xref: /qemu/plugins/api.c (revision d84ed5d2)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *  qemu_plugin_register
12  *
13  * Which can then be passed back into the API to do additional things.
14  * As such all the public functions in here are exported in
15  * qemu-plugin.h.
16  *
17  * The general life-cycle of a plugin is:
18  *
19  *  - plugin is loaded, public qemu_plugin_install called
20  *    - the install func registers callbacks for events
21  *    - usually an atexit_cb is registered to dump info at the end
22  *  - when a registered event occurs the plugin is called
23  *     - some events pass additional info
24  *     - during translation the plugin can decide to instrument any
25  *       instruction
26  *  - when QEMU exits all the registered atexit callbacks are called
27  *
28  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29  * Copyright (C) 2019, Linaro
30  *
31  * License: GNU GPL, version 2 or later.
32  *   See the COPYING file in the top-level directory.
33  *
34  * SPDX-License-Identifier: GPL-2.0-or-later
35  *
36  */
37 
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "qemu/timer.h"
43 #include "tcg/tcg.h"
44 #include "exec/exec-all.h"
45 #include "exec/gdbstub.h"
46 #include "exec/translator.h"
47 #include "disas/disas.h"
48 #include "plugin.h"
49 #ifndef CONFIG_USER_ONLY
50 #include "qapi/error.h"
51 #include "migration/blocker.h"
52 #include "exec/ram_addr.h"
53 #include "qemu/plugin-memory.h"
54 #include "hw/boards.h"
55 #else
56 #include "qemu.h"
57 #ifdef CONFIG_LINUX
58 #include "loader.h"
59 #endif
60 #endif
61 
62 /* Uninstall and Reset handlers */
63 
64 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
65 {
66     plugin_reset_uninstall(id, cb, false);
67 }
68 
69 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
70 {
71     plugin_reset_uninstall(id, cb, true);
72 }
73 
74 /*
75  * Plugin Register Functions
76  *
77  * This allows the plugin to register callbacks for various events
78  * during the translation.
79  */
80 
81 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
82                                        qemu_plugin_vcpu_simple_cb_t cb)
83 {
84     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
85 }
86 
87 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
88                                        qemu_plugin_vcpu_simple_cb_t cb)
89 {
90     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
91 }
92 
93 static bool tb_is_mem_only(void)
94 {
95     return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
96 }
97 
98 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
99                                           qemu_plugin_vcpu_udata_cb_t cb,
100                                           enum qemu_plugin_cb_flags flags,
101                                           void *udata)
102 {
103     if (!tb_is_mem_only()) {
104         plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
105     }
106 }
107 
108 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb,
109                                                qemu_plugin_vcpu_udata_cb_t cb,
110                                                enum qemu_plugin_cb_flags flags,
111                                                enum qemu_plugin_cond cond,
112                                                qemu_plugin_u64 entry,
113                                                uint64_t imm,
114                                                void *udata)
115 {
116     if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
117         return;
118     }
119     if (cond == QEMU_PLUGIN_COND_ALWAYS) {
120         qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata);
121         return;
122     }
123     plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags,
124                                        cond, entry, imm, udata);
125 }
126 
127 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
128     struct qemu_plugin_tb *tb,
129     enum qemu_plugin_op op,
130     qemu_plugin_u64 entry,
131     uint64_t imm)
132 {
133     if (!tb_is_mem_only()) {
134         plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
135     }
136 }
137 
138 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
139                                             qemu_plugin_vcpu_udata_cb_t cb,
140                                             enum qemu_plugin_cb_flags flags,
141                                             void *udata)
142 {
143     if (!tb_is_mem_only()) {
144         plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
145     }
146 }
147 
148 void qemu_plugin_register_vcpu_insn_exec_cond_cb(
149     struct qemu_plugin_insn *insn,
150     qemu_plugin_vcpu_udata_cb_t cb,
151     enum qemu_plugin_cb_flags flags,
152     enum qemu_plugin_cond cond,
153     qemu_plugin_u64 entry,
154     uint64_t imm,
155     void *udata)
156 {
157     if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
158         return;
159     }
160     if (cond == QEMU_PLUGIN_COND_ALWAYS) {
161         qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata);
162         return;
163     }
164     plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags,
165                                        cond, entry, imm, udata);
166 }
167 
168 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
169     struct qemu_plugin_insn *insn,
170     enum qemu_plugin_op op,
171     qemu_plugin_u64 entry,
172     uint64_t imm)
173 {
174     if (!tb_is_mem_only()) {
175         plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
176     }
177 }
178 
179 
180 /*
181  * We always plant memory instrumentation because they don't finalise until
182  * after the operation has complete.
