xref: /original-bsd/sys/ufs/ffs/ffs_alloc.c (revision 883fb6be)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)ffs_alloc.c	7.2 (Berkeley) 04/02/87
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "mount.h"
12 #include "fs.h"
13 #include "buf.h"
14 #include "inode.h"
15 #include "dir.h"
16 #include "user.h"
17 #include "quota.h"
18 #include "kernel.h"
19 #include "syslog.h"
20 #include "cmap.h"
21 
22 extern u_long		hashalloc();
23 extern ino_t		ialloccg();
24 extern daddr_t		alloccg();
25 extern daddr_t		alloccgblk();
26 extern daddr_t		fragextend();
27 extern daddr_t		blkpref();
28 extern daddr_t		mapsearch();
29 extern int		inside[], around[];
30 extern unsigned char	*fragtbl[];
31 
32 /*
33  * Allocate a block in the file system.
34  *
35  * The size of the requested block is given, which must be some
36  * multiple of fs_fsize and <= fs_bsize.
37  * A preference may be optionally specified. If a preference is given
38  * the following hierarchy is used to allocate a block:
39  *   1) allocate the requested block.
40  *   2) allocate a rotationally optimal block in the same cylinder.
41  *   3) allocate a block in the same cylinder group.
42  *   4) quadradically rehash into other cylinder groups, until an
43  *      available block is located.
44  * If no block preference is given the following heirarchy is used
45  * to allocate a block:
46  *   1) allocate a block in the cylinder group that contains the
47  *      inode for the file.
48  *   2) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  */
51 struct buf *
52 alloc(ip, bpref, size)
53 	register struct inode *ip;
54 	daddr_t bpref;
55 	int size;
56 {
57 	daddr_t bno;
58 	register struct fs *fs;
59 	register struct buf *bp;
60 	int cg;
61 
62 	fs = ip->i_fs;
63 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
64 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
65 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
66 		panic("alloc: bad size");
67 	}
68 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
69 		goto nospace;
70 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
71 		goto nospace;
72 #ifdef QUOTA
73 	u.u_error = chkdq(ip, (long)btodb(size), 0);
74 	if (u.u_error)
75 		return (NULL);
76 #endif
77 	if (bpref >= fs->fs_size)
78 		bpref = 0;
79 	if (bpref == 0)
80 		cg = itog(fs, ip->i_number);
81 	else
82 		cg = dtog(fs, bpref);
83 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
84 		(u_long (*)())alloccg);
85 	if (bno <= 0)
86 		goto nospace;
87 	ip->i_blocks += btodb(size);
88 	ip->i_flag |= IUPD|ICHG;
89 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
90 	clrbuf(bp);
91 	return (bp);
92 nospace:
93 	fserr(fs, "file system full");
94 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
95 	u.u_error = ENOSPC;
96 	return (NULL);
97 }
98 
99 /*
100  * Reallocate a fragment to a bigger size
101  *
102  * The number and size of the old block is given, and a preference
103  * and new size is also specified. The allocator attempts to extend
104  * the original block. Failing that, the regular block allocator is
105  * invoked to get an appropriate block.
106  */
107 struct buf *
108 realloccg(ip, bprev, bpref, osize, nsize)
109 	register struct inode *ip;
110 	daddr_t bprev, bpref;
111 	int osize, nsize;
112 {
113 	register struct fs *fs;
114 	register struct buf *bp, *obp;
115 	int cg, request;
116 	daddr_t bno, bn;
117 	int i, count, s;
118 	extern struct cmap *mfind();
119 
120 	fs = ip->i_fs;
121 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
122 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
123 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
124 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
125 		panic("realloccg: bad size");
126 	}
127 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
128 		goto nospace;
129 	if (bprev == 0) {
130 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
131 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
132 		panic("realloccg: bad bprev");
133 	}
134 #ifdef QUOTA
135 	u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
136 	if (u.u_error)
137 		return (NULL);
138 #endif
139 	cg = dtog(fs, bprev);
140 	bno = fragextend(ip, cg, (long)bprev, osize, nsize);
141 	if (bno != 0) {
142 		do {
143 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
144 			if (bp->b_flags & B_ERROR) {
145 				brelse(bp);
146 				return (NULL);
147 			}
148 		} while (brealloc(bp, nsize) == 0);
149 		bp->b_flags |= B_DONE;
150 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
151 		ip->i_blocks += btodb(nsize - osize);
152 		ip->i_flag |= IUPD|ICHG;
153 		return (bp);
154 	}
155 	if (bpref >= fs->fs_size)
156 		bpref = 0;
157 	switch ((int)fs->fs_optim) {
158 	case FS_OPTSPACE:
159 		/*
160 		 * Allocate an exact sized fragment. Although this makes
161 		 * best use of space, we will waste time relocating it if
162 		 * the file continues to grow. If the fragmentation is
163 		 * less than half of the minimum free reserve, we choose
164 		 * to begin optimizing for time.
