1 /* 2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are permitted 6 * provided that the above copyright notice and this paragraph are 7 * duplicated in all such forms and that any documentation, 8 * advertising materials, and other materials related to such 9 * distribution and use acknowledge that the software was developed 10 * by the University of California, Berkeley. The name of the 11 * University may not be used to endorse or promote products derived 12 * from this software without specific prior written permission. 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 16 * 17 * @(#)ffs_alloc.c 7.9 (Berkeley) 05/09/89 18 */ 19 20 #include "param.h" 21 #include "systm.h" 22 #include "mount.h" 23 #include "buf.h" 24 #include "user.h" 25 #include "vnode.h" 26 #include "kernel.h" 27 #include "syslog.h" 28 #include "cmap.h" 29 #include "../ufs/quota.h" 30 #include "../ufs/inode.h" 31 #include "../ufs/fs.h" 32 33 extern u_long hashalloc(); 34 extern ino_t ialloccg(); 35 extern daddr_t alloccg(); 36 extern daddr_t alloccgblk(); 37 extern daddr_t fragextend(); 38 extern daddr_t blkpref(); 39 extern daddr_t mapsearch(); 40 extern int inside[], around[]; 41 extern unsigned char *fragtbl[]; 42 43 /* 44 * Allocate a block in the file system. 45 * 46 * The size of the requested block is given, which must be some 47 * multiple of fs_fsize and <= fs_bsize. 48 * A preference may be optionally specified. If a preference is given 49 * the following hierarchy is used to allocate a block: 50 * 1) allocate the requested block. 51 * 2) allocate a rotationally optimal block in the same cylinder. 52 * 3) allocate a block in the same cylinder group. 53 * 4) quadradically rehash into other cylinder groups, until an 54 * available block is located. 55 * If no block preference is given the following heirarchy is used 56 * to allocate a block: 57 * 1) allocate a block in the cylinder group that contains the 58 * inode for the file. 59 * 2) quadradically rehash into other cylinder groups, until an 60 * available block is located. 61 */ 62 alloc(ip, bpref, size, bpp, flags) 63 register struct inode *ip; 64 daddr_t bpref; 65 int size; 66 struct buf **bpp; 67 int flags; 68 { 69 daddr_t bno; 70 register struct fs *fs; 71 register struct buf *bp; 72 int cg, error; 73 74 *bpp = 0; 75 fs = ip->i_fs; 76 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 77 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 78 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 79 panic("alloc: bad size"); 80 } 81 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 82 goto nospace; 83 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 84 goto nospace; 85 #ifdef QUOTA 86 if (error = chkdq(ip, (long)btodb(size), 0)) 87 return (error); 88 #endif 89 if (bpref >= fs->fs_size) 90 bpref = 0; 91 if (bpref == 0) 92 cg = itog(fs, ip->i_number); 93 else 94 cg = dtog(fs, bpref); 95 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, 96 (u_long (*)())alloccg); 97 if (bno <= 0) 98 goto nospace; 99 ip->i_blocks += btodb(size); 100 ip->i_flag |= IUPD|ICHG; 101 bp = getblk(ip->i_devvp, fsbtodb(fs, bno), size); 102 if (flags & B_CLRBUF) 103 clrbuf(bp); 104 *bpp = bp; 105 return (0); 106 nospace: 107 fserr(fs, "file system full"); 108 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 109 return (ENOSPC); 110 } 111 112 /* 113 * Reallocate a fragment to a bigger size 114 * 115 * The number and size of the old block is given, and a preference 116 * and new size is also specified. The allocator attempts to extend 117 * the original block. Failing that, the regular block allocator is 118 * invoked to get an appropriate block. 