183  */
184 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
185                                       qemu_plugin_vcpu_mem_cb_t cb,
186                                       enum qemu_plugin_cb_flags flags,
187                                       enum qemu_plugin_mem_rw rw,
188                                       void *udata)
189 {
190     plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
191 }
192 
193 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
194     struct qemu_plugin_insn *insn,
195     enum qemu_plugin_mem_rw rw,
196     enum qemu_plugin_op op,
197     qemu_plugin_u64 entry,
198     uint64_t imm)
199 {
200     plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
201 }
202 
203 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
204                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
205 {
206     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
207 }
208 
209 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
210                                           qemu_plugin_vcpu_syscall_cb_t cb)
211 {
212     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
213 }
214 
215 void
216 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
217                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
218 {
219     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
220 }
221 
222 /*
223  * Plugin Queries
224  *
225  * These are queries that the plugin can make to gauge information
226  * from our opaque data types. We do not want to leak internal details
227  * here just information useful to the plugin.
228  */
229 
230 /*
231  * Translation block information:
232  *
233  * A plugin can query the virtual address of the start of the block
234  * and the number of instructions in it. It can also get access to
235  * each translated instruction.
236  */
237 
238 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
239 {
240     return tb->n;
241 }
242 
243 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
244 {
245     const DisasContextBase *db = tcg_ctx->plugin_db;
246     return db->pc_first;
247 }
248 
249 struct qemu_plugin_insn *
250 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
251 {
252     struct qemu_plugin_insn *insn;
253     if (unlikely(idx >= tb->n)) {
254         return NULL;
255     }
256     insn = g_ptr_array_index(tb->insns, idx);
257     return insn;
258 }
259 
260 /*
261  * Instruction information
262  *
263  * These queries allow the plugin to retrieve information about each
264  * instruction being translated.
265  */
266 
267 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
268                              void *dest, size_t len)
269 {
270     const DisasContextBase *db = tcg_ctx->plugin_db;
271 
272     len = MIN(len, insn->len);
273     return translator_st(db, dest, insn->vaddr, len) ? len : 0;
274 }
275 
276 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
277 {
278     return insn->len;
279 }
280 
281 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
282 {
283     return insn->vaddr;
284 }
285 
286 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
287 {
288     const DisasContextBase *db = tcg_ctx->plugin_db;
289     vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK;
290 
291     if (db->fake_insn) {
292         return NULL;
293     }
294 
295     /*
296      * ??? The return value is not intended for use of host memory,
297      * but as a proxy for address space and physical address.
298      * Thus we are only interested in the first byte and do not
299      * care about spanning pages.
300      */
301     if (insn->vaddr <= page0_last) {
302         if (db->host_addr[0] == NULL) {
303             return NULL;
304         }
305         return db->host_addr[0] + insn->vaddr - db->pc_first;
306     } else {
307         if (db->host_addr[1] == NULL) {
308             return NULL;
309         }
310         return db->host_addr[1] + insn->vaddr - (page0_last + 1);
311     }
312 }
313 
314 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
315 {
316     return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db,
317                         insn->vaddr, insn->len);
318 }
319 
320 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
321 {
322     const char *sym = lookup_symbol(insn->vaddr);
323     return sym[0] != 0 ? sym : NULL;
324 }
325 
326 /*
327  * The memory queries allow the plugin to query information about a
328  * memory access.
