1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * %sccs.include.redist.c% 9 * 10 * @(#)vm_fault.c 7.6 (Berkeley) 05/07/91 11 * 12 * 13 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 14 * All rights reserved. 15 * 16 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 17 * 18 * Permission to use, copy, modify and distribute this software and 19 * its documentation is hereby granted, provided that both the copyright 20 * notice and this permission notice appear in all copies of the 21 * software, derivative works or modified versions, and any portions 22 * thereof, and that both notices appear in supporting documentation. 23 * 24 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 25 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 26 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 27 * 28 * Carnegie Mellon requests users of this software to return to 29 * 30 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 31 * School of Computer Science 32 * Carnegie Mellon University 33 * Pittsburgh PA 15213-3890 34 * 35 * any improvements or extensions that they make and grant Carnegie the 36 * rights to redistribute these changes. 37 */ 38 39 /* 40 * Page fault handling module. 41 */ 42 43 #include "param.h" 44 45 #include "vm.h" 46 #include "vm_page.h" 47 #include "vm_pageout.h" 48 49 /* 50 * vm_fault: 51 * 52 * Handle a page fault occuring at the given address, 53 * requiring the given permissions, in the map specified. 54 * If successful, the page is inserted into the 55 * associated physical map. 56 * 57 * NOTE: the given address should be truncated to the 58 * proper page address. 59 * 60 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 61 * a standard error specifying why the fault is fatal is returned. 62 * 63 * 64 * The map in question must be referenced, and remains so. 65 * Caller may hold no locks. 66 */ 67 vm_fault(map, vaddr, fault_type, change_wiring) 68 vm_map_t map; 69 vm_offset_t vaddr; 70 vm_prot_t fault_type; 71 boolean_t change_wiring; 72 { 73 vm_object_t first_object; 74 vm_offset_t first_offset; 75 vm_map_entry_t entry; 76 register vm_object_t object; 77 register vm_offset_t offset; 78 register vm_page_t m; 79 vm_page_t first_m; 80 vm_prot_t prot; 81 int result; 82 boolean_t wired; 83 boolean_t su; 84 boolean_t lookup_still_valid; 85 boolean_t page_exists; 86 vm_page_t old_m; 87 vm_object_t next_object; 88 89 vm_stat.faults++; /* needs lock XXX */ 90 /* 91 * Recovery actions 92 */ 93 #define FREE_PAGE(m) { \ 94 PAGE_WAKEUP(m); \ 95 vm_page_lock_queues(); \ 96 vm_page_free(m); \ 97 vm_page_unlock_queues(); \ 98 } 99 100 #define RELEASE_PAGE(m) { \ 101 PAGE_WAKEUP(m); \ 102 vm_page_lock_queues(); \ 103 vm_page_activate(m); \ 104 vm_page_unlock_queues(); \ 105 } 106 107 #define UNLOCK_MAP { \ 108 if (lookup_still_valid) { \ 109 vm_map_lookup_done(map, entry); \ 110 lookup_still_valid = FALSE; \ 111 } \ 112 } 113 114 #define UNLOCK_THINGS { \ 115 object->paging_in_progress--; \ 116 vm_object_unlock(object); \ 117 if (object != first_object) { \ 118 vm_object_lock(first_object); \ 119 FREE_PAGE(first_m); \ 120 first_object->paging_in_progress--; \ 121 vm_object_unlock(first_object); \ 122 } \ 123 UNLOCK_MAP; \ 124 } 125 126 #define UNLOCK_AND_DEALLOCATE { \ 127 UNLOCK_THINGS; \ 128 vm_object_deallocate(first_object); \ 129 } 130 131 RetryFault: ; 132 133 /* 134 * Find the backing store object and offset into 135 * it to begin the search. 