 	case FSR_TT_SEQ:
98 		panic("fpu sequence error");
99 		/* NOTREACHED */
100 
101 	case FSR_TT_HWERR:
102 		log(LOG_ERR, "fpu hardware error (%s[%d])\n",
103 		    p->p_comm, p->p_pid);
104 		uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
105 		trapsignal(p, SIGFPE, -1);	/* ??? */
106 		goto out;
107 
108 	default:
109 		printf("fsr=%x\n", fsr);
110 		panic("fpu error");
111 	}
112 
113 	/* emulate the instructions left in the queue */
114 	fe.fe_fpstate = fs;
115 	for (i = 0; i < fs->fs_qsize; i++) {
116 		instr.i_int = fs->fs_queue[i].fq_instr;
117 		if (instr.i_any.i_op != IOP_reg ||
118 		    (instr.i_op3.i_op3 != IOP3_FPop1 &&
119 		     instr.i_op3.i_op3 != IOP3_FPop2))
120 			panic("bogus fpu queue");
121 		error = fpu_execute(&fe, instr);
122 		switch (error) {
123 
124 		case 0:
125 			continue;
126 
127 		case FPE:
128 			trapsignal(p, SIGFPE,
129 			    fpu_codes[(fs->fs_fsr & FSR_CX) - 1]);
130 			break;
131 
132 		case NOTFPU:
133 			trapsignal(p, SIGILL, 0);	/* ??? code?  */
134 			break;
135 
136 		default:
137 			panic("fpu_cleanup 3");
138 			/* NOTREACHED */
139 		}
140 		/* XXX should stop here, but queue remains */
141 	}
142 out:
143 	fs->fs_qsize = 0;
144 }
145 
146 #ifdef notyet
147 /*
148  * If we have no FPU at all (are there any machines like this out
149  * there!?) we have to emulate each instruction, and we need a pointer
150  * to the trapframe so that we can step over them and do FBfcc's.
151  * We know the `queue' is empty, though; we just want to emulate
152  * the instruction at tf->tf_pc.
153  */
154 fpu_emulate(p, tf, fs)
155 	struct proc *p;
156 	register struct trapframe *tf;
157 	register struct fpstate *fs;
158 {
159 
160 	do {
161 		fetch instr from pc
162 		decode
163 		if (integer instr) {
164 			/*
165 			 * We do this here, rather than earlier, to avoid
166 			 * losing even more badly than usual.
167 			 */
168 			if (p->p_addr->u_pcb.pcb_uw) {
169 				write_user_windows();
170 				if (rwindow_save(p))
171 					sigexit(p, SIGILL);
172 			}
173 			if (loadstore) {
174 				do_it;
175 				pc = npc, npc += 4
176 			} else if (fbfcc) {
177 				do_annul_stuff;
178 			} else
179 				return;
180 		} else if (fpu instr) {
181 			fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
182 			error = fpu_execute(&fe, fs, instr);
183 			switch (error) {
184 				etc;
185 			}
186 		} else
187 			return;
188 		if (want to reschedule)
189 			return;
190 	} while (error == 0);
191 }
192 #endif
193 
194 /*
195  * Execute an FPU instruction (one that runs entirely in the FPU; not
196  * FBfcc or STF, for instance).  On return, fe->fe_fs->fs_fsr will be
197  * modified to reflect the setting the hardware would have left.
198  *
199  * Note that we do not catch all illegal opcodes, so you can, for instance,
200  * multiply two integers this way.
201  */
202 int
203 fpu_execute(fe, instr)
204 	register struct fpemu *fe;
205 	union instr instr;
206 {
207 	register struct fpn *fp;
208 	register int opf, rs1, rs2, rd, type, mask, fsr, cx;
209 	register struct fpstate *fs;
210 	u_int space[4];
211 
212 	/*
213 	 * `Decode' and execute instruction.  Start with no exceptions.
214 	 * The type of any i_opf opcode is in the bottom two bits, so we
215 	 * squish them out here.