329  */
330 
331 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
332 {
333     MemOp op = get_memop(info);
334     return op & MO_SIZE;
335 }
336 
337 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
338 {
339     MemOp op = get_memop(info);
340     return op & MO_SIGN;
341 }
342 
343 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
344 {
345     MemOp op = get_memop(info);
346     return (op & MO_BSWAP) == MO_BE;
347 }
348 
349 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
350 {
351     return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
352 }
353 
354 /*
355  * Virtual Memory queries
356  */
357 
358 #ifdef CONFIG_SOFTMMU
359 static __thread struct qemu_plugin_hwaddr hwaddr_info;
360 #endif
361 
362 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
363                                                   uint64_t vaddr)
364 {
365 #ifdef CONFIG_SOFTMMU
366     CPUState *cpu = current_cpu;
367     unsigned int mmu_idx = get_mmuidx(info);
368     enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
369     hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
370 
371     assert(mmu_idx < NB_MMU_MODES);
372 
373     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
374                            hwaddr_info.is_store, &hwaddr_info)) {
375         error_report("invalid use of qemu_plugin_get_hwaddr");
376         return NULL;
377     }
378 
379     return &hwaddr_info;
380 #else
381     return NULL;
382 #endif
383 }
384 
385 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
386 {
387 #ifdef CONFIG_SOFTMMU
388     return haddr->is_io;
389 #else
390     return false;
391 #endif
392 }
393 
394 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
395 {
396 #ifdef CONFIG_SOFTMMU
397     if (haddr) {
398         return haddr->phys_addr;
399     }
400 #endif
401     return 0;
402 }
403 
404 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
405 {
406 #ifdef CONFIG_SOFTMMU
407     if (h && h->is_io) {
408         MemoryRegion *mr = h->mr;
409         if (!mr->name) {
410             unsigned maddr = (uintptr_t)mr;
411             g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
412             return g_intern_string(temp);
413         } else {
414             return g_intern_string(mr->name);
415         }
416     } else {
417         return g_intern_static_string("RAM");
418     }
419 #else
420     return g_intern_static_string("Invalid");
421 #endif
422 }
423 
424 int qemu_plugin_num_vcpus(void)
425 {
426     return plugin_num_vcpus();
427 }
428 
429 /*
430  * Plugin output
431  */
432 void qemu_plugin_outs(const char *string)
433 {
434     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
435 }
436 
437 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
438 {
439     return name && value && qapi_bool_parse(name, value, ret, NULL);
440 }
441 
442 /*
443  * Binary path, start and end locations
444  */
445 const char *qemu_plugin_path_to_binary(void)
446 {
447     char *path = NULL;
448 #ifdef CONFIG_USER_ONLY
449     TaskState *ts = get_task_state(current_cpu);
450     path = g_strdup(ts->bprm->filename);
451 #endif
452     return path;
453 }
454 
455 uint64_t qemu_plugin_start_code(void)
456 {
457     uint64_t start = 0;
458 #ifdef CONFIG_USER_ONLY
459     TaskState *ts = get_task_state(current_cpu);
460     start = ts->info->start_code;
461 #endif
462     return start;
463 }
464 
465 uint64_t qemu_plugin_end_code(void)
466 {
467     uint64_t end = 0;
468 #ifdef CONFIG_USER_ONLY
469     TaskState *ts = get_task_state(current_cpu);
470     end = ts->info->end_code;
471 #endif
472     return end;
473 }
474 
475 uint64_t qemu_plugin_entry_code(void)
476 {
477     uint64_t entry = 0;
478 #ifdef CONFIG_USER_ONLY
479     TaskState *ts = get_task_state(current_cpu);
480     entry = ts->info->entry;
481 #endif
482     return entry;
483 }
484 
485 /*
486  * Create register handles.