119 */ 120 realloccg(ip, bprev, bpref, osize, nsize, bpp) 121 register struct inode *ip; 122 daddr_t bprev, bpref; 123 int osize, nsize; 124 struct buf **bpp; 125 { 126 register struct fs *fs; 127 struct buf *bp, *obp; 128 int cg, request; 129 daddr_t bno, bn; 130 int i, error, count; 131 132 *bpp = 0; 133 fs = ip->i_fs; 134 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 135 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 136 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 137 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 138 panic("realloccg: bad size"); 139 } 140 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 141 goto nospace; 142 if (bprev == 0) { 143 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", 144 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); 145 panic("realloccg: bad bprev"); 146 } 147 #ifdef QUOTA 148 if (error = chkdq(ip, (long)btodb(nsize - osize), 0)) 149 return (error); 150 #endif 151 cg = dtog(fs, bprev); 152 bno = fragextend(ip, cg, (long)bprev, osize, nsize); 153 if (bno != 0) { 154 do { 155 error = bread(ip->i_devvp, fsbtodb(fs, bno), 156 osize, &bp); 157 if (error) { 158 brelse(bp); 159 return (error); 160 } 161 } while (brealloc(bp, nsize) == 0); 162 bp->b_flags |= B_DONE; 163 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 164 ip->i_blocks += btodb(nsize - osize); 165 ip->i_flag |= IUPD|ICHG; 166 *bpp = bp; 167 return (0); 168 } 169 if (bpref >= fs->fs_size) 170 bpref = 0; 171 switch ((int)fs->fs_optim) { 172 case FS_OPTSPACE: 173 /* 174 * Allocate an exact sized fragment. Although this makes 175 * best use of space, we will waste time relocating it if 176 * the file continues to grow. If the fragmentation is 177 * less than half of the minimum free reserve, we choose 178 * to begin optimizing for time. 179 */ 180 request = nsize; 181 if (fs->fs_minfree < 5 || 182 fs->fs_cstotal.cs_nffree > 183 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 184 break; 185 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 186 fs->fs_fsmnt); 187 fs->fs_optim = FS_OPTTIME; 188 break; 189 case FS_OPTTIME: 190 /* 191 * At this point we have discovered a file that is trying 192 * to grow a small fragment to a larger fragment. To save 193 * time, we allocate a full sized block, then free the 194 * unused portion. If the file continues to grow, the 195 * `fragextend' call above will be able to grow it in place 196 * without further copying. If aberrant programs cause 197 * disk fragmentation to grow within 2% of the free reserve, 198 * we choose to begin optimizing for space. 199 */ 200 request = fs->fs_bsize; 201 if (fs->fs_cstotal.cs_nffree < 202 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 203 break; 204 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 205 fs->fs_fsmnt); 206 fs->fs_optim = FS_OPTSPACE; 207 break; 208 default: 209 printf("dev = 0x%x, optim = %d, fs = %s\n", 210 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 211 panic("realloccg: bad optim"); 212 /* NOTREACHED */ 213 } 214 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, 215 (u_long (*)())alloccg); 216 if (bno > 0) { 217 error = bread(ip->i_devvp, fsbtodb(fs, bprev), osize, &obp); 218 if (error) { 219 brelse(obp); 220 return (error); 221 } 222 bn = fsbtodb(fs, bno); 223 bp = getblk(ip->i_devvp, bn, nsize); 224 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize); 225 count = howmany(osize, CLBYTES); 226 for (i = 0; i < count; i++) 227 munhash(ip->i_devvp, bn + i * CLBYTES / DEV_BSIZE); 228 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); 229 if (obp->b_flags & B_DELWRI) { 230 obp->b_flags &= ~B_DELWRI; 231 u.u_ru.ru_oublock--; /* delete charge */ 232 } 233 brelse(obp); 234 blkfree(ip, bprev, (off_t)osize); 235 if (nsize < request) 236 blkfree(ip, bno + numfrags(fs, nsize), 237 (off_t)(request - nsize)); 238 ip->i_blocks += btodb(nsize - osize); 239 ip->i_flag |= IUPD|ICHG; 240 *bpp = bp; 241 return (0); 242 } 243 nospace: 244 /* 245 * no space available 246 */ 247 fserr(fs, "file system full"); 248 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); 249 return (ENOSPC); 250 } 251 252 /* 253 * Allocate an inode in the file system. 