xref: /original-bsd/sys/ufs/ffs/ffs_alloc.c (revision e61fc7ea)
1 /*
2  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)ffs_alloc.c	7.20 (Berkeley) 06/28/90
8  */
9 
10 #include "param.h"
11 #include "systm.h"
12 #include "buf.h"
13 #include "user.h"
14 #include "vnode.h"
15 #include "kernel.h"
16 #include "syslog.h"
17 #include "cmap.h"
18 #include "../ufs/quota.h"
19 #include "../ufs/inode.h"
20 #include "../ufs/fs.h"
21 
22 extern u_long		hashalloc();
23 extern ino_t		ialloccg();
24 extern daddr_t		alloccg();
25 extern daddr_t		alloccgblk();
26 extern daddr_t		fragextend();
27 extern daddr_t		blkpref();
28 extern daddr_t		mapsearch();
29 extern int		inside[], around[];
30 extern unsigned char	*fragtbl[];
31 
32 /*
33  * Allocate a block in the file system.
34  *
35  * The size of the requested block is given, which must be some
36  * multiple of fs_fsize and <= fs_bsize.
37  * A preference may be optionally specified. If a preference is given
38  * the following hierarchy is used to allocate a block:
39  *   1) allocate the requested block.
40  *   2) allocate a rotationally optimal block in the same cylinder.
41  *   3) allocate a block in the same cylinder group.
42  *   4) quadradically rehash into other cylinder groups, until an
43  *      available block is located.
44  * If no block preference is given the following heirarchy is used
45  * to allocate a block:
46  *   1) allocate a block in the cylinder group that contains the
47  *      inode for the file.
48  *   2) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  */
51 alloc(ip, lbn, bpref, size, bnp)
52 	register struct inode *ip;
53 	daddr_t lbn, bpref;
54 	int size;
55 	daddr_t *bnp;
56 {
57 	daddr_t bno;
58 	register struct fs *fs;
59 	register struct buf *bp;
60 	int cg, error;
61 	struct ucred *cred = u.u_cred;		/* XXX */
62 
63 	*bnp = 0;
64 	fs = ip->i_fs;
65 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
66 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
67 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
68 		panic("alloc: bad size");
69 	}
70 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
71 		goto nospace;
72 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
73 		goto nospace;
74 #ifdef QUOTA
75 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
76 		return (error);
77 #endif
78 	if (bpref >= fs->fs_size)
79 		bpref = 0;
80 	if (bpref == 0)
81 		cg = itog(fs, ip->i_number);
82 	else
83 		cg = dtog(fs, bpref);
84 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
85 		(u_long (*)())alloccg);
86 	if (bno > 0) {
87 		ip->i_blocks += btodb(size);
88 		ip->i_flag |= IUPD|ICHG;
89 		*bnp = bno;
90 		return (0);
91 	}
92 nospace:
93 	fserr(fs, cred->cr_uid, "file system full");
94 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
95 	return (ENOSPC);
96 }
97 
98 /*
99  * Reallocate a fragment to a bigger size
100  *
101  * The number and size of the old block is given, and a preference
102  * and new size is also specified. The allocator attempts to extend
103  * the original block. Failing that, the regular block allocator is
104  * invoked to get an appropriate block.
105  */
106 realloccg(ip, lbprev, bpref, osize, nsize, bpp)
107 	register struct inode *ip;
108 	off_t lbprev;
109 	daddr_t bpref;
110 	int osize, nsize;
111 	struct buf **bpp;
112 {
113 	register struct fs *fs;
114 	struct buf *bp, *obp;
115 	int cg, request;
116 	daddr_t bprev, bno, bn;
117 	int i, error, count;
118 	struct ucred *cred = u.u_cred;		/* XXX */
119 
120 	*bpp = 0;
121 	fs = ip->i_fs;
122 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
123 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
124 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
125 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
126 		panic("realloccg: bad size");
127 	}
128 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
129 		goto nospace;
130 	if ((bprev = ip->i_db[lbprev]) == 0) {
131 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
132 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
133 		panic("realloccg: bad bprev");
134 	}
135 #ifdef QUOTA
136 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0))
137 		return (error);
138 #endif
139 	/*
140 	 * Allocate the extra space in the buffer.
141 	 */
142 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
143 		brelse(bp);
144 		return (error);
145 	}
146 	brealloc(bp, nsize);
147 	bp->b_flags |= B_DONE;
148 	bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
149 	/*
150 	 * Check for extension in the existing location.