487  *
488  * We need to create a handle for each register so the plugin
489  * infrastructure can call gdbstub to read a register. They are
490  * currently just a pointer encapsulation of the gdb_reg but in
491  * future may hold internal plugin state so its important plugin
492  * authors are not tempted to treat them as numbers.
493  *
494  * We also construct a result array with those handles and some
495  * ancillary data the plugin might find useful.
496  */
497 
498 static GArray *create_register_handles(GArray *gdbstub_regs)
499 {
500     GArray *find_data = g_array_new(true, true,
501                                     sizeof(qemu_plugin_reg_descriptor));
502 
503     for (int i = 0; i < gdbstub_regs->len; i++) {
504         GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
505         qemu_plugin_reg_descriptor desc;
506 
507         /* skip "un-named" regs */
508         if (!grd->name) {
509             continue;
510         }
511 
512         /* Create a record for the plugin */
513         desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1);
514         desc.name = g_intern_string(grd->name);
515         desc.feature = g_intern_string(grd->feature_name);
516         g_array_append_val(find_data, desc);
517     }
518 
519     return find_data;
520 }
521 
522 GArray *qemu_plugin_get_registers(void)
523 {
524     g_assert(current_cpu);
525 
526     g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
527     return create_register_handles(regs);
528 }
529 
530 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
531 {
532     g_assert(current_cpu);
533 
534     return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1);
535 }
536 
537 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
538 {
539     return plugin_scoreboard_new(element_size);
540 }
541 
542 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
543 {
544     plugin_scoreboard_free(score);
545 }
546 
547 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
548                                   unsigned int vcpu_index)
549 {
550     g_assert(vcpu_index < qemu_plugin_num_vcpus());
551     /* we can't use g_array_index since entry size is not statically known */
552     char *base_ptr = score->data->data;
553     return base_ptr + vcpu_index * g_array_get_element_size(score->data);
554 }
555 
556 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
557                                     unsigned int vcpu_index)
558 {
559     char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
560     return (uint64_t *)(ptr + entry.offset);
561 }
562 
563 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
564                          uint64_t added)
565 {
566     *plugin_u64_address(entry, vcpu_index) += added;
567 }
568 
569 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
570                              unsigned int vcpu_index)
571 {
572     return *plugin_u64_address(entry, vcpu_index);
573 }
574 
575 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
576                          uint64_t val)
577 {
578     *plugin_u64_address(entry, vcpu_index) = val;
579 }
580 
581 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
582 {
583     uint64_t total = 0;
584     for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
585         total += qemu_plugin_u64_get(entry, i);
586     }
587     return total;
588 }
589 
590 /*
591  * Time control
592  */
593 static bool has_control;
594 #ifdef CONFIG_SOFTMMU
595 static Error *migration_blocker;
596 #endif
597 
598 const void *qemu_plugin_request_time_control(void)
599 {
600     if (!has_control) {
601         has_control = true;
602 #ifdef CONFIG_SOFTMMU
603         error_setg(&migration_blocker,
604                    "TCG plugin time control does not support migration");
605         migrate_add_blocker(&migration_blocker, NULL);
606 #endif
607         return &has_control;
608     }
609     return NULL;
610 }
611 
612 #ifdef CONFIG_SOFTMMU
613 static void advance_virtual_time__async(CPUState *cpu, run_on_cpu_data data)
614 {
615     int64_t new_time = data.host_ulong;
616     qemu_clock_advance_virtual_time(new_time);
617 }
618 #endif
619 
620 void qemu_plugin_update_ns(const void *handle, int64_t new_time)
621 {
622 #ifdef CONFIG_SOFTMMU
623     if (handle == &has_control) {
624         /* Need to execute out of cpu_exec, so bql can be locked. */
625         async_run_on_cpu(current_cpu,
626                          advance_virtual_time__async,
627                          RUN_ON_CPU_HOST_ULONG(new_time));
628     }
629 #endif
630 }
631