165 		 */
166 		request = nsize;
167 		if (fs->fs_minfree < 5 ||
168 		    fs->fs_cstotal.cs_nffree >
169 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
170 			break;
171 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
172 			fs->fs_fsmnt);
173 		fs->fs_optim = FS_OPTTIME;
174 		break;
175 	case FS_OPTTIME:
176 		/*
177 		 * At this point we have discovered a file that is trying
178 		 * to grow a small fragment to a larger fragment. To save
179 		 * time, we allocate a full sized block, then free the
180 		 * unused portion. If the file continues to grow, the
181 		 * `fragextend' call above will be able to grow it in place
182 		 * without further copying. If aberrant programs cause
183 		 * disk fragmentation to grow within 2% of the free reserve,
184 		 * we choose to begin optimizing for space.
185 		 */
186 		request = fs->fs_bsize;
187 		if (fs->fs_cstotal.cs_nffree <
188 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
189 			break;
190 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
191 			fs->fs_fsmnt);
192 		fs->fs_optim = FS_OPTSPACE;
193 		break;
194 	default:
195 		printf("dev = 0x%x, optim = %d, fs = %s\n",
196 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
197 		panic("realloccg: bad optim");
198 		/* NOTREACHED */
199 	}
200 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
201 		(u_long (*)())alloccg);
202 	if (bno > 0) {
203 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
204 		if (obp->b_flags & B_ERROR) {
205 			brelse(obp);
206 			return (NULL);
207 		}
208 		bn = fsbtodb(fs, bno);
209 		bp = getblk(ip->i_dev, bn, nsize);
210 		bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
211 		count = howmany(osize, CLBYTES);
212 		for (i = 0; i < count; i++)
213 			munhash(ip->i_dev, bn + i * CLBYTES / DEV_BSIZE);
214 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
215 		if (obp->b_flags & B_DELWRI) {
216 			obp->b_flags &= ~B_DELWRI;
217 			u.u_ru.ru_oublock--;		/* delete charge */
218 		}
219 		brelse(obp);
220 		free(ip, bprev, (off_t)osize);
221 		if (nsize < request)
222 			free(ip, bno + numfrags(fs, nsize),
223 				(off_t)(request - nsize));
224 		ip->i_blocks += btodb(nsize - osize);
225 		ip->i_flag |= IUPD|ICHG;
226 		return (bp);
227 	}
228 nospace:
229 	/*
230 	 * no space available
231 	 */
232 	fserr(fs, "file system full");
233 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
234 	u.u_error = ENOSPC;
235 	return (NULL);
236 }
237 
238 /*
239  * Allocate an inode in the file system.
240  *
241  * A preference may be optionally specified. If a preference is given
242  * the following hierarchy is used to allocate an inode:
243  *   1) allocate the requested inode.
244  *   2) allocate an inode in the same cylinder group.
245  *   3) quadradically rehash into other cylinder groups, until an
246  *      available inode is located.
247  * If no inode preference is given the following heirarchy is used
248  * to allocate an inode:
249  *   1) allocate an inode in cylinder group 0.
250  *   2) quadradically rehash into other cylinder groups, until an
251  *      available inode is located.
