1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33
34 #include "exec/exec-all.h"
35 #include "exec/page-protection.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-core.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/boards.h"
40 #include "sysemu/xen.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/tcg.h"
43 #include "sysemu/qtest.h"
44 #include "qemu/timer.h"
45 #include "qemu/config-file.h"
46 #include "qemu/error-report.h"
47 #include "qemu/qemu-print.h"
48 #include "qemu/log.h"
49 #include "qemu/memalign.h"
50 #include "exec/memory.h"
51 #include "exec/ioport.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/hw_accel.h"
55 #include "sysemu/xen-mapcache.h"
56 #include "trace.h"
57
58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
59 #include <linux/falloc.h>
60 #endif
61
62 #include "qemu/rcu_queue.h"
63 #include "qemu/main-loop.h"
64 #include "exec/translate-all.h"
65 #include "sysemu/replay.h"
66
67 #include "exec/memory-internal.h"
68 #include "exec/ram_addr.h"
69
70 #include "qemu/pmem.h"
71
72 #include "migration/vmstate.h"
73
74 #include "qemu/range.h"
75 #ifndef _WIN32
76 #include "qemu/mmap-alloc.h"
77 #endif
78
79 #include "monitor/monitor.h"
80
81 #ifdef CONFIG_LIBDAXCTL
82 #include <daxctl/libdaxctl.h>
83 #endif
84
85 //#define DEBUG_SUBPAGE
86
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
91
92 static MemoryRegion *system_memory;
93 static MemoryRegion *system_io;
94
95 AddressSpace address_space_io;
96 AddressSpace address_space_memory;
97
98 static MemoryRegion io_mem_unassigned;
99
100 typedef struct PhysPageEntry PhysPageEntry;
101
102 struct PhysPageEntry {
103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
104 uint32_t skip : 6;
105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
106 uint32_t ptr : 26;
107 };
108
109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
110
111 /* Size of the L2 (and L3, etc) page tables. */
112 #define ADDR_SPACE_BITS 64
113
114 #define P_L2_BITS 9
115 #define P_L2_SIZE (1 << P_L2_BITS)
116
117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
118
119 typedef PhysPageEntry Node[P_L2_SIZE];
120
121 typedef struct PhysPageMap {
122 struct rcu_head rcu;
123
124 unsigned sections_nb;
125 unsigned sections_nb_alloc;
126 unsigned nodes_nb;
127 unsigned nodes_nb_alloc;
128 Node *nodes;
129 MemoryRegionSection *sections;
130 } PhysPageMap;
131
132 struct AddressSpaceDispatch {
133 MemoryRegionSection *mru_section;
134 /* This is a multi-level map on the physical address space.
135 * The bottom level has pointers to MemoryRegionSections.
136 */
137 PhysPageEntry phys_map;
138 PhysPageMap map;
139 };
140
141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
142 typedef struct subpage_t {
143 MemoryRegion iomem;
144 FlatView *fv;
145 hwaddr base;
146 uint16_t sub_section[];
147 } subpage_t;
148
149 #define PHYS_SECTION_UNASSIGNED 0
150
151 static void io_mem_init(void);
152 static void memory_map_init(void);
153 static void tcg_log_global_after_sync(MemoryListener *listener);
154 static void tcg_commit(MemoryListener *listener);
155
156 /**
157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
158 * @cpu: the CPU whose AddressSpace this is
159 * @as: the AddressSpace itself
160 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
161 * @tcg_as_listener: listener for tracking changes to the AddressSpace
162 */
163 typedef struct CPUAddressSpace {
164 CPUState *cpu;
165 AddressSpace *as;
166 struct AddressSpaceDispatch *memory_dispatch;
167 MemoryListener tcg_as_listener;
168 } CPUAddressSpace;
169
170 struct DirtyBitmapSnapshot {
171 ram_addr_t start;
172 ram_addr_t end;
173 unsigned long dirty[];
174 };
175
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
177 {
178 static unsigned alloc_hint = 16;
179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
182 alloc_hint = map->nodes_nb_alloc;
183 }
184 }
185
phys_map_node_alloc(PhysPageMap * map,bool leaf)186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
187 {
188 unsigned i;
189 uint32_t ret;
190 PhysPageEntry e;
191 PhysPageEntry *p;
192
193 ret = map->nodes_nb++;
194 p = map->nodes[ret];
195 assert(ret != PHYS_MAP_NODE_NIL);
196 assert(ret != map->nodes_nb_alloc);
197
198 e.skip = leaf ? 0 : 1;
199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
200 for (i = 0; i < P_L2_SIZE; ++i) {
201 memcpy(&p[i], &e, sizeof(e));
202 }
203 return ret;
204 }
205
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
207 hwaddr *index, uint64_t *nb, uint16_t leaf,
208 int level)
209 {
210 PhysPageEntry *p;
211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
212
213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
214 lp->ptr = phys_map_node_alloc(map, level == 0);
215 }
216 p = map->nodes[lp->ptr];
217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
218
219 while (*nb && lp < &p[P_L2_SIZE]) {
220 if ((*index & (step - 1)) == 0 && *nb >= step) {
221 lp->skip = 0;
222 lp->ptr = leaf;
223 *index += step;
224 *nb -= step;
225 } else {
226 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
227 }
228 ++lp;
229 }
230 }
231
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)232 static void phys_page_set(AddressSpaceDispatch *d,
233 hwaddr index, uint64_t nb,
234 uint16_t leaf)
235 {
236 /* Wildly overreserve - it doesn't matter much. */
237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
238
239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 }
241
242 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
243 * and update our entry so we can skip it and go directly to the destination.
