xref: /original-bsd/sys/sparc/fpu/fpu_sqrt.c (revision 2f46dd9e)
1 /*
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratory.
13  *
14  * %sccs.include.redist.c%
15  *
16  *	@(#)fpu_sqrt.c	7.4 (Berkeley) 04/20/93
17  *
18  * from: $Header: fpu_sqrt.c,v 1.3 92/11/26 01:39:51 torek Exp $
19  */
20 
21 /*
22  * Perform an FPU square root (return sqrt(x)).
23  */
24 
25 #include <sys/types.h>
26 
27 #include <machine/reg.h>
28 
29 #include <sparc/fpu/fpu_arith.h>
30 #include <sparc/fpu/fpu_emu.h>
31 
32 /*
33  * Our task is to calculate the square root of a floating point number x0.
34  * This number x normally has the form:
35  *
36  *		    exp
37  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
38  *
39  * This can be left as it stands, or the mantissa can be doubled and the
40  * exponent decremented:
41  *
42  *			  exp-1
43  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
44  *
45  * If the exponent `exp' is even, the square root of the number is best
46  * handled using the first form, and is by definition equal to:
47  *
48  *				exp/2
49  *	sqrt(x) = sqrt(mant) * 2
50  *
51  * If exp is odd, on the other hand, it is convenient to use the second
52  * form, giving:
53  *
54  *				    (exp-1)/2
55  *	sqrt(x) = sqrt(2 * mant) * 2
56  *
57  * In the first case, we have
58  *
59  *	1 <= mant < 2
60  *
61  * and therefore
62  *
63  *	sqrt(1) <= sqrt(mant) < sqrt(2)
64  *
65  * while in the second case we have
66  *
67  *	2 <= 2*mant < 4
68  *
69  * and therefore
70  *
71  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
72  *
73  * so that in any case, we are sure that
74  *
75  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
76  *
77  * or
78  *
79  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
80  *
81  * This root is therefore a properly formed mantissa for a floating
82  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
83  * as above.  This leaves us with the problem of finding the square root
84  * of a fixed-point number in the range [1..4).
85  *
86  * Though it may not be instantly obvious, the following square root
87  * algorithm works for any integer x of an even number of bits, provided
88  * that no overflows occur:
89  *
90  *	let q = 0
91  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
92  *		x *= 2			-- multiply by radix, for next digit
93  *		if x >= 2q + 2^k then	-- if adding 2^k does not
94  *			x -= 2q + 2^k	-- exceed the correct root,
95  *			q += 2^k	-- add 2^k and adjust x
96  *		fi
97  *	done
98  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
99  *
100  * If NBITS is odd (so that k is initially even), we can just add another
101  * zero bit at the top of x.  Doing so means that q is not going to acquire
102  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
103  * final value in x is not needed, or can be off by a factor of 2, this is
104  * equivalant to moving the `x *= 2' step to the bottom of the loop:
105  *
106  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
107  *
108  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
109  * (Since the algorithm is destructive on x, we will call x's initial
110  * value, for which q is some power of two times its square root, x0.)
111  *
112  * If we insert a loop invariant y = 2q, we can then rewrite this using
113  * C notation as:
114  *
115  *	q = y = 0; x = x0;
116  *	for (k = NBITS; --k >= 0;) {
117  * #if (NBITS is even)
118  *		x *= 2;
119  * #endif
120  *		t = y + (1 << k);
121  *		if (x >= t) {
122  *			x -= t;
123  *			q += 1 << k;
124  *			y += 1 << (k + 1);
125  *		}
126  * #if (NBITS is odd)
127  *		x *= 2;
128  * #endif
129  *	}
130  *
131  * If x0 is fixed point, rather than an integer, we can simply alter the
132  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
133  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
134  *
135  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
136  * integers, which adds some complication.  But note that q is built one
137  * bit at a time, from the top down, and is not used itself in the loop
138  * (we use 2q as held in y instead).  This means we can build our answer
139  * in an integer, one word at a time, which saves a bit of work.  Also,
140  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
141  * `new' bits in y and we can set them with an `or' operation rather than
142  * a full-blown multiword add.