252  */
253 struct inode *
254 ialloc(pip, ipref, mode)
255 	register struct inode *pip;
256 	ino_t ipref;
257 	int mode;
258 {
259 	ino_t ino;
260 	register struct fs *fs;
261 	register struct inode *ip;
262 	int cg;
263 
264 	fs = pip->i_fs;
265 	if (fs->fs_cstotal.cs_nifree == 0)
266 		goto noinodes;
267 #ifdef QUOTA
268 	u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
269 	if (u.u_error)
270 		return (NULL);
271 #endif
272 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
273 		ipref = 0;
274 	cg = itog(fs, ipref);
275 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
276 	if (ino == 0)
277 		goto noinodes;
278 	ip = iget(pip->i_dev, pip->i_fs, ino);
279 	if (ip == NULL) {
280 		ifree(pip, ino, 0);
281 		return (NULL);
282 	}
283 	if (ip->i_mode) {
284 		printf("mode = 0%o, inum = %d, fs = %s\n",
285 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
286 		panic("ialloc: dup alloc");
287 	}
288 	if (ip->i_blocks) {				/* XXX */
289 		printf("free inode %s/%d had %d blocks\n",
290 		    fs->fs_fsmnt, ino, ip->i_blocks);
291 		ip->i_blocks = 0;
292 	}
293 	return (ip);
294 noinodes:
295 	fserr(fs, "out of inodes");
296 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
297 	u.u_error = ENOSPC;
298 	return (NULL);
299 }
300 
301 /*
302  * Find a cylinder to place a directory.
303  *
304  * The policy implemented by this algorithm is to select from
305  * among those cylinder groups with above the average number of
306  * free inodes, the one with the smallest number of directories.
307  */
308 ino_t
309 dirpref(fs)
310 	register struct fs *fs;
311 {
312 	int cg, minndir, mincg, avgifree;
313 
314 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
315 	minndir = fs->fs_ipg;
316 	mincg = 0;
317 	for (cg = 0; cg < fs->fs_ncg; cg++)
318 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
319 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
320 			mincg = cg;
321 			minndir = fs->fs_cs(fs, cg).cs_ndir;
322 		}
323 	return ((ino_t)(fs->fs_ipg * mincg));
324 }
325 
326 /*
327  * Select the desired position for the next block in a file.  The file is
328  * logically divided into sections. The first section is composed of the
329  * direct blocks. Each additional section contains fs_maxbpg blocks.
330  *
331  * If no blocks have been allocated in the first section, the policy is to
332  * request a block in the same cylinder group as the inode that describes
333  * the file. If no blocks have been allocated in any other section, the
334  * policy is to place the section in a cylinder group with a greater than
335  * average number of free blocks.  An appropriate cylinder group is found
336  * by using a rotor that sweeps the cylinder groups. When a new group of
337  * blocks is needed, the sweep begins in the cylinder group following the
338  * cylinder group from which the previous allocation was made. The sweep
339  * continues until a cylinder group with greater than the average number
340  * of free blocks is found. If the allocation is for the first block in an
341  * indirect block, the information on the previous allocation is unavailable;
342  * here a best guess is made based upon the logical block number being
343  * allocated.
344  *
345  * If a section is already partially allocated, the policy is to
346  * contiguously allocate fs_maxcontig blocks.  The end of one of these
347  * contiguous blocks and the beginning of the next is physically separated
348  * so that the disk head will be in transit between them for at least
349  * fs_rotdelay milliseconds.  This is to allow time for the processor to
350  * schedule another I/O transfer.
351  */
352 daddr_t
353 blkpref(ip, lbn, indx, bap)
354 	struct inode *ip;
355 	daddr_t lbn;
356 	int indx;
357 	daddr_t *bap;
358 {
359 	register struct fs *fs;
360 	register int cg;
361 	int avgbfree, startcg;
362 	daddr_t nextblk;
363 
364 	fs = ip->i_fs;
365 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
366 		if (lbn < NDADDR) {
367 			cg = itog(fs, ip->i_number);
368 			return (fs->fs_fpg * cg + fs->fs_frag);
369 		}
370 		/*
371 		 * Find a cylinder with greater than average number of
372 		 * unused data blocks.
373 		 */
374 		if (indx == 0 || bap[indx - 1] == 0)
375 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
376 		else
377 			startcg = dtog(fs, bap[indx - 1]) + 1;
378 		startcg %= fs->fs_ncg;
379 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
380 		for (cg = startcg; cg < fs->fs_ncg; cg++)
381 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
382 				fs->fs_cgrotor = cg;
383 				return (fs->fs_fpg * cg + fs->fs_frag);
384 			}
385 		for (cg = 0; cg <= startcg; cg++)
386 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
387 				fs->fs_cgrotor = cg;
388 				return (fs->fs_fpg * cg + fs->fs_frag);
389 			}
390 		return (NULL);
391 	}
392 	/*
393 	 * One or more previous blocks have been laid out. If less
394 	 * than fs_maxcontig previous blocks are contiguous, the
395 	 * next block is requested contiguously, otherwise it is
396 	 * requested rotationally delayed by fs_rotdelay milliseconds.