254 * 255 * A preference may be optionally specified. If a preference is given 256 * the following hierarchy is used to allocate an inode: 257 * 1) allocate the requested inode. 258 * 2) allocate an inode in the same cylinder group. 259 * 3) quadradically rehash into other cylinder groups, until an 260 * available inode is located. 261 * If no inode preference is given the following heirarchy is used 262 * to allocate an inode: 263 * 1) allocate an inode in cylinder group 0. 264 * 2) quadradically rehash into other cylinder groups, until an 265 * available inode is located. 266 */ 267 ialloc(pip, ipref, mode, ipp) 268 register struct inode *pip; 269 ino_t ipref; 270 int mode; 271 struct inode **ipp; 272 { 273 ino_t ino; 274 register struct fs *fs; 275 register struct inode *ip; 276 int cg, error; 277 278 *ipp = 0; 279 fs = pip->i_fs; 280 if (fs->fs_cstotal.cs_nifree == 0) 281 goto noinodes; 282 #ifdef QUOTA 283 if (error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0)) 284 return (error); 285 #endif 286 if (ipref >= fs->fs_ncg * fs->fs_ipg) 287 ipref = 0; 288 cg = itog(fs, ipref); 289 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); 290 if (ino == 0) 291 goto noinodes; 292 error = iget(pip, ino, ipp); 293 ip = *ipp; 294 if (error) { 295 ifree(pip, ino, 0); 296 return (error); 297 } 298 if (ip->i_mode) { 299 printf("mode = 0%o, inum = %d, fs = %s\n", 300 ip->i_mode, ip->i_number, fs->fs_fsmnt); 301 panic("ialloc: dup alloc"); 302 } 303 if (ip->i_blocks) { /* XXX */ 304 printf("free inode %s/%d had %d blocks\n", 305 fs->fs_fsmnt, ino, ip->i_blocks); 306 ip->i_blocks = 0; 307 } 308 return (0); 309 noinodes: 310 fserr(fs, "out of inodes"); 311 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); 312 return (ENOSPC); 313 } 314 315 /* 316 * Find a cylinder to place a directory. 317 * 318 * The policy implemented by this algorithm is to select from 319 * among those cylinder groups with above the average number of 320 * free inodes, the one with the smallest number of directories. 321 */ 322 ino_t 323 dirpref(fs) 324 register struct fs *fs; 325 { 326 int cg, minndir, mincg, avgifree; 327 328 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 329 minndir = fs->fs_ipg; 330 mincg = 0; 331 for (cg = 0; cg < fs->fs_ncg; cg++) 332 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 333 fs->fs_cs(fs, cg).cs_nifree >= avgifree) { 334 mincg = cg; 335 minndir = fs->fs_cs(fs, cg).cs_ndir; 336 } 337 return ((ino_t)(fs->fs_ipg * mincg)); 338 } 339 340 /* 341 * Select the desired position for the next block in a file. The file is 342 * logically divided into sections. The first section is composed of the 343 * direct blocks. Each additional section contains fs_maxbpg blocks. 344 * 345 * If no blocks have been allocated in the first section, the policy is to 346 * request a block in the same cylinder group as the inode that describes 347 * the file. If no blocks have been allocated in any other section, the 348 * policy is to place the section in a cylinder group with a greater than 349 * average number of free blocks. An appropriate cylinder group is found 350 * by using a rotor that sweeps the cylinder groups. When a new group of 351 * blocks is needed, the sweep begins in the cylinder group following the 352 * cylinder group from which the previous allocation was made. The sweep 353 * continues until a cylinder group with greater than the average number 354 * of free blocks is found. If the allocation is for the first block in an 355 * indirect block, the information on the previous allocation is unavailable; 356 * here a best guess is made based upon the logical block number being 357 * allocated. 