143  *
144  * We are almost done, except for one snag.  We must prove that none of our
145  * intermediate calculations can overflow.  We know that x0 is in [1..4)
146  * and therefore the square root in q will be in [1..2), but what about x,
147  * y, and t?
148  *
149  * We know that y = 2q at the beginning of each loop.  (The relation only
150  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
151  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
152  * Furthermore, we can prove with a bit of work that x never exceeds y by
153  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
154  * an exercise to the reader, mostly because I have become tired of working
155  * on this comment.)
156  *
157  * If our floating point mantissas (which are of the form 1.frac) occupy
158  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
159  * In fact, we want even one more bit (for a carry, to avoid compares), or
160  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
161  * this, so we have some justification in assuming it.
162  */
163 struct fpn *
164 fpu_sqrt(fe)
165 	struct fpemu *fe;
166 {
167 	register struct fpn *x = &fe->fe_f1;
168 	register u_int bit, q, tt;
169 	register u_int x0, x1, x2, x3;
170 	register u_int y0, y1, y2, y3;
171 	register u_int d0, d1, d2, d3;
172 	register int e;
173 
174 	/*
175 	 * Take care of special cases first.  In order:
176 	 *
177 	 *	sqrt(NaN) = NaN
178 	 *	sqrt(+0) = +0
179 	 *	sqrt(-0) = -0
180 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
181 	 *	sqrt(+Inf) = +Inf
182 	 *
183 	 * Then all that remains are numbers with mantissas in [1..2).
184 	 */
185 	if (ISNAN(x) || ISZERO(x))
186 		return (x);
187 	if (x->fp_sign)
188 		return (fpu_newnan(fe));
189 	if (ISINF(x))
190 		return (x);
191 
192 	/*
193 	 * Calculate result exponent.  As noted above, this may involve
194 	 * doubling the mantissa.  We will also need to double x each
195 	 * time around the loop, so we define a macro for this here, and
196 	 * we break out the multiword mantissa.
197 	 */
198 #ifdef FPU_SHL1_BY_ADD
199 #define	DOUBLE_X { \
200 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
201 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
202 }
203 #else
204 #define	DOUBLE_X { \
205 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
206 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
207 }
208 #endif
209 #if (FP_NMANT & 1) != 0
210 # define ODD_DOUBLE	DOUBLE_X
211 # define EVEN_DOUBLE	/* nothing */
212 #else
213 # define ODD_DOUBLE	/* nothing */
214 # define EVEN_DOUBLE	DOUBLE_X
215 #endif
216 	x0 = x->fp_mant[0];
217 	x1 = x->fp_mant[1];
218 	x2 = x->fp_mant[2];
219 	x3 = x->fp_mant[3];
220 	e = x->fp_exp;
221 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
222 		DOUBLE_X;
223 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
224 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
225 
226 	/*
227 	 * Now calculate the mantissa root.  Since x is now in [1..4),
228 	 * we know that the first trip around the loop will definitely
229 	 * set the top bit in q, so we can do that manually and start
230 	 * the loop at the next bit down instead.  We must be sure to
231 	 * double x correctly while doing the `known q=1.0'.
232 	 *
233 	 * We do this one mantissa-word at a time, as noted above, to
234 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
235 	 * outside of each per-word loop.
236 	 *
237 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
238 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
239 	 * is always a `new' one, this means that three of the `t?'s are
240 	 * just the corresponding `y?'; we use `#define's here for this.
241 	 * The variable `tt' holds the actual `t?' variable.