397 	 */
398 	nextblk = bap[indx - 1] + fs->fs_frag;
399 	if (indx > fs->fs_maxcontig &&
400 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
401 	    != nextblk)
402 		return (nextblk);
403 	if (fs->fs_rotdelay != 0)
404 		/*
405 		 * Here we convert ms of delay to frags as:
406 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
407 		 *	((sect/frag) * (ms/sec))
408 		 * then round up to the next block.
409 		 */
410 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
411 		    (NSPF(fs) * 1000), fs->fs_frag);
412 	return (nextblk);
413 }
414 
415 /*
416  * Implement the cylinder overflow algorithm.
417  *
418  * The policy implemented by this algorithm is:
419  *   1) allocate the block in its requested cylinder group.
420  *   2) quadradically rehash on the cylinder group number.
421  *   3) brute force search for a free block.
422  */
423 /*VARARGS5*/
424 u_long
425 hashalloc(ip, cg, pref, size, allocator)
426 	struct inode *ip;
427 	int cg;
428 	long pref;
429 	int size;	/* size for data blocks, mode for inodes */
430 	u_long (*allocator)();
431 {
432 	register struct fs *fs;
433 	long result;
434 	int i, icg = cg;
435 
436 	fs = ip->i_fs;
437 	/*
438 	 * 1: preferred cylinder group
439 	 */
440 	result = (*allocator)(ip, cg, pref, size);
441 	if (result)
442 		return (result);
443 	/*
444 	 * 2: quadratic rehash
445 	 */
446 	for (i = 1; i < fs->fs_ncg; i *= 2) {
447 		cg += i;
448 		if (cg >= fs->fs_ncg)
449 			cg -= fs->fs_ncg;
450 		result = (*allocator)(ip, cg, 0, size);
451 		if (result)
452 			return (result);
453 	}
454 	/*
455 	 * 3: brute force search
456 	 * Note that we start at i == 2, since 0 was checked initially,
457 	 * and 1 is always checked in the quadratic rehash.
458 	 */
459 	cg = (icg + 2) % fs->fs_ncg;
460 	for (i = 2; i < fs->fs_ncg; i++) {
461 		result = (*allocator)(ip, cg, 0, size);
462 		if (result)
463 			return (result);
464 		cg++;
465 		if (cg == fs->fs_ncg)
466 			cg = 0;
467 	}
468 	return (NULL);
469 }
470 
471 /*
472  * Determine whether a fragment can be extended.
473  *
474  * Check to see if the necessary fragments are available, and
475  * if they are, allocate them.
476  */
477 daddr_t
478 fragextend(ip, cg, bprev, osize, nsize)
479 	struct inode *ip;
480 	int cg;
481 	long bprev;
482 	int osize, nsize;
483 {
484 	register struct fs *fs;
485 	register struct buf *bp;
486 	register struct cg *cgp;
487 	long bno;
488 	int frags, bbase;
489 	int i;
490 
491 	fs = ip->i_fs;
492 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
493 		return (NULL);
494 	frags = numfrags(fs, nsize);
495 	bbase = fragnum(fs, bprev);
496 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
497 		/* cannot extend across a block boundary */
498 		return (NULL);
499 	}
500 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
501 	cgp = bp->b_un.b_cg;
502 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
503 		brelse(bp);
504 		return (NULL);
505 	}
506 	cgp->cg_time = time.tv_sec;
507 	bno = dtogd(fs, bprev);
508 	for (i = numfrags(fs, osize); i < frags; i++)
509 		if (isclr(cgp->cg_free, bno + i)) {
510 			brelse(bp);
511 			return (NULL);
512 		}
513 	/*
514 	 * the current fragment can be extended
515 	 * deduct the count on fragment being extended into
516 	 * increase the count on the remaining fragment (if any)
517 	 * allocate the extended piece
518 	 */
519 	for (i = frags; i < fs->fs_frag - bbase; i++)
520 		if (isclr(cgp->cg_free, bno + i))
521 			break;
522 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
523 	if (i != frags)
524 		cgp->cg_frsum[i - frags]++;
525 	for (i = numfrags(fs, osize); i < frags; i++) {
526 		clrbit(cgp->cg_free, bno + i);
527 		cgp->cg_cs.cs_nffree--;
528 		fs->fs_cstotal.cs_nffree--;
529 		fs->fs_cs(fs, cg).cs_nffree--;
530 	}
531 	fs->fs_fmod++;
532 	bdwrite(bp);
533 	return (bprev);
534 }
535 
536 /*
537  * Determine whether a block can be allocated.
