1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * %sccs.include.redist.c% 9 * 10 * @(#)vm_glue.c 8.1 (Berkeley) 07/15/93 11 * 12 * 13 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 14 * All rights reserved. 15 * 16 * Permission to use, copy, modify and distribute this software and 17 * its documentation is hereby granted, provided that both the copyright 18 * notice and this permission notice appear in all copies of the 19 * software, derivative works or modified versions, and any portions 20 * thereof, and that both notices appear in supporting documentation. 21 * 22 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 23 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 24 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 25 * 26 * Carnegie Mellon requests users of this software to return to 27 * 28 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 29 * School of Computer Science 30 * Carnegie Mellon University 31 * Pittsburgh PA 15213-3890 32 * 33 * any improvements or extensions that they make and grant Carnegie the 34 * rights to redistribute these changes. 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/proc.h> 40 #include <sys/resourcevar.h> 41 #include <sys/buf.h> 42 #include <sys/user.h> 43 44 #include <vm/vm.h> 45 #include <vm/vm_page.h> 46 #include <vm/vm_kern.h> 47 48 int avefree = 0; /* XXX */ 49 unsigned maxdmap = MAXDSIZ; /* XXX */ 50 int readbuffers = 0; /* XXX allow kgdb to read kernel buffer pool */ 51 52 int 53 kernacc(addr, len, rw) 54 caddr_t addr; 55 int len, rw; 56 { 57 boolean_t rv; 58 vm_offset_t saddr, eaddr; 59 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE; 60 61 saddr = trunc_page(addr); 62 eaddr = round_page(addr+len); 63 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot); 64 /* 65 * XXX there are still some things (e.g. the buffer cache) that 66 * are managed behind the VM system's back so even though an 67 * address is accessible in the mind of the VM system, there may 68 * not be physical pages where the VM thinks there is. This can 69 * lead to bogus allocation of pages in the kernel address space 70 * or worse, inconsistencies at the pmap level. We only worry 71 * about the buffer cache for now. 72 */ 73 if (!readbuffers && rv && (eaddr > (vm_offset_t)buffers && 74 saddr < (vm_offset_t)buffers + MAXBSIZE * nbuf)) 75 rv = FALSE; 76 return(rv == TRUE); 77 } 78 79 int 80 useracc(addr, len, rw) 81 caddr_t addr; 82 int len, rw; 83 { 84 boolean_t rv; 85 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE; 86 87 rv = vm_map_check_protection(&curproc->p_vmspace->vm_map, 88 trunc_page(addr), round_page(addr+len), prot); 89 return(rv == TRUE); 90 } 91 92 #ifdef KGDB 93 /* 94 * Change protections on kernel pages from addr to addr+len 95 * (presumably so debugger can plant a breakpoint). 96 * 97 * We force the protection change at the pmap level. If we were 98 * to use vm_map_protect a change to allow writing would be lazily- 99 * applied meaning we would still take a protection fault, something 100 * we really don't want to do. It would also fragment the kernel 101 * map unnecessarily. We cannot use pmap_protect since it also won't 102 * enforce a write-enable request. Using pmap_enter is the only way 103 * we can ensure the change takes place properly. 104 */ 105 void 106 chgkprot(addr, len, rw) 107 register caddr_t addr; 108 int len, rw; 109 { 110 vm_prot_t prot; 111 vm_offset_t pa, sva, eva; 112 113 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE; 114 eva = round_page(addr + len); 115 for (sva = trunc_page(addr); sva < eva; sva += PAGE_SIZE) { 116 /* 117 * Extract physical address for the page. 118 * We use a cheezy hack to differentiate physical 119 * page 0 from an invalid mapping, not that it 120 * really matters... 