151 	 */
152 	cg = dtog(fs, bprev);
153 	if (bno = fragextend(ip, cg, (long)bprev, osize, nsize)) {
154 		if (bp->b_blkno != fsbtodb(fs, bno))
155 			panic("bad blockno");
156 		ip->i_blocks += btodb(nsize - osize);
157 		ip->i_flag |= IUPD|ICHG;
158 		*bpp = bp;
159 		return (0);
160 	}
161 	/*
162 	 * Allocate a new disk location.
163 	 */
164 	if (bpref >= fs->fs_size)
165 		bpref = 0;
166 	switch ((int)fs->fs_optim) {
167 	case FS_OPTSPACE:
168 		/*
169 		 * Allocate an exact sized fragment. Although this makes
170 		 * best use of space, we will waste time relocating it if
171 		 * the file continues to grow. If the fragmentation is
172 		 * less than half of the minimum free reserve, we choose
173 		 * to begin optimizing for time.
174 		 */
175 		request = nsize;
176 		if (fs->fs_minfree < 5 ||
177 		    fs->fs_cstotal.cs_nffree >
178 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
179 			break;
180 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
181 			fs->fs_fsmnt);
182 		fs->fs_optim = FS_OPTTIME;
183 		break;
184 	case FS_OPTTIME:
185 		/*
186 		 * At this point we have discovered a file that is trying
187 		 * to grow a small fragment to a larger fragment. To save
188 		 * time, we allocate a full sized block, then free the
189 		 * unused portion. If the file continues to grow, the
190 		 * `fragextend' call above will be able to grow it in place
191 		 * without further copying. If aberrant programs cause
192 		 * disk fragmentation to grow within 2% of the free reserve,
193 		 * we choose to begin optimizing for space.
194 		 */
195 		request = fs->fs_bsize;
196 		if (fs->fs_cstotal.cs_nffree <
197 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
198 			break;
199 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
200 			fs->fs_fsmnt);
201 		fs->fs_optim = FS_OPTSPACE;
202 		break;
203 	default:
204 		printf("dev = 0x%x, optim = %d, fs = %s\n",
205 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
206 		panic("realloccg: bad optim");
207 		/* NOTREACHED */
208 	}
209 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
210 		(u_long (*)())alloccg);
211 	if (bno > 0) {
212 		bp->b_blkno = bn = fsbtodb(fs, bno);
213 		count = howmany(osize, CLBYTES);
214 		for (i = 0; i < count; i++)
215 			munhash(ip->i_devvp, bn + i * CLBYTES / DEV_BSIZE);
216 		blkfree(ip, bprev, (off_t)osize);
217 		if (nsize < request)
218 			blkfree(ip, bno + numfrags(fs, nsize),
219 				(off_t)(request - nsize));
220 		ip->i_blocks += btodb(nsize - osize);
221 		ip->i_flag |= IUPD|ICHG;
222 		*bpp = bp;
223 		return (0);
224 	}
225 	brelse(bp);
226 nospace:
227 	/*
228 	 * no space available
229 	 */
230 	fserr(fs, cred->cr_uid, "file system full");
231 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
232 	return (ENOSPC);
233 }
234 
235 /*
236  * Allocate an inode in the file system.
237  *
238  * A preference may be optionally specified. If a preference is given
239  * the following hierarchy is used to allocate an inode:
240  *   1) allocate the requested inode.
241  *   2) allocate an inode in the same cylinder group.
242  *   3) quadradically rehash into other cylinder groups, until an
243  *      available inode is located.
244  * If no inode preference is given the following heirarchy is used
245  * to allocate an inode:
246  *   1) allocate an inode in cylinder group 0.
247  *   2) quadradically rehash into other cylinder groups, until an
248  *      available inode is located.
249  */
250 ialloc(pip, ipref, mode, cred, ipp)
251 	register struct inode *pip;
252 	ino_t ipref;
253 	int mode;
254 	struct ucred *cred;
255 	struct inode **ipp;
256 {
257 	ino_t ino;
258 	register struct fs *fs;
259 	register struct inode *ip;
260 	int cg, error;
261 
262 	*ipp = 0;
263 	fs = pip->i_fs;
264 	if (fs->fs_cstotal.cs_nifree == 0)
265 		goto noinodes;
266 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
267 		ipref = 0;
268 	cg = itog(fs, ipref);
269 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
270 	if (ino == 0)
271 		goto noinodes;
272 	error = iget(pip, ino, ipp);
273 	if (error) {
274 		ifree(pip, ino, mode);
275 		return (error);
276 	}
277 	ip = *ipp;
278 	if (ip->i_mode) {
279 		printf("mode = 0%o, inum = %d, fs = %s\n",
280 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
281 		panic("ialloc: dup alloc");
282 	}
283 	if (ip->i_blocks) {				/* XXX */
284 		printf("free inode %s/%d had %d blocks\n",
285 		    fs->fs_fsmnt, ino, ip->i_blocks);
286 		ip->i_blocks = 0;
287 	}
288 	ip->i_flags = 0;
289 	/*
290 	 * Set up a new generation number for this inode.
