xref: /qemu/hw/mem/memory-device.c (revision 26b1d1fd)
1 /*
2  * Memory Device Interface
3  *
4  * Copyright ProfitBricks GmbH 2012
5  * Copyright (C) 2014 Red Hat Inc
6  * Copyright (c) 2018 Red Hat Inc
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "hw/mem/memory-device.h"
14 #include "hw/qdev.h"
15 #include "qapi/error.h"
16 #include "hw/boards.h"
17 #include "qemu/range.h"
18 #include "hw/virtio/vhost.h"
19 #include "sysemu/kvm.h"
20 
21 static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
22 {
23     const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
24     const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
25     const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
26     const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
27     const uint64_t addr_a = mdc_a->get_addr(md_a);
28     const uint64_t addr_b = mdc_b->get_addr(md_b);
29 
30     if (addr_a > addr_b) {
31         return 1;
32     } else if (addr_a < addr_b) {
33         return -1;
34     }
35     return 0;
36 }
37 
38 static int memory_device_build_list(Object *obj, void *opaque)
39 {
40     GSList **list = opaque;
41 
42     if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
43         DeviceState *dev = DEVICE(obj);
44         if (dev->realized) { /* only realized memory devices matter */
45             *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
46         }
47     }
48 
49     object_child_foreach(obj, memory_device_build_list, opaque);
50     return 0;
51 }
52 
53 static int memory_device_used_region_size(Object *obj, void *opaque)
54 {
55     uint64_t *size = opaque;
56 
57     if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
58         const DeviceState *dev = DEVICE(obj);
59         const MemoryDeviceState *md = MEMORY_DEVICE(obj);
60         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
61 
62         if (dev->realized) {
63             *size += mdc->get_region_size(md);
64         }
65     }
66 
67     object_child_foreach(obj, memory_device_used_region_size, opaque);
68     return 0;
69 }
70 
71 static void memory_device_check_addable(MachineState *ms, uint64_t size,
72                                         Error **errp)
73 {
74     uint64_t used_region_size = 0;
75 
76     /* we will need a new memory slot for kvm and vhost */
77     if (kvm_enabled() && !kvm_has_free_slot(ms)) {
78         error_setg(errp, "hypervisor has no free memory slots left");
79         return;
80     }
81     if (!vhost_has_free_slot()) {
82         error_setg(errp, "a used vhost backend has no free memory slots left");
83         return;
84     }
85 
86     /* will we exceed the total amount of memory specified */
87     memory_device_used_region_size(OBJECT(ms), &used_region_size);
88     if (used_region_size + size > ms->maxram_size - ms->ram_size) {
89         error_setg(errp, "not enough space, currently 0x%" PRIx64
90                    " in use of total space for memory devices 0x" RAM_ADDR_FMT,
91                    used_region_size, ms->maxram_size - ms->ram_size);
92         return;
93     }
94 
95 }
96 
97 uint64_t memory_device_get_free_addr(MachineState *ms, const uint64_t *hint,
98                                      uint64_t align, uint64_t size,
99                                      Error **errp)
100 {
101     uint64_t address_space_start, address_space_end;
102     GSList *list = NULL, *item;
103     uint64_t new_addr = 0;
104 
105     if (!ms->device_memory) {
106         error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
107                          "supported by the machine");
108         return 0;
109     }
110 
111     if (!memory_region_size(&ms->device_memory->mr)) {
112         error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
113                          "enabled, please specify the maxmem option");
114         return 0;
115     }
116     address_space_start = ms->device_memory->base;
117     address_space_end = address_space_start +
118                         memory_region_size(&ms->device_memory->mr);
119     g_assert(address_space_end >= address_space_start);
120 
121     /* address_space_start indicates the maximum alignment we expect */
122     if (QEMU_ALIGN_UP(address_space_start, align) != address_space_start) {
123         error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported",
124                    align);
125         return 0;
126     }
127 
128     memory_device_check_addable(ms, size, errp);
129     if (*errp) {
130         return 0;
131     }
132 
133     if (hint && QEMU_ALIGN_UP(*hint, align) != *hint) {
134         error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
135                    align);
136         return 0;
137     }
138 
139     if (QEMU_ALIGN_UP(size, align) != size) {
140         error_setg(errp, "backend memory size must be multiple of 0x%"