121 */ 122 pa = pmap_extract(kernel_pmap, sva|1); 123 if (pa == 0) 124 panic("chgkprot: invalid page"); 125 pmap_enter(kernel_pmap, sva, pa&~1, prot, TRUE); 126 } 127 } 128 #endif 129 130 void 131 vslock(addr, len) 132 caddr_t addr; 133 u_int len; 134 { 135 vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr), 136 round_page(addr+len), FALSE); 137 } 138 139 void 140 vsunlock(addr, len, dirtied) 141 caddr_t addr; 142 u_int len; 143 int dirtied; 144 { 145 #ifdef lint 146 dirtied++; 147 #endif 148 vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr), 149 round_page(addr+len), TRUE); 150 } 151 152 /* 153 * Implement fork's actions on an address space. 154 * Here we arrange for the address space to be copied or referenced, 155 * allocate a user struct (pcb and kernel stack), then call the 156 * machine-dependent layer to fill those in and make the new process 157 * ready to run. 158 * NOTE: the kernel stack may be at a different location in the child 159 * process, and thus addresses of automatic variables may be invalid 160 * after cpu_fork returns in the child process. We do nothing here 161 * after cpu_fork returns. 162 */ 163 int 164 vm_fork(p1, p2, isvfork) 165 register struct proc *p1, *p2; 166 int isvfork; 167 { 168 register struct user *up; 169 vm_offset_t addr; 170 171 #ifdef i386 172 /* 173 * avoid copying any of the parent's pagetables or other per-process 174 * objects that reside in the map by marking all of them non-inheritable 175 */ 176 (void)vm_map_inherit(&p1->p_vmspace->vm_map, 177 UPT_MIN_ADDRESS-UPAGES*NBPG, VM_MAX_ADDRESS, VM_INHERIT_NONE); 178 #endif 179 p2->p_vmspace = vmspace_fork(p1->p_vmspace); 180 181 #ifdef SYSVSHM 182 if (p1->p_vmspace->vm_shm) 183 shmfork(p1, p2, isvfork); 184 #endif 185 186 #ifndef i386 187 /* 188 * Allocate a wired-down (for now) pcb and kernel stack for the process 189 */ 190 addr = kmem_alloc_pageable(kernel_map, ctob(UPAGES)); 191 if (addr == 0) 192 panic("vm_fork: no more kernel virtual memory"); 193 vm_map_pageable(kernel_map, addr, addr + ctob(UPAGES), FALSE); 194 #else 195 /* XXX somehow, on 386, ocassionally pageout removes active, wired down kstack, 196 and pagetables, WITHOUT going thru vm_page_unwire! Why this appears to work is 197 not yet clear, yet it does... */ 198 addr = kmem_alloc(kernel_map, ctob(UPAGES)); 199 if (addr == 0) 200 panic("vm_fork: no more kernel virtual memory"); 201 #endif 202 up = (struct user *)addr; 203 p2->p_addr = up; 204 205 /* 206 * p_stats and p_sigacts currently point at fields 207 * in the user struct but not at &u, instead at p_addr. 208 * Copy p_sigacts and parts of p_stats; zero the rest 209 * of p_stats (statistics). 210 */ 211 p2->p_stats = &up->u_stats; 212 p2->p_sigacts = &up->u_sigacts; 213 up->u_sigacts = *p1->p_sigacts; 214 bzero(&up->u_stats.pstat_startzero, 215 (unsigned) ((caddr_t)&up->u_stats.pstat_endzero - 216 (caddr_t)&up->u_stats.pstat_startzero)); 217 bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy, 218 ((caddr_t)&up->u_stats.pstat_endcopy - 219 (caddr_t)&up->u_stats.pstat_startcopy)); 220 221 #ifdef i386 222 { u_int addr = UPT_MIN_ADDRESS - UPAGES*NBPG; struct vm_map *vp; 223 224 vp = &p2->p_vmspace->vm_map; 225 (void)vm_deallocate(vp, addr, UPT_MAX_ADDRESS - addr); 226 (void)vm_allocate(vp, &addr, UPT_MAX_ADDRESS - addr, FALSE); 227 (void)vm_map_inherit(vp, addr, UPT_MAX_ADDRESS, VM_INHERIT_NONE); 228 } 229 #endif 230 /* 231 * cpu_fork will copy and update the kernel stack and pcb, 232 * and make the child ready to run. It marks the child 233 * so that it can return differently than the parent. 234 * It returns twice, once in the parent process and 235 * once in the child. 236 */ 237 return (cpu_fork(p1, p2)); 238 } 239 240 /* 241 * Set default limits for VM system. 242 * Called for proc 0, and then inherited by all others. 