291 	 */
292 	if (++nextgennumber < (u_long)time.tv_sec)
293 		nextgennumber = time.tv_sec;
294 	ip->i_gen = nextgennumber;
295 	return (0);
296 noinodes:
297 	fserr(fs, cred->cr_uid, "out of inodes");
298 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
299 	return (ENOSPC);
300 }
301 
302 /*
303  * Find a cylinder to place a directory.
304  *
305  * The policy implemented by this algorithm is to select from
306  * among those cylinder groups with above the average number of
307  * free inodes, the one with the smallest number of directories.
308  */
309 ino_t
310 dirpref(fs)
311 	register struct fs *fs;
312 {
313 	int cg, minndir, mincg, avgifree;
314 
315 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
316 	minndir = fs->fs_ipg;
317 	mincg = 0;
318 	for (cg = 0; cg < fs->fs_ncg; cg++)
319 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
320 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
321 			mincg = cg;
322 			minndir = fs->fs_cs(fs, cg).cs_ndir;
323 		}
324 	return ((ino_t)(fs->fs_ipg * mincg));
325 }
326 
327 /*
328  * Select the desired position for the next block in a file.  The file is
329  * logically divided into sections. The first section is composed of the
330  * direct blocks. Each additional section contains fs_maxbpg blocks.
331  *
332  * If no blocks have been allocated in the first section, the policy is to
333  * request a block in the same cylinder group as the inode that describes
334  * the file. If no blocks have been allocated in any other section, the
335  * policy is to place the section in a cylinder group with a greater than
336  * average number of free blocks.  An appropriate cylinder group is found
337  * by using a rotor that sweeps the cylinder groups. When a new group of
338  * blocks is needed, the sweep begins in the cylinder group following the
339  * cylinder group from which the previous allocation was made. The sweep
340  * continues until a cylinder group with greater than the average number
341  * of free blocks is found. If the allocation is for the first block in an
342  * indirect block, the information on the previous allocation is unavailable;
343  * here a best guess is made based upon the logical block number being
344  * allocated.
345  *
346  * If a section is already partially allocated, the policy is to
347  * contiguously allocate fs_maxcontig blocks.  The end of one of these
348  * contiguous blocks and the beginning of the next is physically separated
349  * so that the disk head will be in transit between them for at least
350  * fs_rotdelay milliseconds.  This is to allow time for the processor to
351  * schedule another I/O transfer.
352  */
353 daddr_t
354 blkpref(ip, lbn, indx, bap)
355 	struct inode *ip;
356 	daddr_t lbn;
357 	int indx;
358 	daddr_t *bap;
359 {
360 	register struct fs *fs;
361 	register int cg;
362 	int avgbfree, startcg;
363 	daddr_t nextblk;
364 
365 	fs = ip->i_fs;
366 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
367 		if (lbn < NDADDR) {
368 			cg = itog(fs, ip->i_number);
369 			return (fs->fs_fpg * cg + fs->fs_frag);
370 		}
371 		/*
372 		 * Find a cylinder with greater than average number of
373 		 * unused data blocks.
374 		 */
375 		if (indx == 0 || bap[indx - 1] == 0)
376 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
377 		else
378 			startcg = dtog(fs, bap[indx - 1]) + 1;
379 		startcg %= fs->fs_ncg;
380 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
381 		for (cg = startcg; cg < fs->fs_ncg; cg++)
382 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
383 				fs->fs_cgrotor = cg;
384 				return (fs->fs_fpg * cg + fs->fs_frag);
385 			}
386 		for (cg = 0; cg <= startcg; cg++)
387 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
388 				fs->fs_cgrotor = cg;
389 				return (fs->fs_fpg * cg + fs->fs_frag);
390 			}
391 		return (NULL);
392 	}
393 	/*
394 	 * One or more previous blocks have been laid out. If less
395 	 * than fs_maxcontig previous blocks are contiguous, the
396 	 * next block is requested contiguously, otherwise it is
397 	 * requested rotationally delayed by fs_rotdelay milliseconds.
