xref: /qemu/plugins/api.c (revision ef17dd6a)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *
12  * Which can then be passed back into the API to do additional things.
13  * As such all the public functions in here are exported in
14  * qemu-plugin.h.
15  *
16  * The general life-cycle of a plugin is:
17  *
18  *  - plugin is loaded, public qemu_plugin_install called
19  *    - the install func registers callbacks for events
20  *    - usually an atexit_cb is registered to dump info at the end
21  *  - when a registered event occurs the plugin is called
22  *     - some events pass additional info
23  *     - during translation the plugin can decide to instrument any
24  *       instruction
25  *  - when QEMU exits all the registered atexit callbacks are called
26  *
27  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
28  * Copyright (C) 2019, Linaro
29  *
30  * License: GNU GPL, version 2 or later.
31  *   See the COPYING file in the top-level directory.
32  *
33  * SPDX-License-Identifier: GPL-2.0-or-later
34  *
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/plugin.h"
39 #include "tcg/tcg.h"
40 #include "exec/exec-all.h"
41 #include "exec/ram_addr.h"
42 #include "disas/disas.h"
43 #include "plugin.h"
44 #ifndef CONFIG_USER_ONLY
45 #include "qemu/plugin-memory.h"
46 #include "hw/boards.h"
47 #else
48 #include "qemu.h"
49 #ifdef CONFIG_LINUX
50 #include "loader.h"
51 #endif
52 #endif
53 
54 /* Uninstall and Reset handlers */
55 
56 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
57 {
58     plugin_reset_uninstall(id, cb, false);
59 }
60 
61 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
62 {
63     plugin_reset_uninstall(id, cb, true);
64 }
65 
66 /*
67  * Plugin Register Functions
68  *
69  * This allows the plugin to register callbacks for various events
70  * during the translation.
71  */
72 
73 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
74                                        qemu_plugin_vcpu_simple_cb_t cb)
75 {
76     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
77 }
78 
79 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
80                                        qemu_plugin_vcpu_simple_cb_t cb)
81 {
82     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
83 }
84 
85 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
86                                           qemu_plugin_vcpu_udata_cb_t cb,
87                                           enum qemu_plugin_cb_flags flags,
88                                           void *udata)
89 {
90     if (!tb->mem_only) {
91         plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
92                                       cb, flags, udata);
93     }
94 }
95 
96 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
97                                               enum qemu_plugin_op op,
98                                               void *ptr, uint64_t imm)
99 {
100     if (!tb->mem_only) {
101         plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
102     }
103 }
104 
105 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
106                                             qemu_plugin_vcpu_udata_cb_t cb,
107                                             enum qemu_plugin_cb_flags flags,
108                                             void *udata)
109 {
110     if (!insn->mem_only) {
111         plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
112                                       cb, flags, udata);
113     }
114 }
115 
116 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
117                                                 enum qemu_plugin_op op,
118                                                 void *ptr, uint64_t imm)
119 {
120     if (!insn->mem_only) {
121         plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
122                                   0, op, ptr, imm);
123     }
124 }
125 
126 
127 /*
128  * We always plant memory instrumentation because they don't finalise until
129  * after the operation has complete.
130  */
131 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
132                                       qemu_plugin_vcpu_mem_cb_t cb,
133                                       enum qemu_plugin_cb_flags flags,
134                                       enum qemu_plugin_mem_rw rw,
135                                       void *udata)
136 {
137     plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
138                                     cb, flags, rw, udata);
139 }
140 
141 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
142                                           enum qemu_plugin_mem_rw rw,
143                                           enum qemu_plugin_op op, void *ptr,
144                                           uint64_t imm)
145 {
146     plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
147                               rw, op, ptr, imm);
148 }
149 
150 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
151                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
152 {
153     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
154 }
155 
156 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
157                                           qemu_plugin_vcpu_syscall_cb_t cb)
158 {
159     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
160 }
161 
162 void
163 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
164                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
165 {
166     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
167 }
168 
169 /*
170  * Plugin Queries
171  *
172  * These are queries that the plugin can make to gauge information
173  * from our opaque data types. We do not want to leak internal details
174  * here just information useful to the plugin.
175  */
176 
177 /*
178  * Translation block information:
179  *
180  * A plugin can query the virtual address of the start of the block
181  * and the number of instructions in it. It can also get access to
182  * each translated instruction.
183  */
184 
185 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
186 {
187     return tb->n;
188 }
189 
190 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
191 {
192     return tb->vaddr;
193 }
194 
195 struct qemu_plugin_insn *
196 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
197 {
198     struct qemu_plugin_insn *insn;
199     if (unlikely(idx >= tb->n)) {
200         return NULL;
201     }
202     insn = g_ptr_array_index(tb->insns, idx);
203     insn->mem_only = tb->mem_only;
204     return insn;
205 }
206 
207 /*
208  * Instruction information
209  *
210  * These queries allow the plugin to retrieve information about each
211  * instruction being translated.