358 * 359 * If a section is already partially allocated, the policy is to 360 * contiguously allocate fs_maxcontig blocks. The end of one of these 361 * contiguous blocks and the beginning of the next is physically separated 362 * so that the disk head will be in transit between them for at least 363 * fs_rotdelay milliseconds. This is to allow time for the processor to 364 * schedule another I/O transfer. 365 */ 366 daddr_t 367 blkpref(ip, lbn, indx, bap) 368 struct inode *ip; 369 daddr_t lbn; 370 int indx; 371 daddr_t *bap; 372 { 373 register struct fs *fs; 374 register int cg; 375 int avgbfree, startcg; 376 daddr_t nextblk; 377 378 fs = ip->i_fs; 379 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 380 if (lbn < NDADDR) { 381 cg = itog(fs, ip->i_number); 382 return (fs->fs_fpg * cg + fs->fs_frag); 383 } 384 /* 385 * Find a cylinder with greater than average number of 386 * unused data blocks. 387 */ 388 if (indx == 0 || bap[indx - 1] == 0) 389 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; 390 else 391 startcg = dtog(fs, bap[indx - 1]) + 1; 392 startcg %= fs->fs_ncg; 393 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 394 for (cg = startcg; cg < fs->fs_ncg; cg++) 395 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 396 fs->fs_cgrotor = cg; 397 return (fs->fs_fpg * cg + fs->fs_frag); 398 } 399 for (cg = 0; cg <= startcg; cg++) 400 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 401 fs->fs_cgrotor = cg; 402 return (fs->fs_fpg * cg + fs->fs_frag); 403 } 404 return (NULL); 405 } 406 /* 407 * One or more previous blocks have been laid out. If less 408 * than fs_maxcontig previous blocks are contiguous, the 409 * next block is requested contiguously, otherwise it is 410 * requested rotationally delayed by fs_rotdelay milliseconds. 411 */ 412 nextblk = bap[indx - 1] + fs->fs_frag; 413 if (indx > fs->fs_maxcontig && 414 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) 415 != nextblk) 416 return (nextblk); 417 if (fs->fs_rotdelay != 0) 418 /* 419 * Here we convert ms of delay to frags as: 420 * (frags) = (ms) * (rev/sec) * (sect/rev) / 421 * ((sect/frag) * (ms/sec)) 422 * then round up to the next block. 423 */ 424 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / 425 (NSPF(fs) * 1000), fs->fs_frag); 426 return (nextblk); 427 } 428 429 /* 430 * Implement the cylinder overflow algorithm. 431 * 432 * The policy implemented by this algorithm is: 433 * 1) allocate the block in its requested cylinder group. 434 * 2) quadradically rehash on the cylinder group number. 435 * 3) brute force search for a free block. 436 */ 437 /*VARARGS5*/ 438 u_long 439 hashalloc(ip, cg, pref, size, allocator) 440 struct inode *ip; 441 int cg; 442 long pref; 443 int size; /* size for data blocks, mode for inodes */ 444 u_long (*allocator)(); 445 { 446 register struct fs *fs; 447 long result; 448 int i, icg = cg; 449 450 fs = ip->i_fs; 451 /* 452 * 1: preferred cylinder group 453 */ 454 result = (*allocator)(ip, cg, pref, size); 455 if (result) 456 return (result); 457 /* 458 * 2: quadratic rehash 459 */ 460 for (i = 1; i < fs->fs_ncg; i *= 2) { 461 cg += i; 462 if (cg >= fs->fs_ncg) 463 cg -= fs->fs_ncg; 464 result = (*allocator)(ip, cg, 0, size); 465 if (result) 466 return (result); 467 } 468 /* 469 * 3: brute force search 470 * Note that we start at i == 2, since 0 was checked initially, 471 * and 1 is always checked in the quadratic rehash. 472 */ 473 cg = (icg + 2) % fs->fs_ncg; 474 for (i = 2; i < fs->fs_ncg; i++) { 475 result = (*allocator)(ip, cg, 0, size); 476 if (result) 477 return (result); 478 cg++; 479 if (cg == fs->fs_ncg) 480 cg = 0; 481 } 482 return (NULL); 483 } 484 485 /* 486 * Determine whether a fragment can be extended. 