1 /* 2 * QEMU Plugin API 3 * 4 * This provides the API that is available to the plugins to interact 5 * with QEMU. We have to be careful not to expose internal details of 6 * how QEMU works so we abstract out things like translation and 7 * instructions to anonymous data types: 8 * 9 * qemu_plugin_tb 10 * qemu_plugin_insn 11 * qemu_plugin_register 12 * 13 * Which can then be passed back into the API to do additional things. 14 * As such all the public functions in here are exported in 15 * qemu-plugin.h. 16 * 17 * The general life-cycle of a plugin is: 18 * 19 * - plugin is loaded, public qemu_plugin_install called 20 * - the install func registers callbacks for events 21 * - usually an atexit_cb is registered to dump info at the end 22 * - when a registered event occurs the plugin is called 23 * - some events pass additional info 24 * - during translation the plugin can decide to instrument any 25 * instruction 26 * - when QEMU exits all the registered atexit callbacks are called 27 * 28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> 29 * Copyright (C) 2019, Linaro 30 * 31 * License: GNU GPL, version 2 or later. 32 * See the COPYING file in the top-level directory. 33 * 34 * SPDX-License-Identifier: GPL-2.0-or-later 35 * 36 */ 37 38 #include "qemu/osdep.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/plugin.h" 41 #include "qemu/log.h" 42 #include "tcg/tcg.h" 43 #include "exec/exec-all.h" 44 #include "exec/gdbstub.h" 45 #include "exec/ram_addr.h" 46 #include "disas/disas.h" 47 #include "plugin.h" 48 #ifndef CONFIG_USER_ONLY 49 #include "qemu/plugin-memory.h" 50 #include "hw/boards.h" 51 #else 52 #include "qemu.h" 53 #ifdef CONFIG_LINUX 54 #include "loader.h" 55 #endif 56 #endif 57 58 /* Uninstall and Reset handlers */ 59 60 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 61 { 62 plugin_reset_uninstall(id, cb, false); 63 } 64 65 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) 66 { 67 plugin_reset_uninstall(id, cb, true); 68 } 69 70 /* 71 * Plugin Register Functions 72 * 73 * This allows the plugin to register callbacks for various events 74 * during the translation. 75 */ 76 77 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, 78 qemu_plugin_vcpu_simple_cb_t cb) 79 { 80 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); 81 } 82 83 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, 84 qemu_plugin_vcpu_simple_cb_t cb) 85 { 86 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); 87 } 88 89 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, 90 qemu_plugin_vcpu_udata_cb_t cb, 91 enum qemu_plugin_cb_flags flags, 92 void *udata) 93 { 94 if (!tb->mem_only) { 95 int index = flags == QEMU_PLUGIN_CB_R_REGS || 96 flags == QEMU_PLUGIN_CB_RW_REGS ? 97 PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR; 98 99 plugin_register_dyn_cb__udata(&tb->cbs[index], 100 cb, flags, udata); 101 } 102 } 103 104 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu( 105 struct qemu_plugin_tb *tb, 106 enum qemu_plugin_op op, 107 qemu_plugin_u64 entry, 108 uint64_t imm) 109 { 110 if (!tb->mem_only) { 111 plugin_register_inline_op_on_entry( 112 &tb->cbs[PLUGIN_CB_INLINE], 0, op, entry, imm); 113 } 114 } 115 116 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, 117 qemu_plugin_vcpu_udata_cb_t cb, 118 enum qemu_plugin_cb_flags flags, 119 void *udata) 120 { 121 if (!insn->mem_only) { 122 int index = flags == QEMU_PLUGIN_CB_R_REGS || 123 flags == QEMU_PLUGIN_CB_RW_REGS ? 124 PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR; 125 126 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][index], 127 cb, flags, udata); 128 } 129 } 130 131 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu( 132 struct qemu_plugin_insn *insn, 133 enum qemu_plugin_op op, 134 qemu_plugin_u64 entry, 135 uint64_t imm) 136 { 137 if (!insn->mem_only) { 138 plugin_register_inline_op_on_entry( 139 &insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 0, op, entry, imm); 140 } 141 } 142 143 144 /* 145 * We always plant memory instrumentation because they don't finalise until 146 * after the operation has complete. 