398 	 */
399 	nextblk = bap[indx - 1] + fs->fs_frag;
400 	if (indx > fs->fs_maxcontig &&
401 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
402 	    != nextblk)
403 		return (nextblk);
404 	if (fs->fs_rotdelay != 0)
405 		/*
406 		 * Here we convert ms of delay to frags as:
407 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
408 		 *	((sect/frag) * (ms/sec))
409 		 * then round up to the next block.
410 		 */
411 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
412 		    (NSPF(fs) * 1000), fs->fs_frag);
413 	return (nextblk);
414 }
415 
416 /*
417  * Implement the cylinder overflow algorithm.
418  *
419  * The policy implemented by this algorithm is:
420  *   1) allocate the block in its requested cylinder group.
421  *   2) quadradically rehash on the cylinder group number.
422  *   3) brute force search for a free block.
423  */
424 /*VARARGS5*/
425 u_long
426 hashalloc(ip, cg, pref, size, allocator)
427 	struct inode *ip;
428 	int cg;
429 	long pref;
430 	int size;	/* size for data blocks, mode for inodes */
431 	u_long (*allocator)();
432 {
433 	register struct fs *fs;
434 	long result;
435 	int i, icg = cg;
436 
437 	fs = ip->i_fs;
438 	/*
439 	 * 1: preferred cylinder group
440 	 */
441 	result = (*allocator)(ip, cg, pref, size);
442 	if (result)
443 		return (result);
444 	/*
445 	 * 2: quadratic rehash
446 	 */
447 	for (i = 1; i < fs->fs_ncg; i *= 2) {
448 		cg += i;
449 		if (cg >= fs->fs_ncg)
450 			cg -= fs->fs_ncg;
451 		result = (*allocator)(ip, cg, 0, size);
452 		if (result)
453 			return (result);
454 	}
455 	/*
456 	 * 3: brute force search
457 	 * Note that we start at i == 2, since 0 was checked initially,
458 	 * and 1 is always checked in the quadratic rehash.
459 	 */
460 	cg = (icg + 2) % fs->fs_ncg;
461 	for (i = 2; i < fs->fs_ncg; i++) {
462 		result = (*allocator)(ip, cg, 0, size);
463 		if (result)
464 			return (result);
465 		cg++;
466 		if (cg == fs->fs_ncg)
467 			cg = 0;
468 	}
469 	return (NULL);
470 }
471 
472 /*
473  * Determine whether a fragment can be extended.
474  *
475  * Check to see if the necessary fragments are available, and
476  * if they are, allocate them.
477  */
478 daddr_t
479 fragextend(ip, cg, bprev, osize, nsize)
480 	struct inode *ip;
481 	int cg;
482 	long bprev;
483 	int osize, nsize;
484 {
485 	register struct fs *fs;
486 	register struct cg *cgp;
487 	struct buf *bp;
488 	long bno;
489 	int frags, bbase;
490 	int i, error;
491 
492 	fs = ip->i_fs;
493 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
494 		return (NULL);
495 	frags = numfrags(fs, nsize);
496 	bbase = fragnum(fs, bprev);
497 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
498 		/* cannot extend across a block boundary */
499 		return (NULL);
500 	}
501 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
502 		(int)fs->fs_cgsize, NOCRED, &bp);
503 	if (error) {
504 		brelse(bp);
505 		return (NULL);
506 	}
507 	cgp = bp->b_un.b_cg;
508 	if (!cg_chkmagic(cgp)) {
509 		brelse(bp);
510 		return (NULL);
511 	}
512 	cgp->cg_time = time.tv_sec;
513 	bno = dtogd(fs, bprev);
514 	for (i = numfrags(fs, osize); i < frags; i++)
515 		if (isclr(cg_blksfree(cgp), bno + i)) {
516 			brelse(bp);
517 			return (NULL);
518 		}
519 	/*
520 	 * the current fragment can be extended
521 	 * deduct the count on fragment being extended into
522 	 * increase the count on the remaining fragment (if any)
523 	 * allocate the extended piece
524 	 */
525 	for (i = frags; i < fs->fs_frag - bbase; i++)
526 		if (isclr(cg_blksfree(cgp), bno + i))
527 			break;
528 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
529 	if (i != frags)
530 		cgp->cg_frsum[i - frags]++;
531 	for (i = numfrags(fs, osize); i < frags; i++) {
532 		clrbit(cg_blksfree(cgp), bno + i);
533 		cgp->cg_cs.cs_nffree--;
534 		fs->fs_cstotal.cs_nffree--;
535 		fs->fs_cs(fs, cg).cs_nffree--;
536 	}
537 	fs->fs_fmod++;
538 	bdwrite(bp);
539 	return (bprev);
540 }
541 
542 /*
543  * Determine whether a block can be allocated.