136 */ 137 138 if ((result = vm_map_lookup(&map, vaddr, fault_type, &entry, 139 &first_object, &first_offset, 140 &prot, &wired, &su)) != KERN_SUCCESS) { 141 return(result); 142 } 143 lookup_still_valid = TRUE; 144 145 if (wired) 146 fault_type = prot; 147 148 first_m = NULL; 149 150 /* 151 * Make a reference to this object to 152 * prevent its disposal while we are messing with 153 * it. Once we have the reference, the map is free 154 * to be diddled. Since objects reference their 155 * shadows (and copies), they will stay around as well. 156 */ 157 158 vm_object_lock(first_object); 159 160 first_object->ref_count++; 161 first_object->paging_in_progress++; 162 163 /* 164 * INVARIANTS (through entire routine): 165 * 166 * 1) At all times, we must either have the object 167 * lock or a busy page in some object to prevent 168 * some other thread from trying to bring in 169 * the same page. 170 * 171 * Note that we cannot hold any locks during the 172 * pager access or when waiting for memory, so 173 * we use a busy page then. 174 * 175 * Note also that we aren't as concerned about 176 * more than one thead attempting to pager_data_unlock 177 * the same page at once, so we don't hold the page 178 * as busy then, but do record the highest unlock 179 * value so far. [Unlock requests may also be delivered 180 * out of order.] 181 * 182 * 2) Once we have a busy page, we must remove it from 183 * the pageout queues, so that the pageout daemon 184 * will not grab it away. 185 * 186 * 3) To prevent another thread from racing us down the 187 * shadow chain and entering a new page in the top 188 * object before we do, we must keep a busy page in 189 * the top object while following the shadow chain. 190 * 191 * 4) We must increment paging_in_progress on any object 192 * for which we have a busy page, to prevent 193 * vm_object_collapse from removing the busy page 194 * without our noticing. 195 */ 196 197 /* 198 * Search for the page at object/offset. 199 */ 200 201 object = first_object; 202 offset = first_offset; 203 204 /* 205 * See whether this page is resident 206 */ 207 208 while (TRUE) { 209 m = vm_page_lookup(object, offset); 210 if (m != NULL) { 211 /* 212 * If the page is being brought in, 213 * wait for it and then retry. 214 */ 215 if (m->busy) { 216 #ifdef DOTHREADS 217 int wait_result; 218 219 PAGE_ASSERT_WAIT(m, !change_wiring); 220 UNLOCK_THINGS; 221 thread_block(); 222 wait_result = current_thread()->wait_result; 223 vm_object_deallocate(first_object); 224 if (wait_result != THREAD_AWAKENED) 225 return(KERN_SUCCESS); 226 goto RetryFault; 227 #else 228 PAGE_ASSERT_WAIT(m, !change_wiring); 229 UNLOCK_THINGS; 230 thread_block(); 231 vm_object_deallocate(first_object); 232 goto RetryFault; 233 #endif 234 } 235 236 if (m->absent) 237 panic("vm_fault: absent"); 238 239 /* 240 * If the desired access to this page has 241 * been locked out, request that it be unlocked. 242 */ 243 244 if (fault_type & m->page_lock) { 245 #ifdef DOTHREADS 246 int wait_result; 247 248 if ((fault_type & m->unlock_request) != fault_type) 249 panic("vm_fault: pager_data_unlock"); 250 251 PAGE_ASSERT_WAIT(m, !change_wiring); 252 UNLOCK_THINGS; 253 thread_block(); 254 wait_result = current_thread()->wait_result; 255 vm_object_deallocate(first_object); 256 if (wait_result != THREAD_AWAKENED) 257 return(KERN_SUCCESS); 258 goto RetryFault; 259 #else 260 if ((fault_type & m->unlock_request) != fault_type) 261 panic("vm_fault: pager_data_unlock"); 262 263 PAGE_ASSERT_WAIT(m, !change_wiring); 264 UNLOCK_THINGS; 265 thread_block(); 266 vm_object_deallocate(first_object); 267 goto RetryFault; 268 #endif 269 } 270 271 /* 272 * Remove the page from the pageout daemon's 273 * reach while we play with it. 274 */ 275 276 vm_page_lock_queues(); 277 if (m->inactive) { 278 queue_remove(&vm_page_queue_inactive, m, 279 vm_page_t, pageq); 280 m->inactive = FALSE; 281 vm_page_inactive_count--; 282 vm_stat.reactivations++; 283 } 284 285 if (m->active) { 286 queue_remove(&vm_page_queue_active, m, 287 vm_page_t, pageq); 288 m->active = FALSE; 289 vm_page_active_count--; 290 } 291 vm_page_unlock_queues(); 292 293 /* 294 * Mark page busy for other threads. 