147 */ 148 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, 149 qemu_plugin_vcpu_mem_cb_t cb, 150 enum qemu_plugin_cb_flags flags, 151 enum qemu_plugin_mem_rw rw, 152 void *udata) 153 { 154 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], 155 cb, flags, rw, udata); 156 } 157 158 void qemu_plugin_register_vcpu_mem_inline_per_vcpu( 159 struct qemu_plugin_insn *insn, 160 enum qemu_plugin_mem_rw rw, 161 enum qemu_plugin_op op, 162 qemu_plugin_u64 entry, 163 uint64_t imm) 164 { 165 plugin_register_inline_op_on_entry( 166 &insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], rw, op, entry, imm); 167 } 168 169 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, 170 qemu_plugin_vcpu_tb_trans_cb_t cb) 171 { 172 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); 173 } 174 175 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, 176 qemu_plugin_vcpu_syscall_cb_t cb) 177 { 178 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); 179 } 180 181 void 182 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, 183 qemu_plugin_vcpu_syscall_ret_cb_t cb) 184 { 185 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); 186 } 187 188 /* 189 * Plugin Queries 190 * 191 * These are queries that the plugin can make to gauge information 192 * from our opaque data types. We do not want to leak internal details 193 * here just information useful to the plugin. 194 */ 195 196 /* 197 * Translation block information: 198 * 199 * A plugin can query the virtual address of the start of the block 200 * and the number of instructions in it. It can also get access to 201 * each translated instruction. 202 */ 203 204 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) 205 { 206 return tb->n; 207 } 208 209 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) 210 { 211 return tb->vaddr; 212 } 213 214 struct qemu_plugin_insn * 215 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) 216 { 217 struct qemu_plugin_insn *insn; 218 if (unlikely(idx >= tb->n)) { 219 return NULL; 220 } 221 insn = g_ptr_array_index(tb->insns, idx); 222 insn->mem_only = tb->mem_only; 223 return insn; 224 } 225 226 /* 227 * Instruction information 228 * 229 * These queries allow the plugin to retrieve information about each 230 * instruction being translated. 231 */ 232 233 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) 234 { 235 return insn->data->data; 236 } 237 238 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) 239 { 240 return insn->data->len; 241 } 242 243 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) 244 { 245 return insn->vaddr; 246 } 247 248 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) 249 { 250 return insn->haddr; 251 } 252 253 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) 254 { 255 CPUState *cpu = current_cpu; 256 return plugin_disas(cpu, insn->vaddr, insn->data->len); 257 } 258 259 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) 260 { 261 const char *sym = lookup_symbol(insn->vaddr); 262 return sym[0] != 0 ? sym : NULL; 263 } 264 265 /* 266 * The memory queries allow the plugin to query information about a 267 * memory access. 268 */ 269 270 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) 271 { 272 MemOp op = get_memop(info); 273 return op & MO_SIZE; 274 } 275 276 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) 277 { 278 MemOp op = get_memop(info); 279 return op & MO_SIGN; 280 } 281 282 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) 283 { 284 MemOp op = get_memop(info); 285 return (op & MO_BSWAP) == MO_BE; 286 } 287 288 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) 289 { 290 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; 291 } 292 293 /* 294 * Virtual Memory queries 295 */ 296 297 #ifdef CONFIG_SOFTMMU 298 static __thread struct qemu_plugin_hwaddr hwaddr_info; 299 #endif 300 301 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, 302 uint64_t vaddr) 303 { 304 #ifdef CONFIG_SOFTMMU 305 CPUState *cpu = current_cpu; 306 unsigned int mmu_idx = get_mmuidx(info); 307 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); 308 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; 309 310 assert(mmu_idx < NB_MMU_MODES); 311 312 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, 313 hwaddr_info.is_store, &hwaddr_info)) { 314 error_report("invalid use of qemu_plugin_get_hwaddr"); 315 return NULL; 316 } 317 318 return &hwaddr_info; 319 #else 320 return NULL; 321 #endif 322 } 323 324 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) 325 { 326 #ifdef CONFIG_SOFTMMU 327 return haddr->is_io; 328 #else 329 return false; 330 #endif 331 } 332 333 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) 334 { 335 #ifdef CONFIG_SOFTMMU 336 if (haddr) { 337 return haddr->phys_addr; 338 } 339 #endif 340 return 0; 341 } 342 343 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) 344 { 345 #ifdef CONFIG_SOFTMMU 346 if (h && h->is_io) { 347 MemoryRegion *mr = h->mr; 348 if (!mr->name) { 349 unsigned maddr = (uintptr_t)mr; 350 g_autofree char *temp = g_strdup_printf("anon%08x", maddr); 351 return