544  *
545  * Check to see if a block of the apprpriate size is available,
546  * and if it is, allocate it.
547  */
548 daddr_t
549 alloccg(ip, cg, bpref, size)
550 	struct inode *ip;
551 	int cg;
552 	daddr_t bpref;
553 	int size;
554 {
555 	register struct fs *fs;
556 	register struct cg *cgp;
557 	struct buf *bp;
558 	register int i;
559 	int error, bno, frags, allocsiz;
560 
561 	fs = ip->i_fs;
562 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
563 		return (NULL);
564 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
565 		(int)fs->fs_cgsize, NOCRED, &bp);
566 	if (error) {
567 		brelse(bp);
568 		return (NULL);
569 	}
570 	cgp = bp->b_un.b_cg;
571 	if (!cg_chkmagic(cgp) ||
572 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
573 		brelse(bp);
574 		return (NULL);
575 	}
576 	cgp->cg_time = time.tv_sec;
577 	if (size == fs->fs_bsize) {
578 		bno = alloccgblk(fs, cgp, bpref);
579 		bdwrite(bp);
580 		return (bno);
581 	}
582 	/*
583 	 * check to see if any fragments are already available
584 	 * allocsiz is the size which will be allocated, hacking
585 	 * it down to a smaller size if necessary
586 	 */
587 	frags = numfrags(fs, size);
588 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
589 		if (cgp->cg_frsum[allocsiz] != 0)
590 			break;
591 	if (allocsiz == fs->fs_frag) {
592 		/*
593 		 * no fragments were available, so a block will be
594 		 * allocated, and hacked up
595 		 */
596 		if (cgp->cg_cs.cs_nbfree == 0) {
597 			brelse(bp);
598 			return (NULL);
599 		}
600 		bno = alloccgblk(fs, cgp, bpref);
601 		bpref = dtogd(fs, bno);
602 		for (i = frags; i < fs->fs_frag; i++)
603 			setbit(cg_blksfree(cgp), bpref + i);
604 		i = fs->fs_frag - frags;
605 		cgp->cg_cs.cs_nffree += i;
606 		fs->fs_cstotal.cs_nffree += i;
607 		fs->fs_cs(fs, cg).cs_nffree += i;
608 		fs->fs_fmod++;
609 		cgp->cg_frsum[i]++;
610 		bdwrite(bp);
611 		return (bno);
612 	}
613 	bno = mapsearch(fs, cgp, bpref, allocsiz);
614 	if (bno < 0) {
615 		brelse(bp);
616 		return (NULL);
617 	}
618 	for (i = 0; i < frags; i++)
619 		clrbit(cg_blksfree(cgp), bno + i);
620 	cgp->cg_cs.cs_nffree -= frags;
621 	fs->fs_cstotal.cs_nffree -= frags;
622 	fs->fs_cs(fs, cg).cs_nffree -= frags;
623 	fs->fs_fmod++;
624 	cgp->cg_frsum[allocsiz]--;
625 	if (frags != allocsiz)
626 		cgp->cg_frsum[allocsiz - frags]++;
627 	bdwrite(bp);
628 	return (cg * fs->fs_fpg + bno);
629 }
630 
631 /*
632  * Allocate a block in a cylinder group.
633  *
634  * This algorithm implements the following policy:
635  *   1) allocate the requested block.
636  *   2) allocate a rotationally optimal block in the same cylinder.
637  *   3) allocate the next available block on the block rotor for the
638  *      specified cylinder group.
639  * Note that this routine only allocates fs_bsize blocks; these
640  * blocks may be fragmented by the routine that allocates them.
641  */
642 daddr_t
643 alloccgblk(fs, cgp, bpref)
644 	register struct fs *fs;
645 	register struct cg *cgp;
646 	daddr_t bpref;
647 {
648 	daddr_t bno;
649 	int cylno, pos, delta;
650 	short *cylbp;
651 	register int i;
652 
653 	if (bpref == 0) {
654 		bpref = cgp->cg_rotor;
655 		goto norot;
656 	}
657 	bpref = blknum(fs, bpref);
658 	bpref = dtogd(fs, bpref);
659 	/*
660 	 * if the requested block is available, use it
661 	 */
662 	if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
663 		bno = bpref;
664 		goto gotit;
665 	}
666 	/*
667 	 * check for a block available on the same cylinder
668 	 */
669 	cylno = cbtocylno(fs, bpref);
670 	if (cg_blktot(cgp)[cylno] == 0)
671 		goto norot;
672 	if (fs->fs_cpc == 0) {
673 		/*
674 		 * block layout info is not available, so just have
675 		 * to take any block in this cylinder.