141                    PRIx64, align);
142         return 0;
143     }
144 
145     if (hint) {
146         new_addr = *hint;
147         if (new_addr < address_space_start) {
148             error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
149                        "] before 0x%" PRIx64, new_addr, size,
150                        address_space_start);
151             return 0;
152         } else if ((new_addr + size) > address_space_end) {
153             error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
154                        "] beyond 0x%" PRIx64, new_addr, size,
155                        address_space_end);
156             return 0;
157         }
158     } else {
159         new_addr = address_space_start;
160     }
161 
162     /* find address range that will fit new memory device */
163     object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
164     for (item = list; item; item = g_slist_next(item)) {
165         const MemoryDeviceState *md = item->data;
166         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
167         uint64_t md_size, md_addr;
168 
169         md_addr = mdc->get_addr(md);
170         md_size = mdc->get_region_size(md);
171         if (*errp) {
172             goto out;
173         }
174 
175         if (ranges_overlap(md_addr, md_size, new_addr, size)) {
176             if (hint) {
177                 const DeviceState *d = DEVICE(md);
178                 error_setg(errp, "address range conflicts with memory device"
179                            " id='%s'", d->id ? d->id : "(unnamed)");
180                 goto out;
181             }
182             new_addr = QEMU_ALIGN_UP(md_addr + md_size, align);
183         }
184     }
185 
186     if (new_addr + size > address_space_end) {
187         error_setg(errp, "could not find position in guest address space for "
188                    "memory device - memory fragmented due to alignments");
189         goto out;
190     }
191 out:
192     g_slist_free(list);
193     return new_addr;
194 }
195 
196 MemoryDeviceInfoList *qmp_memory_device_list(void)
197 {
198     GSList *devices = NULL, *item;
199     MemoryDeviceInfoList *list = NULL, *prev = NULL;
200 
201     object_child_foreach(qdev_get_machine(), memory_device_build_list,
202                          &devices);
203 
204     for (item = devices; item; item = g_slist_next(item)) {
205         const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
206         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
207         MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
208         MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
209 
210         mdc->fill_device_info(md, info);
211 
212         elem->value = info;
213         elem->next = NULL;
214         if (prev) {
215             prev->next = elem;
216         } else {
217             list = elem;
218         }
219         prev = elem;
220     }
221 
222     g_slist_free(devices);
223 
224     return list;
225 }
226 
227 static int memory_device_plugged_size(Object *obj, void *opaque)
228 {
229     uint64_t *size = opaque;
230 
231     if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
232         const DeviceState *dev = DEVICE(obj);
233         const MemoryDeviceState *md = MEMORY_DEVICE(obj);
234         const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
235 
236         if (dev->realized) {
237             *size += mdc->get_plugged_size(md);
238         }
239     }
240 
241     object_child_foreach(obj, memory_device_plugged_size, opaque);
242     return 0;
243 }
244 
245 uint64_t get_plugged_memory_size(void)
246 {
247     uint64_t size = 0;
248 
249     memory_device_plugged_size(qdev_get_machine(), &size);
250 
251     return size;
252 }
253 
254 void memory_device_plug_region(MachineState *ms, MemoryRegion *mr,
255                                uint64_t addr)
256 {
257     /* we expect a previous call to memory_device_get_free_addr() */
258     g_assert(ms->device_memory);
259 
260     memory_region_add_subregion(&ms->device_memory->mr,
261                                 addr - ms->device_memory->base, mr);
262 }
263 
264 void memory_device_unplug_region(MachineState *ms, MemoryRegion *mr)
265 {
266     /* we expect a previous call to memory_device_get_free_addr() */
267     g_assert(ms->device_memory);
268 
269     memory_region_del_subregion(&ms->device_memory->mr, mr);
270 }
271 
272 static const TypeInfo memory_device_info = {
273     .name          = TYPE_MEMORY_DEVICE,
274     .parent        = TYPE_INTERFACE,
275     .class_size = sizeof(MemoryDeviceClass),
276 };
277 
278 static void memory_device_register_types(void)
279 {
280     type_register_static(&memory_device_info);
281 }
282 
283 type_init(memory_device_register_types)
284