244 */
phys_page_compact(PhysPageEntry * lp,Node * nodes)245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
246 {
247 unsigned valid_ptr = P_L2_SIZE;
248 int valid = 0;
249 PhysPageEntry *p;
250 int i;
251
252 if (lp->ptr == PHYS_MAP_NODE_NIL) {
253 return;
254 }
255
256 p = nodes[lp->ptr];
257 for (i = 0; i < P_L2_SIZE; i++) {
258 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
259 continue;
260 }
261
262 valid_ptr = i;
263 valid++;
264 if (p[i].skip) {
265 phys_page_compact(&p[i], nodes);
266 }
267 }
268
269 /* We can only compress if there's only one child. */
270 if (valid != 1) {
271 return;
272 }
273
274 assert(valid_ptr < P_L2_SIZE);
275
276 /* Don't compress if it won't fit in the # of bits we have. */
277 if (P_L2_LEVELS >= (1 << 6) &&
278 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
279 return;
280 }
281
282 lp->ptr = p[valid_ptr].ptr;
283 if (!p[valid_ptr].skip) {
284 /* If our only child is a leaf, make this a leaf. */
285 /* By design, we should have made this node a leaf to begin with so we
286 * should never reach here.
287 * But since it's so simple to handle this, let's do it just in case we
288 * change this rule.
289 */
290 lp->skip = 0;
291 } else {
292 lp->skip += p[valid_ptr].skip;
293 }
294 }
295
address_space_dispatch_compact(AddressSpaceDispatch * d)296 void address_space_dispatch_compact(AddressSpaceDispatch *d)
297 {
298 if (d->phys_map.skip) {
299 phys_page_compact(&d->phys_map, d->map.nodes);
300 }
301 }
302
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)303 static inline bool section_covers_addr(const MemoryRegionSection *section,
304 hwaddr addr)
305 {
306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
307 * the section must cover the entire address space.
308 */
309 return int128_gethi(section->size) ||
310 range_covers_byte(section->offset_within_address_space,
311 int128_getlo(section->size), addr);
312 }
313
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
315 {
316 PhysPageEntry lp = d->phys_map, *p;
317 Node *nodes = d->map.nodes;
318 MemoryRegionSection *sections = d->map.sections;
319 hwaddr index = addr >> TARGET_PAGE_BITS;
320 int i;
321
322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
323 if (lp.ptr == PHYS_MAP_NODE_NIL) {
324 return §ions[PHYS_SECTION_UNASSIGNED];
325 }
326 p = nodes[lp.ptr];
327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 }
329
330 if (section_covers_addr(§ions[lp.ptr], addr)) {
331 return §ions[lp.ptr];
332 } else {
333 return §ions[PHYS_SECTION_UNASSIGNED];
334 }
335 }
336
337 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
339 hwaddr addr,
340 bool resolve_subpage)
341 {
342 MemoryRegionSection *section = qatomic_read(&d->mru_section);
343 subpage_t *subpage;
344
345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
346 !section_covers_addr(section, addr)) {
347 section = phys_page_find(d, addr);
348 qatomic_set(&d->mru_section, section);
349 }
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 }
354 return section;
355 }
356
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360 hwaddr *plen, bool resolve_subpage)
361 {
362 MemoryRegionSection *section;
363 MemoryRegion *mr;
364 Int128 diff;
365
366 section = address_space_lookup_region(d, addr, resolve_subpage);
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
373 mr = section->mr;
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
386 if (memory_region_is_ram(mr)) {
387 diff = int128_sub(section->size, int128_make64(addr));
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
390 return section;
391 }
392
393 /**
394 * address_space_translate_iommu - translate an address through an IOMMU
395 * memory region and then through the target address space.