538  *
539  * Check to see if a block of the apprpriate size is available,
540  * and if it is, allocate it.
541  */
542 daddr_t
543 alloccg(ip, cg, bpref, size)
544 	struct inode *ip;
545 	int cg;
546 	daddr_t bpref;
547 	int size;
548 {
549 	register struct fs *fs;
550 	register struct buf *bp;
551 	register struct cg *cgp;
552 	int bno, frags;
553 	int allocsiz;
554 	register int i;
555 
556 	fs = ip->i_fs;
557 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
558 		return (NULL);
559 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
560 	cgp = bp->b_un.b_cg;
561 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
562 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
563 		brelse(bp);
564 		return (NULL);
565 	}
566 	cgp->cg_time = time.tv_sec;
567 	if (size == fs->fs_bsize) {
568 		bno = alloccgblk(fs, cgp, bpref);
569 		bdwrite(bp);
570 		return (bno);
571 	}
572 	/*
573 	 * check to see if any fragments are already available
574 	 * allocsiz is the size which will be allocated, hacking
575 	 * it down to a smaller size if necessary
576 	 */
577 	frags = numfrags(fs, size);
578 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
579 		if (cgp->cg_frsum[allocsiz] != 0)
580 			break;
581 	if (allocsiz == fs->fs_frag) {
582 		/*
583 		 * no fragments were available, so a block will be
584 		 * allocated, and hacked up
585 		 */
586 		if (cgp->cg_cs.cs_nbfree == 0) {
587 			brelse(bp);
588 			return (NULL);
589 		}
590 		bno = alloccgblk(fs, cgp, bpref);
591 		bpref = dtogd(fs, bno);
592 		for (i = frags; i < fs->fs_frag; i++)
593 			setbit(cgp->cg_free, bpref + i);
594 		i = fs->fs_frag - frags;
595 		cgp->cg_cs.cs_nffree += i;
596 		fs->fs_cstotal.cs_nffree += i;
597 		fs->fs_cs(fs, cg).cs_nffree += i;
598 		fs->fs_fmod++;
599 		cgp->cg_frsum[i]++;
600 		bdwrite(bp);
601 		return (bno);
602 	}
603 	bno = mapsearch(fs, cgp, bpref, allocsiz);
604 	if (bno < 0) {
605 		brelse(bp);
606 		return (NULL);
607 	}
608 	for (i = 0; i < frags; i++)
609 		clrbit(cgp->cg_free, bno + i);
610 	cgp->cg_cs.cs_nffree -= frags;
611 	fs->fs_cstotal.cs_nffree -= frags;
612 	fs->fs_cs(fs, cg).cs_nffree -= frags;
613 	fs->fs_fmod++;
614 	cgp->cg_frsum[allocsiz]--;
615 	if (frags != allocsiz)
616 		cgp->cg_frsum[allocsiz - frags]++;
617 	bdwrite(bp);
618 	return (cg * fs->fs_fpg + bno);
619 }
620 
621 /*
622  * Allocate a block in a cylinder group.
623  *
624  * This algorithm implements the following policy:
625  *   1) allocate the requested block.
626  *   2) allocate a rotationally optimal block in the same cylinder.
627  *   3) allocate the next available block on the block rotor for the
628  *      specified cylinder group.
629  * Note that this routine only allocates fs_bsize blocks; these
630  * blocks may be fragmented by the routine that allocates them.
631  */
632 daddr_t
633 alloccgblk(fs, cgp, bpref)
634 	register struct fs *fs;
635 	register struct cg *cgp;
636 	daddr_t bpref;
637 {
638 	daddr_t bno;
639 	int cylno, pos, delta;
640 	short *cylbp;
641 	register int i;
642 
643 	if (bpref == 0) {
644 		bpref = cgp->cg_rotor;
645 		goto norot;
646 	}
647 	bpref = blknum(fs, bpref);
648 	bpref = dtogd(fs, bpref);
649 	/*
650 	 * if the requested block is available, use it
651 	 */
652 	if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) {
653 		bno = bpref;
654 		goto gotit;
655 	}
656 	/*
657 	 * check for a block available on the same cylinder
658 	 */
659 	cylno = cbtocylno(fs, bpref);
660 	if (cgp->cg_btot[cylno] == 0)
661 		goto norot;
662 	if (fs->fs_cpc == 0) {
663 		/*
664 		 * block layout info is not available, so just have
665 		 * to take any block in this cylinder.