487 * 488 * Check to see if the necessary fragments are available, and 489 * if they are, allocate them. 490 */ 491 daddr_t 492 fragextend(ip, cg, bprev, osize, nsize) 493 struct inode *ip; 494 int cg; 495 long bprev; 496 int osize, nsize; 497 { 498 register struct fs *fs; 499 register struct cg *cgp; 500 struct buf *bp; 501 long bno; 502 int frags, bbase; 503 int i, error; 504 505 fs = ip->i_fs; 506 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 507 return (NULL); 508 frags = numfrags(fs, nsize); 509 bbase = fragnum(fs, bprev); 510 if (bbase > fragnum(fs, (bprev + frags - 1))) { 511 /* cannot extend across a block boundary */ 512 return (NULL); 513 } 514 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 515 (int)fs->fs_cgsize, &bp); 516 if (error) { 517 brelse(bp); 518 return (NULL); 519 } 520 cgp = bp->b_un.b_cg; 521 if (!cg_chkmagic(cgp)) { 522 brelse(bp); 523 return (NULL); 524 } 525 cgp->cg_time = time.tv_sec; 526 bno = dtogd(fs, bprev); 527 for (i = numfrags(fs, osize); i < frags; i++) 528 if (isclr(cg_blksfree(cgp), bno + i)) { 529 brelse(bp); 530 return (NULL); 531 } 532 /* 533 * the current fragment can be extended 534 * deduct the count on fragment being extended into 535 * increase the count on the remaining fragment (if any) 536 * allocate the extended piece 537 */ 538 for (i = frags; i < fs->fs_frag - bbase; i++) 539 if (isclr(cg_blksfree(cgp), bno + i)) 540 break; 541 cgp->cg_frsum[i - numfrags(fs, osize)]--; 542 if (i != frags) 543 cgp->cg_frsum[i - frags]++; 544 for (i = numfrags(fs, osize); i < frags; i++) { 545 clrbit(cg_blksfree(cgp), bno + i); 546 cgp->cg_cs.cs_nffree--; 547 fs->fs_cstotal.cs_nffree--; 548 fs->fs_cs(fs, cg).cs_nffree--; 549 } 550 fs->fs_fmod++; 551 bdwrite(bp); 552 return (bprev); 553 } 554 555 /* 556 * Determine whether a block can be allocated. 557 * 558 * Check to see if a block of the apprpriate size is available, 559 * and if it is, allocate it. 560 */ 561 daddr_t 562 alloccg(ip, cg, bpref, size) 563 struct inode *ip; 564 int cg; 565 daddr_t bpref; 566 int size; 567 { 568 register struct fs *fs; 569 register struct cg *cgp; 570 struct buf *bp; 571 register int i; 572 int error, bno, frags, allocsiz; 573 574 fs = ip->i_fs; 575 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 576 return (NULL); 577 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 578 (int)fs->fs_cgsize, &bp); 579 if (error) { 580 brelse(bp); 581 return (NULL); 582 } 583 cgp = bp->b_un.b_cg; 584 if (!cg_chkmagic(cgp) || 585 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { 586 brelse(bp); 587 return (NULL); 588 } 589 cgp->cg_time = time.tv_sec; 590 if (size == fs->fs_bsize) { 591 bno = alloccgblk(fs, cgp, bpref); 592 bdwrite(bp); 593 return (bno); 594 } 595 /* 596 * check to see if any fragments are already available 597 * allocsiz is the size which will be allocated, hacking 598 * it down to a smaller size if necessary 599 */ 600 frags = numfrags(fs, size); 601 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 602 if (cgp->cg_frsum[allocsiz] != 0) 603 break; 604 if (allocsiz == fs->fs_frag) { 605 /* 606 * no fragments were available, so a block will be 607 * allocated, and hacked up 608 */ 609 if (cgp->cg_cs.cs_nbfree == 0) { 610 brelse(bp); 611 return (NULL); 612 } 613 bno = alloccgblk(fs, cgp, bpref); 614 bpref = dtogd(fs, bno); 615 for (i = frags; i < fs->fs_frag; i++) 616 setbit(cg_blksfree(cgp), bpref + i); 617 i = fs->fs_frag - frags; 618 cgp->cg_cs.cs_nffree += i; 619 fs->fs_cstotal.cs_nffree += i; 620 fs->fs_cs(fs, cg).cs_nffree += i; 621 fs->fs_fmod++; 622 cgp->cg_frsum[i]++; 623 bdwrite(bp); 624 return (bno); 625 } 626 bno = mapsearch(fs, cgp, bpref, allocsiz); 627 if (bno < 0) { 628 brelse(bp); 629 return (NULL); 630 } 631 for (i = 0; i < frags; i++) 632 clrbit(cg_blksfree(cgp), bno + i); 633 cgp->cg_cs.cs_nffree -= frags; 634 fs->fs_cstotal.cs_nffree -= frags; 635 fs->fs_cs(fs, cg).cs_nffree -= frags; 636 fs->fs_fmod++; 637 cgp->cg_frsum[allocsiz]--; 638 if (frags != allocsiz) 639 cgp->cg_frsum[allocsiz - frags]++; 640 bdwrite(bp); 641 return (cg * fs->fs_fpg + bno); 642 } 643 644 /* 645 * Allocate a block in a cylinder group. 646 * 647 * This algorithm implements the following policy: 648 * 1) allocate the requested block. 