676 		 */
677 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
678 		goto norot;
679 	}
680 	/*
681 	 * check the summary information to see if a block is
682 	 * available in the requested cylinder starting at the
683 	 * requested rotational position and proceeding around.
684 	 */
685 	cylbp = cg_blks(fs, cgp, cylno);
686 	pos = cbtorpos(fs, bpref);
687 	for (i = pos; i < fs->fs_nrpos; i++)
688 		if (cylbp[i] > 0)
689 			break;
690 	if (i == fs->fs_nrpos)
691 		for (i = 0; i < pos; i++)
692 			if (cylbp[i] > 0)
693 				break;
694 	if (cylbp[i] > 0) {
695 		/*
696 		 * found a rotational position, now find the actual
697 		 * block. A panic if none is actually there.
698 		 */
699 		pos = cylno % fs->fs_cpc;
700 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
701 		if (fs_postbl(fs, pos)[i] == -1) {
702 			printf("pos = %d, i = %d, fs = %s\n",
703 			    pos, i, fs->fs_fsmnt);
704 			panic("alloccgblk: cyl groups corrupted");
705 		}
706 		for (i = fs_postbl(fs, pos)[i];; ) {
707 			if (isblock(fs, cg_blksfree(cgp), bno + i)) {
708 				bno = blkstofrags(fs, (bno + i));
709 				goto gotit;
710 			}
711 			delta = fs_rotbl(fs)[i];
712 			if (delta <= 0 ||
713 			    delta + i > fragstoblks(fs, fs->fs_fpg))
714 				break;
715 			i += delta;
716 		}
717 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
718 		panic("alloccgblk: can't find blk in cyl");
719 	}
720 norot:
721 	/*
722 	 * no blocks in the requested cylinder, so take next
723 	 * available one in this cylinder group.
724 	 */
725 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
726 	if (bno < 0)
727 		return (NULL);
728 	cgp->cg_rotor = bno;
729 gotit:
730 	clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
731 	cgp->cg_cs.cs_nbfree--;
732 	fs->fs_cstotal.cs_nbfree--;
733 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
734 	cylno = cbtocylno(fs, bno);
735 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
736 	cg_blktot(cgp)[cylno]--;
737 	fs->fs_fmod++;
738 	return (cgp->cg_cgx * fs->fs_fpg + bno);
739 }
740 
741 /*
742  * Determine whether an inode can be allocated.
743  *
744  * Check to see if an inode is available, and if it is,
745  * allocate it using the following policy:
746  *   1) allocate the requested inode.
747  *   2) allocate the next available inode after the requested
748  *      inode in the specified cylinder group.
749  */
750 ino_t
751 ialloccg(ip, cg, ipref, mode)
752 	struct inode *ip;
753 	int cg;
754 	daddr_t ipref;
755 	int mode;
756 {
757 	register struct fs *fs;
758 	register struct cg *cgp;
759 	struct buf *bp;
760 	int error, start, len, loc, map, i;
761 
762 	fs = ip->i_fs;
763 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
764 		return (NULL);
765 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
766 		(int)fs->fs_cgsize, NOCRED, &bp);
767 	if (error) {
768 		brelse(bp);
769 		return (NULL);
770 	}
771 	cgp = bp->b_un.b_cg;
772 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
773 		brelse(bp);
774 		return (NULL);
775 	}
776 	cgp->cg_time = time.tv_sec;
777 	if (ipref) {
778 		ipref %= fs->fs_ipg;
779 		if (isclr(cg_inosused(cgp), ipref))
780 			goto gotit;
781 	}
782 	start = cgp->cg_irotor / NBBY;
783 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
784 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
785 	if (loc == 0) {
786 		len = start + 1;
787 		start = 0;
788 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
789 		if (loc == 0) {
790 			printf("cg = %s, irotor = %d, fs = %s\n",
791 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
792 			panic("ialloccg: map corrupted");
793 			/* NOTREACHED */
794 		}
795 	}
796 	i = start + len - loc;
797 	map = cg_inosused(cgp)[i];
798 	ipref = i * NBBY;
799 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
800 		if ((map & i) == 0) {
801 			cgp->cg_irotor = ipref;
802 			goto gotit;
803 		}
804 	}
805 	printf("fs = %s\n", fs->fs_fsmnt);
806 	panic("ialloccg: block not in map");
807 	/* NOTREACHED */
808 gotit:
809 	setbit(cg_inosused(cgp), ipref);
810 	cgp->cg_cs.cs_nifree--;
811 	fs->fs_cstotal.cs_nifree--;
812 	fs->fs_cs(fs, cg).cs_nifree--;
813 	fs->fs_fmod++;
814 	if ((mode & IFMT) == IFDIR) {
815 		cgp->cg_cs.cs_ndir++;
816 		fs->fs_cstotal.cs_ndir++;
817 		fs->fs_cs(fs, cg).cs_ndir++;
818 	}
819 	bdwrite(bp);
820 	return (cg * fs->fs_ipg + ipref);
821 }
822 
823 /*
824  * Free a block or fragment.