666 		 */
667 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
668 		goto norot;
669 	}
670 	/*
671 	 * check the summary information to see if a block is
672 	 * available in the requested cylinder starting at the
673 	 * requested rotational position and proceeding around.
674 	 */
675 	cylbp = cgp->cg_b[cylno];
676 	pos = cbtorpos(fs, bpref);
677 	for (i = pos; i < NRPOS; i++)
678 		if (cylbp[i] > 0)
679 			break;
680 	if (i == NRPOS)
681 		for (i = 0; i < pos; i++)
682 			if (cylbp[i] > 0)
683 				break;
684 	if (cylbp[i] > 0) {
685 		/*
686 		 * found a rotational position, now find the actual
687 		 * block. A panic if none is actually there.
688 		 */
689 		pos = cylno % fs->fs_cpc;
690 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
691 		if (fs->fs_postbl[pos][i] == -1) {
692 			printf("pos = %d, i = %d, fs = %s\n",
693 			    pos, i, fs->fs_fsmnt);
694 			panic("alloccgblk: cyl groups corrupted");
695 		}
696 		for (i = fs->fs_postbl[pos][i];; ) {
697 			if (isblock(fs, cgp->cg_free, bno + i)) {
698 				bno = blkstofrags(fs, (bno + i));
699 				goto gotit;
700 			}
701 			delta = fs->fs_rotbl[i];
702 			if (delta <= 0 || delta > MAXBPC - i)
703 				break;
704 			i += delta;
705 		}
706 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
707 		panic("alloccgblk: can't find blk in cyl");
708 	}
709 norot:
710 	/*
711 	 * no blocks in the requested cylinder, so take next
712 	 * available one in this cylinder group.
713 	 */
714 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
715 	if (bno < 0)
716 		return (NULL);
717 	cgp->cg_rotor = bno;
718 gotit:
719 	clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno));
720 	cgp->cg_cs.cs_nbfree--;
721 	fs->fs_cstotal.cs_nbfree--;
722 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
723 	cylno = cbtocylno(fs, bno);
724 	cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
725 	cgp->cg_btot[cylno]--;
726 	fs->fs_fmod++;
727 	return (cgp->cg_cgx * fs->fs_fpg + bno);
728 }
729 
730 /*
731  * Determine whether an inode can be allocated.
732  *
733  * Check to see if an inode is available, and if it is,
734  * allocate it using the following policy:
735  *   1) allocate the requested inode.
736  *   2) allocate the next available inode after the requested
737  *      inode in the specified cylinder group.
738  */
739 ino_t
740 ialloccg(ip, cg, ipref, mode)
741 	struct inode *ip;
742 	int cg;
743 	daddr_t ipref;
744 	int mode;
745 {
746 	register struct fs *fs;
747 	register struct cg *cgp;
748 	struct buf *bp;
749 	int start, len, loc, map, i;
750 
751 	fs = ip->i_fs;
752 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
753 		return (NULL);
754 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
755 	cgp = bp->b_un.b_cg;
756 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
757 	    cgp->cg_cs.cs_nifree == 0) {
758 		brelse(bp);
759 		return (NULL);
760 	}
761 	cgp->cg_time = time.tv_sec;
762 	if (ipref) {
763 		ipref %= fs->fs_ipg;
764 		if (isclr(cgp->cg_iused, ipref))
765 			goto gotit;
766 	}
767 	start = cgp->cg_irotor / NBBY;
768 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
769 	loc = skpc(0xff, len, &cgp->cg_iused[start]);
770 	if (loc == 0) {
771 		len = start + 1;
772 		start = 0;
773 		loc = skpc(0xff, len, &cgp->cg_iused[0]);
774 		if (loc == 0) {
775 			printf("cg = %s, irotor = %d, fs = %s\n",
776 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
777 			panic("ialloccg: map corrupted");
778 			/* NOTREACHED */
779 		}
780 	}
781 	i = start + len - loc;
782 	map = cgp->cg_iused[i];
783 	ipref = i * NBBY;
784 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
785 		if ((map & i) == 0) {
786 			cgp->cg_irotor = ipref;
787 			goto gotit;
788 		}
789 	}
790 	printf("fs = %s\n", fs->fs_fsmnt);
791 	panic("ialloccg: block not in map");
792 	/* NOTREACHED */
793 gotit:
794 	setbit(cgp->cg_iused, ipref);
795 	cgp->cg_cs.cs_nifree--;
796 	fs->fs_cstotal.cs_nifree--;
797 	fs->fs_cs(fs, cg).cs_nifree--;
798 	fs->fs_fmod++;
799 	if ((mode & IFMT) == IFDIR) {
800 		cgp->cg_cs.cs_ndir++;
801 		fs->fs_cstotal.cs_ndir++;
802 		fs->fs_cs(fs, cg).cs_ndir++;
803 	}
804 	bdwrite(bp);
805 	return (cg * fs->fs_ipg + ipref);
806 }
807 
808 /*
809  * Free a block or fragment.