295 */ 296 m->busy = TRUE; 297 m->absent = FALSE; 298 break; 299 } 300 301 if (((object->pager != NULL) && 302 (!change_wiring || wired)) 303 || (object == first_object)) { 304 305 /* 306 * Allocate a new page for this object/offset 307 * pair. 308 */ 309 310 m = vm_page_alloc(object, offset); 311 312 if (m == NULL) { 313 UNLOCK_AND_DEALLOCATE; 314 VM_WAIT; 315 goto RetryFault; 316 } 317 } 318 319 if ((object->pager != NULL) && 320 (!change_wiring || wired)) { 321 int rv; 322 323 /* 324 * Now that we have a busy page, we can 325 * release the object lock. 326 */ 327 vm_object_unlock(object); 328 329 /* 330 * Call the pager to retrieve the data, if any, 331 * after releasing the lock on the map. 332 */ 333 UNLOCK_MAP; 334 335 rv = vm_pager_get(object->pager, m, TRUE); 336 if (rv == VM_PAGER_OK) { 337 /* 338 * Found the page. 339 * Leave it busy while we play with it. 340 */ 341 vm_object_lock(object); 342 343 /* 344 * Relookup in case pager changed page. 345 * Pager is responsible for disposition 346 * of old page if moved. 347 */ 348 m = vm_page_lookup(object, offset); 349 350 vm_stat.pageins++; 351 m->fake = FALSE; 352 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 353 break; 354 } 355 356 /* 357 * Remove the bogus page (which does not 358 * exist at this object/offset); before 359 * doing so, we must get back our object 360 * lock to preserve our invariant. 361 * 362 * Also wake up any other thread that may want 363 * to bring in this page. 364 * 365 * If this is the top-level object, we must 366 * leave the busy page to prevent another 367 * thread from rushing past us, and inserting 368 * the page in that object at the same time 369 * that we are. 370 */ 371 372 vm_object_lock(object); 373 /* 374 * Data outside the range of the pager; an error 375 */ 376 if (rv == VM_PAGER_BAD) { 377 FREE_PAGE(m); 378 UNLOCK_AND_DEALLOCATE; 379 return(KERN_PROTECTION_FAILURE); /* XXX */ 380 } 381 if (object != first_object) { 382 FREE_PAGE(m); 383 /* 384 * XXX - we cannot just fall out at this 385 * point, m has been freed and is invalid! 386 */ 387 } 388 } 389 390 /* 391 * We get here if the object has no pager (or unwiring) 392 * or the pager doesn't have the page. 393 */ 394 if (object == first_object) 395 first_m = m; 396 397 /* 398 * Move on to the next object. Lock the next 399 * object before unlocking the current one. 400 */ 401 402 offset += object->shadow_offset; 403 next_object = object->shadow; 404 if (next_object == NULL) { 405 /* 406 * If there's no object left, fill the page 407 * in the top object with zeros. 408 */ 409 if (object != first_object) { 410 object->paging_in_progress--; 411 vm_object_unlock(object); 412 413 object = first_object; 414 offset = first_offset; 415 m = first_m; 416 vm_object_lock(object); 417 } 418 first_m = NULL; 419 420 vm_page_zero_fill(m); 421 vm_stat.zero_fill_count++; 422 m->fake = FALSE; 423 m->absent = FALSE; 424 break; 425 } 426 else { 427 vm_object_lock(next_object); 428 if (object != first_object) 429 object->paging_in_progress--; 430 vm_object_unlock(object); 431 object = next_object; 432 object->paging_in_progress++; 433 } 434 } 435 436 if (m->absent || m->active || m->inactive || !m->busy) 437 panic("vm_fault: absent or active or inactive or not busy after main loop"); 438 439 /* 440 * PAGE HAS BEEN FOUND. 441 * [Loop invariant still holds -- the object lock 442 * is held.] 443 */ 444 445 old_m = m; /* save page that would be copied */ 446 447 /* 448 * If the page is being written, but isn't 449 * already owned by the top-level object, 450 * we have to copy it into a new page owned 451 * by the top-level object. 