216 	 */
217 	opf = instr.i_opf.i_opf;
218 	type = opf & 3;
219 	mask = "\0\0\1\3"[type];
220 	rs1 = instr.i_opf.i_rs1 & ~mask;
221 	rs2 = instr.i_opf.i_rs2 & ~mask;
222 	rd = instr.i_opf.i_rd & ~mask;
223 #ifdef notdef
224 	if ((rs1 | rs2 | rd) & mask)
225 		return (BADREG);
226 #endif
227 	fs = fe->fe_fpstate;
228 	fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
229 	fe->fe_cx = 0;
230 	switch (opf >>= 2) {
231 
232 	default:
233 		return (NOTFPU);
234 
235 	case FMOV >> 2:		/* these should all be pretty obvious */
236 		rs1 = fs->fs_regs[rs2];
237 		goto mov;
238 
239 	case FNEG >> 2:
240 		rs1 = fs->fs_regs[rs2] ^ (1 << 31);
241 		goto mov;
242 
243 	case FABS >> 2:
244 		rs1 = fs->fs_regs[rs2] & ~(1 << 31);
245 	mov:
246 		fs->fs_regs[rd] = rs1;
247 		fs->fs_fsr = fe->fe_fsr;
248 		return (0);	/* success */
249 
250 	case FSQRT >> 2:
251 		fpu_explode(fe, &fe->fe_f1, type, rs2);
252 		fp = fpu_sqrt(fe);
253 		break;
254 
255 	case FADD >> 2:
256 		fpu_explode(fe, &fe->fe_f1, type, rs1);
257 		fpu_explode(fe, &fe->fe_f2, type, rs2);
258 		fp = fpu_add(fe);
259 		break;
260 
261 	case FSUB >> 2:
262 		fpu_explode(fe, &fe->fe_f1, type, rs1);
263 		fpu_explode(fe, &fe->fe_f2, type, rs2);
264 		fp = fpu_sub(fe);
265 		break;
266 
267 	case FMUL >> 2:
268 		fpu_explode(fe, &fe->fe_f1, type, rs1);
269 		fpu_explode(fe, &fe->fe_f2, type, rs2);
270 		fp = fpu_mul(fe);
271 		break;
272 
273 	case FDIV >> 2:
274 		fpu_explode(fe, &fe->fe_f1, type, rs1);
275 		fpu_explode(fe, &fe->fe_f2, type, rs2);
276 		fp = fpu_div(fe);
277 		break;
278 
279 	case FCMP >> 2:
280 		fpu_explode(fe, &fe->fe_f1, type, rs1);
281 		fpu_explode(fe, &fe->fe_f2, type, rs2);
282 		fpu_compare(fe, 0);
283 		goto cmpdone;
284 
285 	case FCMPE >> 2:
286 		fpu_explode(fe, &fe->fe_f1, type, rs1);
287 		fpu_explode(fe, &fe->fe_f2, type, rs2);
288 		fpu_compare(fe, 1);
289 	cmpdone:
290 		/*
291 		 * The only possible exception here is NV; catch it
292 		 * early and get out, as there is no result register.
293 		 */
294 		cx = fe->fe_cx;
295 		fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
296 		if (cx != 0) {
297 			if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
298 				fs->fs_fsr = (fsr & ~FSR_FTT) |
299 				    (FSR_TT_IEEE << FSR_FTT_SHIFT);
300 				return (FPE);
301 			}
302 			fsr |= FSR_NV << FSR_AX_SHIFT;
303 		}
304 		fs->fs_fsr = fsr;
305 		return (0);
306 
307 	case FSMULD >> 2:
308 	case FDMULX >> 2:
309 		if (type == FTYPE_EXT)
310 			return (NOTFPU);
311 		fpu_explode(fe, &fe->fe_f1, type, rs1);
312 		fpu_explode(fe, &fe->fe_f2, type, rs2);
313 		type++;	/* single to double, or double to quad */
314 		fp = fpu_mul(fe);
315 		break;
316 
317 	case FTOS >> 2:
318 	case FTOD >> 2:
319 	case FTOX >> 2:
320 	case FTOI >> 2:
321 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
322 		type = opf & 3;	/* sneaky; depends on instruction encoding */
323 		break;
324 	}
325 
326 	/*
327 	 * ALU operation is complete.  Collapse the result and then check
328 	 * for exceptions.  If we got any, and they are enabled, do not
329 	 * alter the destination register, just stop with an exception.
330 	 * Otherwise set new current exceptions and accrue.
331 	 */
332 	fpu_implode(fe, fp, type, space);
333 	cx = fe->fe_cx;
334 	fsr = fe->fe_fsr;
335 	if (cx != 0) {
336 		mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
337 		if (cx & mask) {
338 			/* not accrued??? */
339 			fs->fs_fsr = (fsr & ~FSR_FTT) |
340 			    (FSR_TT_IEEE << FSR_FTT_SHIFT) |
341 			    (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
342 			return (FPE);
343 		}
344 		fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
345 	}
346 	fs->fs_fsr = fsr;
347 	fs->fs_regs[rd] = space[0];
348 	if (type >= FTYPE_DBL) {
349 		fs->fs_regs[rd + 1] = space[1];
350 		if (type > FTYPE_DBL) {
351 			fs->fs_regs[rd + 2] = space[2];
352 			fs->fs_regs[rd + 3] = space[3];
353 		}
354 	}
355 	return (0);	/* success */
356 }
357