649 * 2) allocate a rotationally optimal block in the same cylinder. 650 * 3) allocate the next available block on the block rotor for the 651 * specified cylinder group. 652 * Note that this routine only allocates fs_bsize blocks; these 653 * blocks may be fragmented by the routine that allocates them. 654 */ 655 daddr_t 656 alloccgblk(fs, cgp, bpref) 657 register struct fs *fs; 658 register struct cg *cgp; 659 daddr_t bpref; 660 { 661 daddr_t bno; 662 int cylno, pos, delta; 663 short *cylbp; 664 register int i; 665 666 if (bpref == 0) { 667 bpref = cgp->cg_rotor; 668 goto norot; 669 } 670 bpref = blknum(fs, bpref); 671 bpref = dtogd(fs, bpref); 672 /* 673 * if the requested block is available, use it 674 */ 675 if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { 676 bno = bpref; 677 goto gotit; 678 } 679 /* 680 * check for a block available on the same cylinder 681 */ 682 cylno = cbtocylno(fs, bpref); 683 if (cg_blktot(cgp)[cylno] == 0) 684 goto norot; 685 if (fs->fs_cpc == 0) { 686 /* 687 * block layout info is not available, so just have 688 * to take any block in this cylinder. 689 */ 690 bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); 691 goto norot; 692 } 693 /* 694 * check the summary information to see if a block is 695 * available in the requested cylinder starting at the 696 * requested rotational position and proceeding around. 697 */ 698 cylbp = cg_blks(fs, cgp, cylno); 699 pos = cbtorpos(fs, bpref); 700 for (i = pos; i < fs->fs_nrpos; i++) 701 if (cylbp[i] > 0) 702 break; 703 if (i == fs->fs_nrpos) 704 for (i = 0; i < pos; i++) 705 if (cylbp[i] > 0) 706 break; 707 if (cylbp[i] > 0) { 708 /* 709 * found a rotational position, now find the actual 710 * block. A panic if none is actually there. 711 */ 712 pos = cylno % fs->fs_cpc; 713 bno = (cylno - pos) * fs->fs_spc / NSPB(fs); 714 if (fs_postbl(fs, pos)[i] == -1) { 715 printf("pos = %d, i = %d, fs = %s\n", 716 pos, i, fs->fs_fsmnt); 717 panic("alloccgblk: cyl groups corrupted"); 718 } 719 for (i = fs_postbl(fs, pos)[i];; ) { 720 if (isblock(fs, cg_blksfree(cgp), bno + i)) { 721 bno = blkstofrags(fs, (bno + i)); 722 goto gotit; 723 } 724 delta = fs_rotbl(fs)[i]; 725 if (delta <= 0 || 726 delta + i > fragstoblks(fs, fs->fs_fpg)) 727 break; 728 i += delta; 729 } 730 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); 731 panic("alloccgblk: can't find blk in cyl"); 732 } 733 norot: 734 /* 735 * no blocks in the requested cylinder, so take next 736 * available one in this cylinder group. 737 */ 738 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 739 if (bno < 0) 740 return (NULL); 741 cgp->cg_rotor = bno; 742 gotit: 743 clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); 744 cgp->cg_cs.cs_nbfree--; 745 fs->fs_cstotal.cs_nbfree--; 746 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 747 cylno = cbtocylno(fs, bno); 748 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 749 cg_blktot(cgp)[cylno]--; 750 fs->fs_fmod++; 751 return (cgp->cg_cgx * fs->fs_fpg + bno); 752 } 753 754 /* 755 * Determine whether an inode can be allocated. 756 * 757 * Check to see if an inode is available, and if it is, 758 * allocate it using the following policy: 759 * 1) allocate the requested inode. 760 * 2) allocate the next available inode after the requested 761 * inode in the specified cylinder group. 