452 */ 453 454 if (object != first_object) { 455 /* 456 * We only really need to copy if we 457 * want to write it. 458 */ 459 460 if (fault_type & VM_PROT_WRITE) { 461 462 /* 463 * If we try to collapse first_object at this 464 * point, we may deadlock when we try to get 465 * the lock on an intermediate object (since we 466 * have the bottom object locked). We can't 467 * unlock the bottom object, because the page 468 * we found may move (by collapse) if we do. 469 * 470 * Instead, we first copy the page. Then, when 471 * we have no more use for the bottom object, 472 * we unlock it and try to collapse. 473 * 474 * Note that we copy the page even if we didn't 475 * need to... that's the breaks. 476 */ 477 478 /* 479 * We already have an empty page in 480 * first_object - use it. 481 */ 482 483 vm_page_copy(m, first_m); 484 first_m->fake = FALSE; 485 first_m->absent = FALSE; 486 487 /* 488 * If another map is truly sharing this 489 * page with us, we have to flush all 490 * uses of the original page, since we 491 * can't distinguish those which want the 492 * original from those which need the 493 * new copy. 494 * 495 * XXX If we know that only one map has 496 * access to this page, then we could 497 * avoid the pmap_page_protect() call. 498 */ 499 500 vm_page_lock_queues(); 501 vm_page_deactivate(m); 502 pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE); 503 vm_page_unlock_queues(); 504 505 /* 506 * We no longer need the old page or object. 507 */ 508 PAGE_WAKEUP(m); 509 object->paging_in_progress--; 510 vm_object_unlock(object); 511 512 /* 513 * Only use the new page below... 514 */ 515 516 vm_stat.cow_faults++; 517 m = first_m; 518 object = first_object; 519 offset = first_offset; 520 521 /* 522 * Now that we've gotten the copy out of the 523 * way, let's try to collapse the top object. 524 */ 525 vm_object_lock(object); 526 /* 527 * But we have to play ugly games with 528 * paging_in_progress to do that... 529 */ 530 object->paging_in_progress--; 531 vm_object_collapse(object); 532 object->paging_in_progress++; 533 } 534 else { 535 prot &= (~VM_PROT_WRITE); 536 m->copy_on_write = TRUE; 537 } 538 } 539 540 if (m->active || m->inactive) 541 panic("vm_fault: active or inactive before copy object handling"); 542 543 /* 544 * If the page is being written, but hasn't been 545 * copied to the copy-object, we have to copy it there. 546 */ 547 RetryCopy: 548 if (first_object->copy != NULL) { 549 vm_object_t copy_object = first_object->copy; 550 vm_offset_t copy_offset; 551 vm_page_t copy_m; 552 553 /* 554 * We only need to copy if we want to write it. 555 */ 556 if ((fault_type & VM_PROT_WRITE) == 0) { 557 prot &= ~VM_PROT_WRITE; 558 m->copy_on_write = TRUE; 559 } 560 else { 561 /* 562 * Try to get the lock on the copy_object. 563 */ 564 if (!vm_object_lock_try(copy_object)) { 565 vm_object_unlock(object); 566 /* should spin a bit here... */ 567 vm_object_lock(object); 568 goto RetryCopy; 569 } 570 571 /* 572 * Make another reference to the copy-object, 573 * to keep it from disappearing during the 574 * copy. 575 */ 576 copy_object->ref_count++; 577 578 /* 579 * Does the page exist in the copy? 580 */ 581 copy_offset = first_offset 582 - copy_object->shadow_offset; 583 copy_m = vm_page_lookup(copy_object, copy_offset); 584 if (page_exists = (copy_m != NULL)) { 585 if (copy_m->busy) { 586 #ifdef DOTHREADS 587 int wait_result; 588 589 /* 590 * If the page is being brought 591 * in, wait for it and then retry. 