212  */
213 
214 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
215 {
216     return insn->data->data;
217 }
218 
219 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
220 {
221     return insn->data->len;
222 }
223 
224 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
225 {
226     return insn->vaddr;
227 }
228 
229 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
230 {
231     return insn->haddr;
232 }
233 
234 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
235 {
236     CPUState *cpu = current_cpu;
237     return plugin_disas(cpu, insn->vaddr, insn->data->len);
238 }
239 
240 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
241 {
242     const char *sym = lookup_symbol(insn->vaddr);
243     return sym[0] != 0 ? sym : NULL;
244 }
245 
246 /*
247  * The memory queries allow the plugin to query information about a
248  * memory access.
249  */
250 
251 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
252 {
253     MemOp op = get_memop(info);
254     return op & MO_SIZE;
255 }
256 
257 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
258 {
259     MemOp op = get_memop(info);
260     return op & MO_SIGN;
261 }
262 
263 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
264 {
265     MemOp op = get_memop(info);
266     return (op & MO_BSWAP) == MO_BE;
267 }
268 
269 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
270 {
271     return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
272 }
273 
274 /*
275  * Virtual Memory queries
276  */
277 
278 #ifdef CONFIG_SOFTMMU
279 static __thread struct qemu_plugin_hwaddr hwaddr_info;
280 #endif
281 
282 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
283                                                   uint64_t vaddr)
284 {
285 #ifdef CONFIG_SOFTMMU
286     CPUState *cpu = current_cpu;
287     unsigned int mmu_idx = get_mmuidx(info);
288     enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
289     hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
290 
291     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
292                            hwaddr_info.is_store, &hwaddr_info)) {
293         error_report("invalid use of qemu_plugin_get_hwaddr");
294         return NULL;
295     }
296 
297     return &hwaddr_info;
298 #else
299     return NULL;
300 #endif
301 }
302 
303 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
304 {
305 #ifdef CONFIG_SOFTMMU
306     return haddr->is_io;
307 #else
308     return false;
309 #endif
310 }
311 
312 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
313 {
314 #ifdef CONFIG_SOFTMMU
315     if (haddr) {
316         if (!haddr->is_io) {
317             RAMBlock *block;
318             ram_addr_t offset;
319             void *hostaddr = haddr->v.ram.hostaddr;
320 
321             block = qemu_ram_block_from_host(hostaddr, false, &offset);
322             if (!block) {
323                 error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr);
324                 abort();
325             }
326 
327             return block->offset + offset + block->mr->addr;
328         } else {
329             MemoryRegionSection *mrs = haddr->v.io.section;
330             return mrs->offset_within_address_space + haddr->v.io.offset;
331         }
332     }
333 #endif
334     return 0;
335 }
336 
337 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
338 {
339 #ifdef CONFIG_SOFTMMU
340     if (h && h->is_io) {
341         MemoryRegionSection *mrs = h->v.io.section;
342         if (!mrs->mr->name) {
343             unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
344             g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
345             return g_intern_string(temp);
346         } else {
347             return g_intern_string(mrs->mr->name);
348         }
349     } else {
350         return g_intern_static_string("RAM");
351     }
352 #else
353     return g_intern_static_string("Invalid");
354 #endif
355 }
356 
357 /*
358  * Queries to the number and potential maximum number of vCPUs there
359  * will be. This helps the plugin dimension per-vcpu arrays.
360  */
361 
362 #ifndef CONFIG_USER_ONLY
363 static MachineState * get_ms(void)
364 {
365     return MACHINE(qdev_get_machine());
366 }
367 #endif
368 
369 int qemu_plugin_n_vcpus(void)
370 {
371 #ifdef CONFIG_USER_ONLY
372     return -1;
373 #else
374     return get_ms()->smp.cpus;
375 #endif
376 }
377 
378 int qemu_plugin_n_max_vcpus(void)
379 {
380 #ifdef CONFIG_USER_ONLY
381     return -1;
382 #else
383     return get_ms()->smp.max_cpus;
384 #endif
385 }
386 
387 /*
388  * Plugin output
389  */
390 void qemu_plugin_outs(const char *string)
391 {
392     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
393 }
394 
395 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
396 {
397     return name && value && qapi_bool_parse(name, value, ret, NULL);
398 }
399 
400 /*
401  * Binary path, start and end locations
402  */
403 const char *qemu_plugin_path_to_binary(void)
404 {
405     char *path = NULL;
406 #ifdef CONFIG_USER_ONLY
407     TaskState *ts = (TaskState *) current_cpu->opaque;
408     path = g_strdup(ts->bprm->filename);
409 #endif
410     return path;
411 }
412 
413 uint64_t qemu_plugin_start_code(void)
414 {
415     uint64_t start = 0;
416 #ifdef CONFIG_USER_ONLY
417     TaskState *ts = (TaskState *) current_cpu->opaque;
418     start = ts->info->start_code;
419 #endif
420     return start;
421 }
422 
423 uint64_t qemu_plugin_end_code(void)
424 {
425     uint64_t end = 0;
426 #ifdef CONFIG_USER_ONLY
427     TaskState *ts = (TaskState *) current_cpu->opaque;
428     end = ts->info->end_code;
429 #endif
430     return end;
431 }
432 
433 uint64_t qemu_plugin_entry_code(void)
434 {
435     uint64_t entry = 0;
436 #ifdef CONFIG_USER_ONLY
437     TaskState *ts = (TaskState *) current_cpu->opaque;
438     entry = ts->info->entry;
439 #endif
440     return entry;
441 }
442