825  *
826  * The specified block or fragment is placed back in the
827  * free map. If a fragment is deallocated, a possible
828  * block reassembly is checked.
829  */
830 blkfree(ip, bno, size)
831 	register struct inode *ip;
832 	daddr_t bno;
833 	off_t size;
834 {
835 	register struct fs *fs;
836 	register struct cg *cgp;
837 	struct buf *bp;
838 	int error, cg, blk, frags, bbase;
839 	register int i;
840 	struct ucred *cred = u.u_cred;	/* XXX */
841 
842 	fs = ip->i_fs;
843 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
844 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
845 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
846 		panic("blkfree: bad size");
847 	}
848 	cg = dtog(fs, bno);
849 	if ((unsigned)bno >= fs->fs_size) {
850 		printf("bad block %d, ino %d\n", bno, ip->i_number);
851 		fserr(fs, cred->cr_uid, "bad block");
852 		return;
853 	}
854 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
855 		(int)fs->fs_cgsize, NOCRED, &bp);
856 	if (error) {
857 		brelse(bp);
858 		return;
859 	}
860 	cgp = bp->b_un.b_cg;
861 	if (!cg_chkmagic(cgp)) {
862 		brelse(bp);
863 		return;
864 	}
865 	cgp->cg_time = time.tv_sec;
866 	bno = dtogd(fs, bno);
867 	if (size == fs->fs_bsize) {
868 		if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
869 			printf("dev = 0x%x, block = %d, fs = %s\n",
870 			    ip->i_dev, bno, fs->fs_fsmnt);
871 			panic("blkfree: freeing free block");
872 		}
873 		setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
874 		cgp->cg_cs.cs_nbfree++;
875 		fs->fs_cstotal.cs_nbfree++;
876 		fs->fs_cs(fs, cg).cs_nbfree++;
877 		i = cbtocylno(fs, bno);
878 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
879 		cg_blktot(cgp)[i]++;
880 	} else {
881 		bbase = bno - fragnum(fs, bno);
882 		/*
883 		 * decrement the counts associated with the old frags
884 		 */
885 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
886 		fragacct(fs, blk, cgp->cg_frsum, -1);
887 		/*
888 		 * deallocate the fragment
889 		 */
890 		frags = numfrags(fs, size);
891 		for (i = 0; i < frags; i++) {
892 			if (isset(cg_blksfree(cgp), bno + i)) {
893 				printf("dev = 0x%x, block = %d, fs = %s\n",
894 				    ip->i_dev, bno + i, fs->fs_fsmnt);
895 				panic("blkfree: freeing free frag");
896 			}
897 			setbit(cg_blksfree(cgp), bno + i);
898 		}
899 		cgp->cg_cs.cs_nffree += i;
900 		fs->fs_cstotal.cs_nffree += i;
901 		fs->fs_cs(fs, cg).cs_nffree += i;
902 		/*
903 		 * add back in counts associated with the new frags
904 		 */
905 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
906 		fragacct(fs, blk, cgp->cg_frsum, 1);
907 		/*
908 		 * if a complete block has been reassembled, account for it
909 		 */
910 		if (isblock(fs, cg_blksfree(cgp),
911 		    (daddr_t)fragstoblks(fs, bbase))) {
912 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
913 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
914 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
915 			cgp->cg_cs.cs_nbfree++;
916 			fs->fs_cstotal.cs_nbfree++;
917 			fs->fs_cs(fs, cg).cs_nbfree++;
918 			i = cbtocylno(fs, bbase);
919 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
920 			cg_blktot(cgp)[i]++;
921 		}
922 	}
923 	fs->fs_fmod++;
924 	bdwrite(bp);
925 }
926 
927 /*
928  * Free an inode.