592 */ 593 PAGE_ASSERT_WAIT(copy_m, !change_wiring); 594 RELEASE_PAGE(m); 595 copy_object->ref_count--; 596 vm_object_unlock(copy_object); 597 UNLOCK_THINGS; 598 thread_block(); 599 wait_result = current_thread()->wait_result; 600 vm_object_deallocate(first_object); 601 if (wait_result != THREAD_AWAKENED) 602 return(KERN_SUCCESS); 603 goto RetryFault; 604 #else 605 /* 606 * If the page is being brought 607 * in, wait for it and then retry. 608 */ 609 PAGE_ASSERT_WAIT(copy_m, !change_wiring); 610 RELEASE_PAGE(m); 611 copy_object->ref_count--; 612 vm_object_unlock(copy_object); 613 UNLOCK_THINGS; 614 thread_block(); 615 vm_object_deallocate(first_object); 616 goto RetryFault; 617 #endif 618 } 619 } 620 621 /* 622 * If the page is not in memory (in the object) 623 * and the object has a pager, we have to check 624 * if the pager has the data in secondary 625 * storage. 626 */ 627 if (!page_exists) { 628 629 /* 630 * If we don't allocate a (blank) page 631 * here... another thread could try 632 * to page it in, allocate a page, and 633 * then block on the busy page in its 634 * shadow (first_object). Then we'd 635 * trip over the busy page after we 636 * found that the copy_object's pager 637 * doesn't have the page... 638 */ 639 copy_m = vm_page_alloc(copy_object, 640 copy_offset); 641 if (copy_m == NULL) { 642 /* 643 * Wait for a page, then retry. 644 */ 645 RELEASE_PAGE(m); 646 copy_object->ref_count--; 647 vm_object_unlock(copy_object); 648 UNLOCK_AND_DEALLOCATE; 649 VM_WAIT; 650 goto RetryFault; 651 } 652 653 if (copy_object->pager != NULL) { 654 vm_object_unlock(object); 655 vm_object_unlock(copy_object); 656 UNLOCK_MAP; 657 658 page_exists = vm_pager_has_page( 659 copy_object->pager, 660 (copy_offset + copy_object->paging_offset)); 661 662 vm_object_lock(copy_object); 663 664 /* 665 * Since the map is unlocked, someone 666 * else could have copied this object 667 * and put a different copy_object 668 * between the two. Or, the last 669 * reference to the copy-object (other 670 * than the one we have) may have 671 * disappeared - if that has happened, 672 * we don't need to make the copy. 673 */ 674 if (copy_object->shadow != object || 675 copy_object->ref_count == 1) { 676 /* 677 * Gaah... start over! 678 */ 679 FREE_PAGE(copy_m); 680 vm_object_unlock(copy_object); 681 vm_object_deallocate(copy_object); 682 /* may block */ 683 vm_object_lock(object); 684 goto RetryCopy; 685 } 686 vm_object_lock(object); 687 688 if (page_exists) { 689 /* 690 * We didn't need the page 691 */ 692 FREE_PAGE(copy_m); 693 } 694 } 695 } 696 if (!page_exists) { 697 /* 698 * Must copy page into copy-object. 699 */ 700 vm_page_copy(m, copy_m); 701 copy_m->fake = FALSE; 702 copy_m->absent = FALSE; 703 704 /* 705 * Things to remember: 706 * 1. The copied page must be marked 'dirty' 707 * so it will be paged out to the copy 708 * object. 709 * 2. If the old page was in use by any users 710 * of the copy-object, it must be removed 711 * from all pmaps. (We can't know which 712 * pmaps use it.) 713 */ 714 vm_page_lock_queues(); 715 pmap_page_protect(VM_PAGE_TO_PHYS(old_m), 716 VM_PROT_NONE); 717 copy_m->clean = FALSE; 718 vm_page_activate(copy_m); /* XXX */ 719 vm_page_unlock_queues(); 720 721 PAGE_WAKEUP(copy_m); 722 } 723 /* 724 * The reference count on copy_object must be 725 * at least 2: one for our extra reference, 726 * and at least one from the outside world 727 * (we checked that when we last locked 728 * copy_object). 729 */ 730 copy_object->ref_count--; 731 vm_object_unlock(copy_object); 732 m->copy_on_write = FALSE; 733 } 734 } 735 736 if (m->active || m->inactive) 737 panic("vm_fault: active or inactive before retrying lookup"); 738 739 /* 740 * We must verify that the maps have not changed 741 * since our last lookup. 