810  *
811  * The specified block or fragment is placed back in the
812  * free map. If a fragment is deallocated, a possible
813  * block reassembly is checked.
814  */
815 free(ip, bno, size)
816 	register struct inode *ip;
817 	daddr_t bno;
818 	off_t size;
819 {
820 	register struct fs *fs;
821 	register struct cg *cgp;
822 	register struct buf *bp;
823 	int cg, blk, frags, bbase;
824 	register int i;
825 
826 	fs = ip->i_fs;
827 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
828 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
829 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
830 		panic("free: bad size");
831 	}
832 	cg = dtog(fs, bno);
833 	if (badblock(fs, bno)) {
834 		printf("bad block %d, ino %d\n", bno, ip->i_number);
835 		return;
836 	}
837 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
838 	cgp = bp->b_un.b_cg;
839 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
840 		brelse(bp);
841 		return;
842 	}
843 	cgp->cg_time = time.tv_sec;
844 	bno = dtogd(fs, bno);
845 	if (size == fs->fs_bsize) {
846 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) {
847 			printf("dev = 0x%x, block = %d, fs = %s\n",
848 			    ip->i_dev, bno, fs->fs_fsmnt);
849 			panic("free: freeing free block");
850 		}
851 		setblock(fs, cgp->cg_free, fragstoblks(fs, bno));
852 		cgp->cg_cs.cs_nbfree++;
853 		fs->fs_cstotal.cs_nbfree++;
854 		fs->fs_cs(fs, cg).cs_nbfree++;
855 		i = cbtocylno(fs, bno);
856 		cgp->cg_b[i][cbtorpos(fs, bno)]++;
857 		cgp->cg_btot[i]++;
858 	} else {
859 		bbase = bno - fragnum(fs, bno);
860 		/*
861 		 * decrement the counts associated with the old frags
862 		 */
863 		blk = blkmap(fs, cgp->cg_free, bbase);
864 		fragacct(fs, blk, cgp->cg_frsum, -1);
865 		/*
866 		 * deallocate the fragment
867 		 */
868 		frags = numfrags(fs, size);
869 		for (i = 0; i < frags; i++) {
870 			if (isset(cgp->cg_free, bno + i)) {
871 				printf("dev = 0x%x, block = %d, fs = %s\n",
872 				    ip->i_dev, bno + i, fs->fs_fsmnt);
873 				panic("free: freeing free frag");
874 			}
875 			setbit(cgp->cg_free, bno + i);
876 		}
877 		cgp->cg_cs.cs_nffree += i;
878 		fs->fs_cstotal.cs_nffree += i;
879 		fs->fs_cs(fs, cg).cs_nffree += i;
880 		/*
881 		 * add back in counts associated with the new frags
882 		 */
883 		blk = blkmap(fs, cgp->cg_free, bbase);
884 		fragacct(fs, blk, cgp->cg_frsum, 1);
885 		/*
886 		 * if a complete block has been reassembled, account for it
887 		 */
888 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) {
889 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
890 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
891 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
892 			cgp->cg_cs.cs_nbfree++;
893 			fs->fs_cstotal.cs_nbfree++;
894 			fs->fs_cs(fs, cg).cs_nbfree++;
895 			i = cbtocylno(fs, bbase);
896 			cgp->cg_b[i][cbtorpos(fs, bbase)]++;
897 			cgp->cg_btot[i]++;
898 		}
899 	}
900 	fs->fs_fmod++;
901 	bdwrite(bp);
902 }
903 
904 /*
905  * Free an inode.