762 */ 763 ino_t 764 ialloccg(ip, cg, ipref, mode) 765 struct inode *ip; 766 int cg; 767 daddr_t ipref; 768 int mode; 769 { 770 register struct fs *fs; 771 register struct cg *cgp; 772 struct buf *bp; 773 int error, start, len, loc, map, i; 774 775 fs = ip->i_fs; 776 if (fs->fs_cs(fs, cg).cs_nifree == 0) 777 return (NULL); 778 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 779 (int)fs->fs_cgsize, &bp); 780 if (error) { 781 brelse(bp); 782 return (NULL); 783 } 784 cgp = bp->b_un.b_cg; 785 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { 786 brelse(bp); 787 return (NULL); 788 } 789 cgp->cg_time = time.tv_sec; 790 if (ipref) { 791 ipref %= fs->fs_ipg; 792 if (isclr(cg_inosused(cgp), ipref)) 793 goto gotit; 794 } 795 start = cgp->cg_irotor / NBBY; 796 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 797 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 798 if (loc == 0) { 799 len = start + 1; 800 start = 0; 801 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 802 if (loc == 0) { 803 printf("cg = %s, irotor = %d, fs = %s\n", 804 cg, cgp->cg_irotor, fs->fs_fsmnt); 805 panic("ialloccg: map corrupted"); 806 /* NOTREACHED */ 807 } 808 } 809 i = start + len - loc; 810 map = cg_inosused(cgp)[i]; 811 ipref = i * NBBY; 812 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 813 if ((map & i) == 0) { 814 cgp->cg_irotor = ipref; 815 goto gotit; 816 } 817 } 818 printf("fs = %s\n", fs->fs_fsmnt); 819 panic("ialloccg: block not in map"); 820 /* NOTREACHED */ 821 gotit: 822 setbit(cg_inosused(cgp), ipref); 823 cgp->cg_cs.cs_nifree--; 824 fs->fs_cstotal.cs_nifree--; 825 fs->fs_cs(fs, cg).cs_nifree--; 826 fs->fs_fmod++; 827 if ((mode & IFMT) == IFDIR) { 828 cgp->cg_cs.cs_ndir++; 829 fs->fs_cstotal.cs_ndir++; 830 fs->fs_cs(fs, cg).cs_ndir++; 831 } 832 bdwrite(bp); 833 return (cg * fs->fs_ipg + ipref); 834 } 835 836 /* 837 * Free a block or fragment. 838 * 839 * The specified block or fragment is placed back in the 840 * free map. If a fragment is deallocated, a possible 841 * block reassembly is checked. 842 */ 843 blkfree(ip, bno, size) 844 register struct inode *ip; 845 daddr_t bno; 846 off_t size; 847 { 848 register struct fs *fs; 849 register struct cg *cgp; 850 struct buf *bp; 851 int error, cg, blk, frags, bbase; 852 register int i; 853 854 fs = ip->i_fs; 855 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { 856 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 857 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 858 panic("blkfree: bad size"); 859 } 860 cg = dtog(fs, bno); 861 if (badblock(fs, bno)) { 862 printf("bad block %d, ino %d\n", bno, ip->i_number); 863 return; 864 } 865 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 866 (int)fs->fs_cgsize, &bp); 867 if (error) { 868 brelse(bp); 869 return; 870 } 871 cgp = bp->b_un.b_cg; 872 if (!cg_chkmagic(cgp)) { 873 brelse(bp); 874 return; 875 } 876 cgp->cg_time = time.tv_sec; 877 bno = dtogd(fs, bno); 878 if (size == fs->fs_bsize) { 879 if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { 880 printf("dev = 0x%x, block = %d, fs = %s\n", 881 ip->i_dev, bno, fs->fs_fsmnt); 882 panic("blkfree: freeing free block"); 883 } 884 setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); 885 cgp->cg_cs.cs_nbfree++; 886 fs->fs_cstotal.cs_nbfree++; 887 fs->fs_cs(fs, cg).cs_nbfree++; 888 i = cbtocylno(fs, bno); 889 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 890 cg_blktot(cgp)[i]++; 891 } else { 892 bbase = bno - fragnum(fs, bno); 893 /* 894 * decrement the counts associated with the old frags 895 */ 896 blk = blkmap(fs, cg_blksfree(cgp), bbase); 897 fragacct(fs, blk, cgp->cg_frsum, -1); 898 /* 899 * deallocate the fragment 900 */ 901 frags = numfrags(fs, size); 902 for (i = 0; i < frags; i++) { 903 if (isset(cg_blksfree(cgp), bno + i)) { 904 printf("dev = 0x%x, block = %d, fs = %s\n", 905 ip->i_dev, bno + i, fs->fs_fsmnt); 906 panic("blkfree: freeing free frag"); 907 } 908 setbit(cg_blksfree(cgp), bno + i); 909 } 910 cgp->cg_cs.cs_nffree += i; 911 fs->fs_cstotal.cs_nffree += i; 912 fs->fs_cs(fs, cg).cs_nffree += i; 913 /* 914 * add back in counts associated with the new frags 915 */ 916 blk = blkmap(fs, cg_blksfree(cgp), bbase); 917 fragacct(fs, blk, cgp->cg_frsum, 1); 918 /* 919 * if a complete block has been reassembled, account for it 920 */ 921 if (isblock(fs, cg_blksfree(cgp), 922 (daddr_t)fragstoblks(fs, bbase))) { 923 cgp->cg_cs.cs_nffree -= fs->fs_frag; 924 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 925 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 926 cgp->cg_cs.cs_nbfree++; 927 fs->fs_cstotal.cs_nbfree++; 928 fs->fs_cs(fs, cg).cs_nbfree++; 929 i = cbtocylno(fs, bbase); 930 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 931 cg_blktot(cgp)[i]++; 932 } 933 } 934 fs->fs_fmod++; 935 bdwrite(bp); 936 } 937 938 /* 939 * Free an inode. 