742 */ 743 744 if (!lookup_still_valid) { 745 vm_object_t retry_object; 746 vm_offset_t retry_offset; 747 vm_prot_t retry_prot; 748 749 /* 750 * Since map entries may be pageable, make sure we can 751 * take a page fault on them. 752 */ 753 vm_object_unlock(object); 754 755 /* 756 * To avoid trying to write_lock the map while another 757 * thread has it read_locked (in vm_map_pageable), we 758 * do not try for write permission. If the page is 759 * still writable, we will get write permission. If it 760 * is not, or has been marked needs_copy, we enter the 761 * mapping without write permission, and will merely 762 * take another fault. 763 */ 764 result = vm_map_lookup(&map, vaddr, 765 fault_type & ~VM_PROT_WRITE, &entry, 766 &retry_object, &retry_offset, &retry_prot, 767 &wired, &su); 768 769 vm_object_lock(object); 770 771 /* 772 * If we don't need the page any longer, put it on the 773 * active list (the easiest thing to do here). If no 774 * one needs it, pageout will grab it eventually. 775 */ 776 777 if (result != KERN_SUCCESS) { 778 RELEASE_PAGE(m); 779 UNLOCK_AND_DEALLOCATE; 780 return(result); 781 } 782 783 lookup_still_valid = TRUE; 784 785 if ((retry_object != first_object) || 786 (retry_offset != first_offset)) { 787 RELEASE_PAGE(m); 788 UNLOCK_AND_DEALLOCATE; 789 goto RetryFault; 790 } 791 792 /* 793 * Check whether the protection has changed or the object 794 * has been copied while we left the map unlocked. 795 * Changing from read to write permission is OK - we leave 796 * the page write-protected, and catch the write fault. 797 * Changing from write to read permission means that we 798 * can't mark the page write-enabled after all. 799 */ 800 prot &= retry_prot; 801 if (m->copy_on_write) 802 prot &= ~VM_PROT_WRITE; 803 } 804 805 /* 806 * (the various bits we're fiddling with here are locked by 807 * the object's lock) 808 */ 809 810 /* XXX This distorts the meaning of the copy_on_write bit */ 811 812 if (prot & VM_PROT_WRITE) 813 m->copy_on_write = FALSE; 814 815 /* 816 * It's critically important that a wired-down page be faulted 817 * only once in each map for which it is wired. 818 */ 819 820 if (m->active || m->inactive) 821 panic("vm_fault: active or inactive before pmap_enter"); 822 823 vm_object_unlock(object); 824 825 /* 826 * Put this page into the physical map. 827 * We had to do the unlock above because pmap_enter 828 * may cause other faults. We don't put the 829 * page back on the active queue until later so 830 * that the page-out daemon won't find us (yet). 831 */ 832 833 pmap_enter(map->pmap, vaddr, VM_PAGE_TO_PHYS(m), 834 prot & ~(m->page_lock), wired); 835 836 /* 837 * If the page is not wired down, then put it where the 838 * pageout daemon can find it. 839 */ 840 vm_object_lock(object); 841 vm_page_lock_queues(); 842 if (change_wiring) { 843 if (wired) 844 vm_page_wire(m); 845 else 846 vm_page_unwire(m); 847 } 848 else 849 vm_page_activate(m); 850 vm_page_unlock_queues(); 851 852 /* 853 * Unlock everything, and return 854 */ 855 856 PAGE_WAKEUP(m); 857 UNLOCK_AND_DEALLOCATE; 858 859 return(KERN_SUCCESS); 860 861 } 862 863 /* 864 * vm_fault_wire: 865 * 866 * Wire down a range of virtual addresses in a map. 867 */ 868 void vm_fault_wire(map, start, end) 869 vm_map_t map; 870 vm_offset_t start, end; 871 { 872 873 register vm_offset_t va; 874 register pmap_t pmap; 875 876 pmap = vm_map_pmap(map); 877 878 /* 879 * Inform the physical mapping system that the 880 * range of addresses may not fault, so that 881 * page tables and such can be locked down as well. 882 */ 883 884 pmap_pageable(pmap, start, end, FALSE); 885 886 /* 887 * We simulate a fault to get the page and enter it 888 * in the physical map. 889 */ 890 891 for (va = start; va < end; va += PAGE_SIZE) { 892 (void) vm_fault(map, va, VM_PROT_NONE, TRUE); 893 } 894 } 895 896 897 /* 898 * vm_fault_unwire: 899 * 900 * Unwire a range of virtual addresses in a map. 901 */ 902 void vm_fault_unwire(map, start, end) 903 vm_map_t map; 904 vm_offset_t start, end; 905 { 906 907 register vm_offset_t va, pa; 908 register pmap_t pmap; 909 910 pmap = vm_map_pmap(map); 911 912 /* 913 * Since the pages are wired down, we must be able to 914 * get their mappings from the physical map system. 