243 */ 244 void 245 vm_init_limits(p) 246 register struct proc *p; 247 { 248 249 /* 250 * Set up the initial limits on process VM. 251 * Set the maximum resident set size to be all 252 * of (reasonably) available memory. This causes 253 * any single, large process to start random page 254 * replacement once it fills memory. 255 */ 256 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ; 257 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ; 258 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ; 259 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ; 260 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(cnt.v_free_count); 261 } 262 263 #include <vm/vm_pageout.h> 264 265 #ifdef DEBUG 266 int enableswap = 1; 267 int swapdebug = 0; 268 #define SDB_FOLLOW 1 269 #define SDB_SWAPIN 2 270 #define SDB_SWAPOUT 4 271 #endif 272 273 /* 274 * Brutally simple: 275 * 1. Attempt to swapin every swaped-out, runnable process in 276 * order of priority. 277 * 2. If not enough memory, wake the pageout daemon and let it 278 * clear some space. 279 */ 280 void 281 sched() 282 { 283 register struct proc *p; 284 register int pri; 285 struct proc *pp; 286 int ppri; 287 vm_offset_t addr; 288 vm_size_t size; 289 290 loop: 291 #ifdef DEBUG 292 while (!enableswap) 293 sleep((caddr_t)&proc0, PVM); 294 #endif 295 pp = NULL; 296 ppri = INT_MIN; 297 for (p = (struct proc *)allproc; p != NULL; p = p->p_nxt) { 298 if (p->p_stat == SRUN && (p->p_flag & SLOAD) == 0) { 299 pri = p->p_time + p->p_slptime - p->p_nice * 8; 300 if (pri > ppri) { 301 pp = p; 302 ppri = pri; 303 } 304 } 305 } 306 #ifdef DEBUG 307 if (swapdebug & SDB_FOLLOW) 308 printf("sched: running, procp %x pri %d\n", pp, ppri); 309 #endif 310 /* 311 * Nothing to do, back to sleep 312 */ 313 if ((p = pp) == NULL) { 314 sleep((caddr_t)&proc0, PVM); 315 goto loop; 316 } 317 318 /* 319 * We would like to bring someone in. 320 * This part is really bogus cuz we could deadlock on memory 321 * despite our feeble check. 322 */ 323 size = round_page(ctob(UPAGES)); 324 addr = (vm_offset_t) p->p_addr; 325 if (cnt.v_free_count > atop(size)) { 326 #ifdef DEBUG 327 if (swapdebug & SDB_SWAPIN) 328 printf("swapin: pid %d(%s)@%x, pri %d free %d\n", 329 p->p_pid, p->p_comm, p->p_addr, 330 ppri, cnt.v_free_count); 331 #endif 332 vm_map_pageable(kernel_map, addr, addr+size, FALSE); 333 (void) splstatclock(); 334 if (p->p_stat == SRUN) 335 setrq(p); 336 p->p_flag |= SLOAD; 337 (void) spl0(); 338 p->p_time = 0; 339 goto loop; 340 } 341 /* 342 * Not enough memory, jab the pageout daemon and wait til the 343 * coast is clear. 344 */ 345 #ifdef DEBUG 346 if (swapdebug & SDB_FOLLOW) 347 printf("sched: no room for pid %d(%s), free %d\n", 348 p->p_pid, p->p_comm, cnt.v_free_count); 349 #endif 350 (void) splhigh(); 351 VM_WAIT; 352 (void) spl0(); 353 #ifdef DEBUG 354 if (swapdebug & SDB_FOLLOW) 355 printf("sched: room again, free %d\n", cnt.v_free_count); 356 #endif 357 goto loop; 358 } 359 360 #define swappable(p) \ 361 (((p)->p_flag & (SSYS|SLOAD|SKEEP|SWEXIT|SPHYSIO)) == SLOAD) 362 363 /* 364 * Swapout is driven by the pageout daemon. Very simple, we find eligible 365 * procs and unwire their u-areas. We try to always "swap" at least one 366 * process in case we need the room for a swapin. 367 * If any procs have been sleeping/stopped for at least maxslp seconds, 368 * they are swapped. Else, we swap the longest-sleeping or stopped process, 369 * if any, otherwise the longest-resident process. 