396 *
397 * @iommu_mr: the IOMMU memory region that we start the translation from
398 * @addr: the address to be translated through the MMU
399 * @xlat: the translated address offset within the destination memory region.
400 * It cannot be %NULL.
401 * @plen_out: valid read/write length of the translated address. It
402 * cannot be %NULL.
403 * @page_mask_out: page mask for the translated address. This
404 * should only be meaningful for IOMMU translated
405 * addresses, since there may be huge pages that this bit
406 * would tell. It can be %NULL if we don't care about it.
407 * @is_write: whether the translation operation is for write
408 * @is_mmio: whether this can be MMIO, set true if it can
409 * @target_as: the address space targeted by the IOMMU
410 * @attrs: transaction attributes
411 *
412 * This function is called from RCU critical section. It is the common
413 * part of flatview_do_translate and address_space_translate_cached.
414 */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
416 hwaddr *xlat,
417 hwaddr *plen_out,
418 hwaddr *page_mask_out,
419 bool is_write,
420 bool is_mmio,
421 AddressSpace **target_as,
422 MemTxAttrs attrs)
423 {
424 MemoryRegionSection *section;
425 hwaddr page_mask = (hwaddr)-1;
426
427 do {
428 hwaddr addr = *xlat;
429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
430 int iommu_idx = 0;
431 IOMMUTLBEntry iotlb;
432
433 if (imrc->attrs_to_index) {
434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 }
436
437 iotlb = imrc->translate(iommu_mr, addr, is_write ?
438 IOMMU_WO : IOMMU_RO, iommu_idx);
439
440 if (!(iotlb.perm & (1 << is_write))) {
441 goto unassigned;
442 }
443
444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
445 | (addr & iotlb.addr_mask));
446 page_mask &= iotlb.addr_mask;
447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
448 *target_as = iotlb.target_as;
449
450 section = address_space_translate_internal(
451 address_space_to_dispatch(iotlb.target_as), addr, xlat,
452 plen_out, is_mmio);
453
454 iommu_mr = memory_region_get_iommu(section->mr);
455 } while (unlikely(iommu_mr));
456
457 if (page_mask_out) {
458 *page_mask_out = page_mask;
459 }
460 return *section;
461
462 unassigned:
463 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
464 }
465
466 /**
467 * flatview_do_translate - translate an address in FlatView
468 *
469 * @fv: the flat view that we want to translate on
470 * @addr: the address to be translated in above address space
471 * @xlat: the translated address offset within memory region. It
472 * cannot be @NULL.
473 * @plen_out: valid read/write length of the translated address. It
474 * can be @NULL when we don't care about it.
475 * @page_mask_out: page mask for the translated address. This
476 * should only be meaningful for IOMMU translated
477 * addresses, since there may be huge pages that this bit
478 * would tell. It can be @NULL if we don't care about it.
479 * @is_write: whether the translation operation is for write
480 * @is_mmio: whether this can be MMIO, set true if it can
481 * @target_as: the address space targeted by the IOMMU
482 * @attrs: memory transaction attributes
483 *
484 * This function is called from RCU critical section
485 */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as,
494 MemTxAttrs attrs)
495 {
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 hwaddr plen = (hwaddr)(-1);
499
500 if (!plen_out) {
501 plen_out = &plen;
502 }
503
504 section = address_space_translate_internal(
505 flatview_to_dispatch(fv), addr, xlat,
506 plen_out, is_mmio);
507
508 iommu_mr = memory_region_get_iommu(section->mr);
509 if (unlikely(iommu_mr)) {
510 return address_space_translate_iommu(iommu_mr, xlat,
511 plen_out, page_mask_out,
512 is_write, is_mmio,
513 target_as, attrs);
514 }
515 if (page_mask_out) {
516 /* Not behind an IOMMU, use default page size. */
517 *page_mask_out = ~TARGET_PAGE_MASK;
518 }
519
520 return *section;
521 }
522
523 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
525 bool is_write, MemTxAttrs attrs)
526 {
527 MemoryRegionSection section;
528 hwaddr xlat, page_mask;
529
530 /*
531 * This can never be MMIO, and we don't really care about plen,
532 * but page mask.