940 * 941 * The specified inode is placed back in the free map. 942 */ 943 ifree(ip, ino, mode) 944 struct inode *ip; 945 ino_t ino; 946 int mode; 947 { 948 register struct fs *fs; 949 register struct cg *cgp; 950 struct buf *bp; 951 int error, cg; 952 953 fs = ip->i_fs; 954 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { 955 printf("dev = 0x%x, ino = %d, fs = %s\n", 956 ip->i_dev, ino, fs->fs_fsmnt); 957 panic("ifree: range"); 958 } 959 cg = itog(fs, ino); 960 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 961 (int)fs->fs_cgsize, &bp); 962 if (error) { 963 brelse(bp); 964 return; 965 } 966 cgp = bp->b_un.b_cg; 967 if (!cg_chkmagic(cgp)) { 968 brelse(bp); 969 return; 970 } 971 cgp->cg_time = time.tv_sec; 972 ino %= fs->fs_ipg; 973 if (isclr(cg_inosused(cgp), ino)) { 974 printf("dev = 0x%x, ino = %d, fs = %s\n", 975 ip->i_dev, ino, fs->fs_fsmnt); 976 panic("ifree: freeing free inode"); 977 } 978 clrbit(cg_inosused(cgp), ino); 979 if (ino < cgp->cg_irotor) 980 cgp->cg_irotor = ino; 981 cgp->cg_cs.cs_nifree++; 982 fs->fs_cstotal.cs_nifree++; 983 fs->fs_cs(fs, cg).cs_nifree++; 984 if ((mode & IFMT) == IFDIR) { 985 cgp->cg_cs.cs_ndir--; 986 fs->fs_cstotal.cs_ndir--; 987 fs->fs_cs(fs, cg).cs_ndir--; 988 } 989 fs->fs_fmod++; 990 bdwrite(bp); 991 } 992 993 /* 994 * Find a block of the specified size in the specified cylinder group. 995 * 996 * It is a panic if a request is made to find a block if none are 997 * available. 998 */ 999 daddr_t 1000 mapsearch(fs, cgp, bpref, allocsiz) 1001 register struct fs *fs; 1002 register struct cg *cgp; 1003 daddr_t bpref; 1004 int allocsiz; 1005 { 1006 daddr_t bno; 1007 int start, len, loc, i; 1008 int blk, field, subfield, pos; 1009 1010 /* 1011 * find the fragment by searching through the free block 1012 * map for an appropriate bit pattern 1013 */ 1014 if (bpref) 1015 start = dtogd(fs, bpref) / NBBY; 1016 else 1017 start = cgp->cg_frotor / NBBY; 1018 len = howmany(fs->fs_fpg, NBBY) - start; 1019 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], 1020 (u_char *)fragtbl[fs->fs_frag], 1021 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1022 if (loc == 0) { 1023 len = start + 1; 1024 start = 0; 1025 loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], 1026 (u_char *)fragtbl[fs->fs_frag], 1027 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1028 if (loc == 0) { 1029 printf("start = %d, len = %d, fs = %s\n", 1030 start, len, fs->fs_fsmnt); 1031 panic("alloccg: map corrupted"); 1032 /* NOTREACHED */ 1033 } 1034 } 1035 bno = (start + len - loc) * NBBY; 1036 cgp->cg_frotor = bno; 1037 /* 1038 * found the byte in the map 1039 * sift through the bits to find the selected frag 1040 */ 1041 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1042 blk = blkmap(fs, cg_blksfree(cgp), bno); 1043 blk <<= 1; 1044 field = around[allocsiz]; 1045 subfield = inside[allocsiz]; 1046 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1047 if ((blk & field) == subfield) 1048 return (bno + pos); 1049 field <<= 1; 1050 subfield <<= 1; 1051 } 1052 } 1053 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); 1054 panic("alloccg: block not in map"); 1055 return (-1); 1056 } 1057 1058 /* 1059 * Fserr prints the name of a file system with an error diagnostic. 1060 * 1061 * The form of the error message is: 1062 * fs: error message 1063 */ 1064 fserr(fs, cp) 1065 struct fs *fs; 1066 char *cp; 1067 { 1068 1069 log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp); 1070 } 1071