370 */ 371 void 372 swapout_threads() 373 { 374 register struct proc *p; 375 struct proc *outp, *outp2; 376 int outpri, outpri2; 377 int didswap = 0; 378 extern int maxslp; 379 380 #ifdef DEBUG 381 if (!enableswap) 382 return; 383 #endif 384 outp = outp2 = NULL; 385 outpri = outpri2 = 0; 386 for (p = (struct proc *)allproc; p != NULL; p = p->p_nxt) { 387 if (!swappable(p)) 388 continue; 389 switch (p->p_stat) { 390 case SRUN: 391 if (p->p_time > outpri2) { 392 outp2 = p; 393 outpri2 = p->p_time; 394 } 395 continue; 396 397 case SSLEEP: 398 case SSTOP: 399 if (p->p_slptime >= maxslp) { 400 swapout(p); 401 didswap++; 402 } else if (p->p_slptime > outpri) { 403 outp = p; 404 outpri = p->p_slptime; 405 } 406 continue; 407 } 408 } 409 /* 410 * If we didn't get rid of any real duds, toss out the next most 411 * likely sleeping/stopped or running candidate. We only do this 412 * if we are real low on memory since we don't gain much by doing 413 * it (UPAGES pages). 414 */ 415 if (didswap == 0 && 416 cnt.v_free_count <= atop(round_page(ctob(UPAGES)))) { 417 if ((p = outp) == 0) 418 p = outp2; 419 #ifdef DEBUG 420 if (swapdebug & SDB_SWAPOUT) 421 printf("swapout_threads: no duds, try procp %x\n", p); 422 #endif 423 if (p) 424 swapout(p); 425 } 426 } 427 428 void 429 swapout(p) 430 register struct proc *p; 431 { 432 vm_offset_t addr; 433 vm_size_t size; 434 435 #ifdef DEBUG 436 if (swapdebug & SDB_SWAPOUT) 437 printf("swapout: pid %d(%s)@%x, stat %x pri %d free %d\n", 438 p->p_pid, p->p_comm, p->p_addr, p->p_stat, 439 p->p_slptime, cnt.v_free_count); 440 #endif 441 size = round_page(ctob(UPAGES)); 442 addr = (vm_offset_t) p->p_addr; 443 #if defined(hp300) || defined(luna68k) 444 /* 445 * Ugh! u-area is double mapped to a fixed address behind the 446 * back of the VM system and accesses are usually through that 447 * address rather than the per-process address. Hence reference 448 * and modify information are recorded at the fixed address and 449 * lost at context switch time. We assume the u-struct and 450 * kernel stack are always accessed/modified and force it to be so. 451 */ 452 { 453 register int i; 454 volatile long tmp; 455 456 for (i = 0; i < UPAGES; i++) { 457 tmp = *(long *)addr; *(long *)addr = tmp; 458 addr += NBPG; 459 } 460 addr = (vm_offset_t) p->p_addr; 461 } 462 #endif 463 #ifdef mips 464 /* 465 * Be sure to save the floating point coprocessor state before 466 * paging out the u-struct. 467 */ 468 { 469 extern struct proc *machFPCurProcPtr; 470 471 if (p == machFPCurProcPtr) { 472 MachSaveCurFPState(p); 473 machFPCurProcPtr = (struct proc *)0; 474 } 475 } 476 #endif 477 #ifndef i386 /* temporary measure till we find spontaineous unwire of kstack */ 478 vm_map_pageable(kernel_map, addr, addr+size, TRUE); 479 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map)); 480 #endif 481 (void) splhigh(); 482 p->p_flag &= ~SLOAD; 483 if (p->p_stat == SRUN) 484 remrq(p); 485 (void) spl0(); 486 p->p_time = 0; 487 } 488 489 /* 490 * The rest of these routines fake thread handling 491 */ 492 493 void 494 assert_wait(event, ruptible) 495 int event; 496 boolean_t ruptible; 497 { 498 #ifdef lint 499 ruptible++; 500 #endif 501 curproc->p_thread = event; 502 } 503 504 void 505 thread_block() 506 { 507 int s = splhigh(); 508 509 if (curproc->p_thread) 510 sleep((caddr_t)curproc->p_thread, PVM); 511 splx(s); 512 } 513 514 void 515 thread_sleep(event, lock, ruptible) 516 int event; 517 simple_lock_t lock; 518 boolean_t ruptible; 519 { 520 #ifdef lint 521 ruptible++; 522 #endif 523 int s = splhigh(); 524 525 curproc->p_thread = event; 526 simple_unlock(lock); 527 if (curproc->p_thread) 528 sleep((caddr_t)event, PVM); 529 splx(s); 530 } 531 532 void 533 thread_wakeup(event) 534 int event; 535 { 536 int s = splhigh(); 537 538 wakeup((caddr_t)event); 539 splx(s); 540 } 541 542 /* 543 * DEBUG stuff 544 */ 545 546 int indent = 0; 547 548 #include <machine/stdarg.h> /* see subr_prf.c */ 549 550 /*ARGSUSED2*/ 551 void 552 #if __STDC__ 553 iprintf(const char *fmt, ...) 554 #else 555 iprintf(fmt /* , va_alist */) 556 char *fmt; 557 /* va_dcl */ 558 #endif 559 { 560 register int i; 561 va_list ap; 562 563 for (i = indent; i >= 8; i -= 8) 564 printf("\t"); 565 while (--i >= 0) 566 printf(" "); 567 va_start(ap, fmt); 568 printf("%r", fmt, ap); 569 va_end(ap); 570 } 571