g_intern_string(temp); 352 } else { 353 return g_intern_string(mr->name); 354 } 355 } else { 356 return g_intern_static_string("RAM"); 357 } 358 #else 359 return g_intern_static_string("Invalid"); 360 #endif 361 } 362 363 int qemu_plugin_num_vcpus(void) 364 { 365 return plugin_num_vcpus(); 366 } 367 368 /* 369 * Plugin output 370 */ 371 void qemu_plugin_outs(const char *string) 372 { 373 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); 374 } 375 376 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) 377 { 378 return name && value && qapi_bool_parse(name, value, ret, NULL); 379 } 380 381 /* 382 * Binary path, start and end locations 383 */ 384 const char *qemu_plugin_path_to_binary(void) 385 { 386 char *path = NULL; 387 #ifdef CONFIG_USER_ONLY 388 TaskState *ts = get_task_state(current_cpu); 389 path = g_strdup(ts->bprm->filename); 390 #endif 391 return path; 392 } 393 394 uint64_t qemu_plugin_start_code(void) 395 { 396 uint64_t start = 0; 397 #ifdef CONFIG_USER_ONLY 398 TaskState *ts = get_task_state(current_cpu); 399 start = ts->info->start_code; 400 #endif 401 return start; 402 } 403 404 uint64_t qemu_plugin_end_code(void) 405 { 406 uint64_t end = 0; 407 #ifdef CONFIG_USER_ONLY 408 TaskState *ts = get_task_state(current_cpu); 409 end = ts->info->end_code; 410 #endif 411 return end; 412 } 413 414 uint64_t qemu_plugin_entry_code(void) 415 { 416 uint64_t entry = 0; 417 #ifdef CONFIG_USER_ONLY 418 TaskState *ts = get_task_state(current_cpu); 419 entry = ts->info->entry; 420 #endif 421 return entry; 422 } 423 424 /* 425 * Create register handles. 426 * 427 * We need to create a handle for each register so the plugin 428 * infrastructure can call gdbstub to read a register. They are 429 * currently just a pointer encapsulation of the gdb_reg but in 430 * future may hold internal plugin state so its important plugin 431 * authors are not tempted to treat them as numbers. 432 * 433 * We also construct a result array with those handles and some 434 * ancillary data the plugin might find useful. 435 */ 436 437 static GArray *create_register_handles(GArray *gdbstub_regs) 438 { 439 GArray *find_data = g_array_new(true, true, 440 sizeof(qemu_plugin_reg_descriptor)); 441 442 for (int i = 0; i < gdbstub_regs->len; i++) { 443 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i); 444 qemu_plugin_reg_descriptor desc; 445 446 /* skip "un-named" regs */ 447 if (!grd->name) { 448 continue; 449 } 450 451 /* Create a record for the plugin */ 452 desc.handle = GINT_TO_POINTER(grd->gdb_reg); 453 desc.name = g_intern_string(grd->name); 454 desc.feature = g_intern_string(grd->feature_name); 455 g_array_append_val(find_data, desc); 456 } 457 458 return find_data; 459 } 460 461 GArray *qemu_plugin_get_registers(void) 462 { 463 g_assert(current_cpu); 464 465 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu); 466 return create_register_handles(regs); 467 } 468 469 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf) 470 { 471 g_assert(current_cpu); 472 473 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg)); 474 } 475 476 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size) 477 { 478 return plugin_scoreboard_new(element_size); 479 } 480 481 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score) 482 { 483 plugin_scoreboard_free(score); 484 } 485 486 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score, 487 unsigned int vcpu_index) 488 { 489 g_assert(vcpu_index < qemu_plugin_num_vcpus()); 490 /* we can't use g_array_index since entry size is not statically known */ 491 char *base_ptr = score->data->data; 492 return base_ptr + vcpu_index * g_array_get_element_size(score->data); 493 } 494 495 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry, 496 unsigned int vcpu_index) 497 { 498 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index); 499 return (uint64_t *)(ptr + entry.offset); 500 } 501 502 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index, 503 uint64_t added) 504 { 505 *plugin_u64_address(entry, vcpu_index) += added; 506 } 507 508 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry, 509 unsigned int vcpu_index) 510 { 511 return *plugin_u64_address(entry, vcpu_index); 512 } 513 514 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index, 515 uint64_t val) 516 { 517 *plugin_u64_address(entry, vcpu_index) = val; 518 } 519 520 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry) 521 { 522 uint64_t total = 0; 523 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) { 524 total += qemu_plugin_u64_get(entry, i); 525 } 526 return total; 527 } 528