242 	 */
243 
244 	/* calculate q0 */
245 #define	t0 tt
246 	bit = FP_1;
247 	EVEN_DOUBLE;
248 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
249 		q = bit;
250 		x0 -= bit;
251 		y0 = bit << 1;
252 	/* } */
253 	ODD_DOUBLE;
254 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
255 		EVEN_DOUBLE;
256 		t0 = y0 | bit;		/* t = y + bit */
257 		if (x0 >= t0) {		/* if x >= t then */
258 			x0 -= t0;	/*	x -= t */
259 			q |= bit;	/*	q += bit */
260 			y0 |= bit << 1;	/*	y += bit << 1 */
261 		}
262 		ODD_DOUBLE;
263 	}
264 	x->fp_mant[0] = q;
265 #undef t0
266 
267 	/* calculate q1.  note (y0&1)==0. */
268 #define t0 y0
269 #define t1 tt
270 	q = 0;
271 	y1 = 0;
272 	bit = 1 << 31;
273 	EVEN_DOUBLE;
274 	t1 = bit;
275 	FPU_SUBS(d1, x1, t1);
276 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
277 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
278 		x0 = d0, x1 = d1;	/*	x -= t */
279 		q = bit;		/*	q += bit */
280 		y0 |= 1;		/*	y += bit << 1 */
281 	}
282 	ODD_DOUBLE;
283 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
284 		EVEN_DOUBLE;		/* as before */
285 		t1 = y1 | bit;
286 		FPU_SUBS(d1, x1, t1);
287 		FPU_SUBC(d0, x0, t0);
288 		if ((int)d0 >= 0) {
289 			x0 = d0, x1 = d1;
290 			q |= bit;
291 			y1 |= bit << 1;
292 		}
293 		ODD_DOUBLE;
294 	}
295 	x->fp_mant[1] = q;
296 #undef t1
297 
298 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
299 #define t1 y1
300 #define t2 tt
301 	q = 0;
302 	y2 = 0;
303 	bit = 1 << 31;
304 	EVEN_DOUBLE;
305 	t2 = bit;
306 	FPU_SUBS(d2, x2, t2);
307 	FPU_SUBCS(d1, x1, t1);
308 	FPU_SUBC(d0, x0, t0);
309 	if ((int)d0 >= 0) {
310 		x0 = d0, x1 = d1, x2 = d2;
311 		q |= bit;
312 		y1 |= 1;		/* now t1, y1 are set in concrete */
313 	}
314 	ODD_DOUBLE;
315 	while ((bit >>= 1) != 0) {
316 		EVEN_DOUBLE;
317 		t2 = y2 | bit;
318 		FPU_SUBS(d2, x2, t2);
319 		FPU_SUBCS(d1, x1, t1);
320 		FPU_SUBC(d0, x0, t0);
321 		if ((int)d0 >= 0) {
322 			x0 = d0, x1 = d1, x2 = d2;
323 			q |= bit;
324 			y2 |= bit << 1;
325 		}
326 		ODD_DOUBLE;
327 	}
328 	x->fp_mant[2] = q;
329 #undef t2
330 
331 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
332 #define t2 y2
333 #define t3 tt
334 	q = 0;
335 	y3 = 0;
336 	bit = 1 << 31;
337 	EVEN_DOUBLE;
338 	t3 = bit;
339 	FPU_SUBS(d3, x3, t3);
340 	FPU_SUBCS(d2, x2, t2);
341 	FPU_SUBCS(d1, x1, t1);
342 	FPU_SUBC(d0, x0, t0);
343 	ODD_DOUBLE;
344 	if ((int)d0 >= 0) {
345 		x0 = d0, x1 = d1, x2 = d2;
346 		q |= bit;
347 		y2 |= 1;
348 	}
349 	while ((bit >>= 1) != 0) {
350 		EVEN_DOUBLE;
351 		t3 = y3 | bit;
352 		FPU_SUBS(d3, x3, t3);
353 		FPU_SUBCS(d2, x2, t2);
354 		FPU_SUBCS(d1, x1, t1);
355 		FPU_SUBC(d0, x0, t0);
356 		if ((int)d0 >= 0) {
357 			x0 = d0, x1 = d1, x2 = d2;
358 			q |= bit;
359 			y3 |= bit << 1;
360 		}
361 		ODD_DOUBLE;
362 	}
363 	x->fp_mant[3] = q;
364 
365 	/*
366 	 * The result, which includes guard and round bits, is exact iff
367 	 * x is now zero; any nonzero bits in x represent sticky bits.
368 	 */
369 	x->fp_sticky = x0 | x1 | x2 | x3;
370 	return (x);
371 }
372