906  *
907  * The specified inode is placed back in the free map.
908  */
909 ifree(ip, ino, mode)
910 	struct inode *ip;
911 	ino_t ino;
912 	int mode;
913 {
914 	register struct fs *fs;
915 	register struct cg *cgp;
916 	register struct buf *bp;
917 	int cg;
918 
919 	fs = ip->i_fs;
920 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
921 		printf("dev = 0x%x, ino = %d, fs = %s\n",
922 		    ip->i_dev, ino, fs->fs_fsmnt);
923 		panic("ifree: range");
924 	}
925 	cg = itog(fs, ino);
926 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
927 	cgp = bp->b_un.b_cg;
928 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
929 		brelse(bp);
930 		return;
931 	}
932 	cgp->cg_time = time.tv_sec;
933 	ino %= fs->fs_ipg;
934 	if (isclr(cgp->cg_iused, ino)) {
935 		printf("dev = 0x%x, ino = %d, fs = %s\n",
936 		    ip->i_dev, ino, fs->fs_fsmnt);
937 		panic("ifree: freeing free inode");
938 	}
939 	clrbit(cgp->cg_iused, ino);
940 	if (ino < cgp->cg_irotor)
941 		cgp->cg_irotor = ino;
942 	cgp->cg_cs.cs_nifree++;
943 	fs->fs_cstotal.cs_nifree++;
944 	fs->fs_cs(fs, cg).cs_nifree++;
945 	if ((mode & IFMT) == IFDIR) {
946 		cgp->cg_cs.cs_ndir--;
947 		fs->fs_cstotal.cs_ndir--;
948 		fs->fs_cs(fs, cg).cs_ndir--;
949 	}
950 	fs->fs_fmod++;
951 	bdwrite(bp);
952 }
953 
954 /*
955  * Find a block of the specified size in the specified cylinder group.
956  *
957  * It is a panic if a request is made to find a block if none are
958  * available.
959  */
960 daddr_t
961 mapsearch(fs, cgp, bpref, allocsiz)
962 	register struct fs *fs;
963 	register struct cg *cgp;
964 	daddr_t bpref;
965 	int allocsiz;
966 {
967 	daddr_t bno;
968 	int start, len, loc, i;
969 	int blk, field, subfield, pos;
970 
971 	/*
972 	 * find the fragment by searching through the free block
973 	 * map for an appropriate bit pattern
974 	 */
975 	if (bpref)
976 		start = dtogd(fs, bpref) / NBBY;
977 	else
978 		start = cgp->cg_frotor / NBBY;
979 	len = howmany(fs->fs_fpg, NBBY) - start;
980 	loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start],
981 		(caddr_t)fragtbl[fs->fs_frag],
982 		(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
983 	if (loc == 0) {
984 		len = start + 1;
985 		start = 0;
986 		loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0],
987 			(caddr_t)fragtbl[fs->fs_frag],
988 			(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
989 		if (loc == 0) {
990 			printf("start = %d, len = %d, fs = %s\n",
991 			    start, len, fs->fs_fsmnt);
992 			panic("alloccg: map corrupted");
993 			/* NOTREACHED */
994 		}
995 	}
996 	bno = (start + len - loc) * NBBY;
997 	cgp->cg_frotor = bno;
998 	/*
999 	 * found the byte in the map
1000 	 * sift through the bits to find the selected frag
1001 	 */
1002 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1003 		blk = blkmap(fs, cgp->cg_free, bno);
1004 		blk <<= 1;
1005 		field = around[allocsiz];
1006 		subfield = inside[allocsiz];
1007 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1008 			if ((blk & field) == subfield)
1009 				return (bno + pos);
1010 			field <<= 1;
1011 			subfield <<= 1;
1012 		}
1013 	}
1014 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1015 	panic("alloccg: block not in map");
1016 	return (-1);
1017 }
1018 
1019 /*
1020  * Fserr prints the name of a file system with an error diagnostic.
1021  *
1022  * The form of the error message is:
1023  *	fs: error message
1024  */
1025 fserr(fs, cp)
1026 	struct fs *fs;
1027 	char *cp;
1028 {
1029 
1030 	log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
1031 }
1032