929  *
930  * The specified inode is placed back in the free map.
931  */
932 ifree(ip, ino, mode)
933 	struct inode *ip;
934 	ino_t ino;
935 	int mode;
936 {
937 	register struct fs *fs;
938 	register struct cg *cgp;
939 	struct buf *bp;
940 	int error, cg;
941 
942 	fs = ip->i_fs;
943 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
944 		printf("dev = 0x%x, ino = %d, fs = %s\n",
945 		    ip->i_dev, ino, fs->fs_fsmnt);
946 		panic("ifree: range");
947 	}
948 	cg = itog(fs, ino);
949 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
950 		(int)fs->fs_cgsize, NOCRED, &bp);
951 	if (error) {
952 		brelse(bp);
953 		return;
954 	}
955 	cgp = bp->b_un.b_cg;
956 	if (!cg_chkmagic(cgp)) {
957 		brelse(bp);
958 		return;
959 	}
960 	cgp->cg_time = time.tv_sec;
961 	ino %= fs->fs_ipg;
962 	if (isclr(cg_inosused(cgp), ino)) {
963 		printf("dev = 0x%x, ino = %d, fs = %s\n",
964 		    ip->i_dev, ino, fs->fs_fsmnt);
965 		panic("ifree: freeing free inode");
966 	}
967 	clrbit(cg_inosused(cgp), ino);
968 	if (ino < cgp->cg_irotor)
969 		cgp->cg_irotor = ino;
970 	cgp->cg_cs.cs_nifree++;
971 	fs->fs_cstotal.cs_nifree++;
972 	fs->fs_cs(fs, cg).cs_nifree++;
973 	if ((mode & IFMT) == IFDIR) {
974 		cgp->cg_cs.cs_ndir--;
975 		fs->fs_cstotal.cs_ndir--;
976 		fs->fs_cs(fs, cg).cs_ndir--;
977 	}
978 	fs->fs_fmod++;
979 	bdwrite(bp);
980 }
981 
982 /*
983  * Find a block of the specified size in the specified cylinder group.
984  *
985  * It is a panic if a request is made to find a block if none are
986  * available.
987  */
988 daddr_t
989 mapsearch(fs, cgp, bpref, allocsiz)
990 	register struct fs *fs;
991 	register struct cg *cgp;
992 	daddr_t bpref;
993 	int allocsiz;
994 {
995 	daddr_t bno;
996 	int start, len, loc, i;
997 	int blk, field, subfield, pos;
998 
999 	/*
1000 	 * find the fragment by searching through the free block
1001 	 * map for an appropriate bit pattern
1002 	 */
1003 	if (bpref)
1004 		start = dtogd(fs, bpref) / NBBY;
1005 	else
1006 		start = cgp->cg_frotor / NBBY;
1007 	len = howmany(fs->fs_fpg, NBBY) - start;
1008 	loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
1009 		(u_char *)fragtbl[fs->fs_frag],
1010 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1011 	if (loc == 0) {
1012 		len = start + 1;
1013 		start = 0;
1014 		loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
1015 			(u_char *)fragtbl[fs->fs_frag],
1016 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1017 		if (loc == 0) {
1018 			printf("start = %d, len = %d, fs = %s\n",
1019 			    start, len, fs->fs_fsmnt);
1020 			panic("alloccg: map corrupted");
1021 			/* NOTREACHED */
1022 		}
1023 	}
1024 	bno = (start + len - loc) * NBBY;
1025 	cgp->cg_frotor = bno;
1026 	/*
1027 	 * found the byte in the map
1028 	 * sift through the bits to find the selected frag
1029 	 */
1030 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1031 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1032 		blk <<= 1;
1033 		field = around[allocsiz];
1034 		subfield = inside[allocsiz];
1035 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1036 			if ((blk & field) == subfield)
1037 				return (bno + pos);
1038 			field <<= 1;
1039 			subfield <<= 1;
1040 		}
1041 	}
1042 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1043 	panic("alloccg: block not in map");
1044 	return (-1);
1045 }
1046 
1047 /*
1048  * Fserr prints the name of a file system with an error diagnostic.
1049  *
1050  * The form of the error message is:
1051  *	fs: error message
1052  */
1053 fserr(fs, uid, cp)
1054 	struct fs *fs;
1055 	uid_t uid;
1056 	char *cp;
1057 {
1058 
1059 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1060 }
1061