915 */ 916 917 vm_page_lock_queues(); 918 919 for (va = start; va < end; va += PAGE_SIZE) { 920 pa = pmap_extract(pmap, va); 921 if (pa == (vm_offset_t) 0) { 922 panic("unwire: page not in pmap"); 923 } 924 pmap_change_wiring(pmap, va, FALSE); 925 vm_page_unwire(PHYS_TO_VM_PAGE(pa)); 926 } 927 vm_page_unlock_queues(); 928 929 /* 930 * Inform the physical mapping system that the range 931 * of addresses may fault, so that page tables and 932 * such may be unwired themselves. 933 */ 934 935 pmap_pageable(pmap, start, end, TRUE); 936 937 } 938 939 /* 940 * Routine: 941 * vm_fault_copy_entry 942 * Function: 943 * Copy all of the pages from a wired-down map entry to another. 944 * 945 * In/out conditions: 946 * The source and destination maps must be locked for write. 947 * The source map entry must be wired down (or be a sharing map 948 * entry corresponding to a main map entry that is wired down). 949 */ 950 951 void vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry) 952 vm_map_t dst_map; 953 vm_map_t src_map; 954 vm_map_entry_t dst_entry; 955 vm_map_entry_t src_entry; 956 { 957 958 vm_object_t dst_object; 959 vm_object_t src_object; 960 vm_offset_t dst_offset; 961 vm_offset_t src_offset; 962 vm_prot_t prot; 963 vm_offset_t vaddr; 964 vm_page_t dst_m; 965 vm_page_t src_m; 966 967 #ifdef lint 968 src_map++; 969 #endif lint 970 971 src_object = src_entry->object.vm_object; 972 src_offset = src_entry->offset; 973 974 /* 975 * Create the top-level object for the destination entry. 976 * (Doesn't actually shadow anything - we copy the pages 977 * directly.) 978 */ 979 dst_object = vm_object_allocate( 980 (vm_size_t) (dst_entry->end - dst_entry->start)); 981 982 dst_entry->object.vm_object = dst_object; 983 dst_entry->offset = 0; 984 985 prot = dst_entry->max_protection; 986 987 /* 988 * Loop through all of the pages in the entry's range, copying 989 * each one from the source object (it should be there) to the 990 * destination object. 991 */ 992 for (vaddr = dst_entry->start, dst_offset = 0; 993 vaddr < dst_entry->end; 994 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 995 996 /* 997 * Allocate a page in the destination object 998 */ 999 vm_object_lock(dst_object); 1000 do { 1001 dst_m = vm_page_alloc(dst_object, dst_offset); 1002 if (dst_m == NULL) { 1003 vm_object_unlock(dst_object); 1004 VM_WAIT; 1005 vm_object_lock(dst_object); 1006 } 1007 } while (dst_m == NULL); 1008 1009 /* 1010 * Find the page in the source object, and copy it in. 1011 * (Because the source is wired down, the page will be 1012 * in memory.) 1013 */ 1014 vm_object_lock(src_object); 1015 src_m = vm_page_lookup(src_object, dst_offset + src_offset); 1016 if (src_m == NULL) 1017 panic("vm_fault_copy_wired: page missing"); 1018 1019 vm_page_copy(src_m, dst_m); 1020 1021 /* 1022 * Enter it in the pmap... 1023 */ 1024 vm_object_unlock(src_object); 1025 vm_object_unlock(dst_object); 1026 1027 pmap_enter(dst_map->pmap, vaddr, VM_PAGE_TO_PHYS(dst_m), 1028 prot, FALSE); 1029 1030 /* 1031 * Mark it no longer busy, and put it on the active list. 1032 */ 1033 vm_object_lock(dst_object); 1034 vm_page_lock_queues(); 1035 vm_page_activate(dst_m); 1036 vm_page_unlock_queues(); 1037 PAGE_WAKEUP(dst_m); 1038 vm_object_unlock(dst_object); 1039 } 1040 1041 } 1042