533 */
534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
535 NULL, &page_mask, is_write, false, &as,
536 attrs);
537
538 /* Illegal translation */
539 if (section.mr == &io_mem_unassigned) {
540 goto iotlb_fail;
541 }
542
543 /* Convert memory region offset into address space offset */
544 xlat += section.offset_within_address_space -
545 section.offset_within_region;
546
547 return (IOMMUTLBEntry) {
548 .target_as = as,
549 .iova = addr & ~page_mask,
550 .translated_addr = xlat & ~page_mask,
551 .addr_mask = page_mask,
552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
553 .perm = IOMMU_RW,
554 };
555
556 iotlb_fail:
557 return (IOMMUTLBEntry) {0};
558 }
559
560 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
562 hwaddr *plen, bool is_write,
563 MemTxAttrs attrs)
564 {
565 MemoryRegion *mr;
566 MemoryRegionSection section;
567 AddressSpace *as = NULL;
568
569 /* This can be MMIO, so setup MMIO bit. */
570 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
571 is_write, true, &as, attrs);
572 mr = section.mr;
573
574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
576 *plen = MIN(page, *plen);
577 }
578
579 return mr;
580 }
581
582 typedef struct TCGIOMMUNotifier {
583 IOMMUNotifier n;
584 MemoryRegion *mr;
585 CPUState *cpu;
586 int iommu_idx;
587 bool active;
588 } TCGIOMMUNotifier;
589
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
591 {
592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
593
594 if (!notifier->active) {
595 return;
596 }
597 tlb_flush(notifier->cpu);
598 notifier->active = false;
599 /* We leave the notifier struct on the list to avoid reallocating it later.
600 * Generally the number of IOMMUs a CPU deals with will be small.
601 * In any case we can't unregister the iommu notifier from a notify
602 * callback.
603 */
604 }
605
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)606 static void tcg_register_iommu_notifier(CPUState *cpu,
607 IOMMUMemoryRegion *iommu_mr,
608 int iommu_idx)
609 {
610 /* Make sure this CPU has an IOMMU notifier registered for this
611 * IOMMU/IOMMU index combination, so that we can flush its TLB
612 * when the IOMMU tells us the mappings we've cached have changed.
613 */
614 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
615 TCGIOMMUNotifier *notifier = NULL;
616 int i;
617
618 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
621 break;
622 }
623 }
624 if (i == cpu->iommu_notifiers->len) {
625 /* Not found, add a new entry at the end of the array */
626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
627 notifier = g_new0(TCGIOMMUNotifier, 1);
628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
629
630 notifier->mr = mr;
631 notifier->iommu_idx = iommu_idx;
632 notifier->cpu = cpu;
633 /* Rather than trying to register interest in the specific part
634 * of the iommu's address space that we've accessed and then
635 * expand it later as subsequent accesses touch more of it, we
636 * just register interest in the whole thing, on the assumption
637 * that iommu reconfiguration will be rare.
638 */
639 iommu_notifier_init(¬ifier->n,
640 tcg_iommu_unmap_notify,
641 IOMMU_NOTIFIER_UNMAP,
642 0,
643 HWADDR_MAX,
644 iommu_idx);
645 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
646 &error_fatal);
647 }
648
649 if (!notifier->active) {
650 notifier->active = true;
651 }
652 }
653
tcg_iommu_free_notifier_list(CPUState * cpu)654 void tcg_iommu_free_notifier_list(CPUState *cpu)
655 {
656 /* Destroy the CPU's notifier list */
657 int i;
658 TCGIOMMUNotifier *notifier;
659
660 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
662 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
663 g_free(notifier);
664 }
665 g_array_free(cpu->iommu_notifiers, true);
666 }
667
tcg_iommu_init_notifier_list(CPUState * cpu)668 void tcg_iommu_init_notifier_list(CPUState *cpu)
669 {
670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 }
672
673 /* Called from RCU critical section */
674 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
676 hwaddr *xlat, hwaddr *plen,
677 MemTxAttrs attrs, int *prot)
678 {
679 MemoryRegionSection *section;
680 IOMMUMemoryRegion *iommu_mr;
681 IOMMUMemoryRegionClass *imrc;
682 IOMMUTLBEntry iotlb;
683 int iommu_idx;
684 hwaddr addr = orig_addr;
685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
686
687 for (;;) {
688 section = address_space_translate_internal(d, addr, &addr, plen, false);
689
690 iommu_mr = memory_region_get_iommu(section->mr);
691 if (!iommu_mr) {
692 break;
693 }
694
695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
696
697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
700 * doesn't short-cut its translation table walk.
701 */
702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
704 | (addr & iotlb.addr_mask));
705 /* Update the caller's prot bits to remove permissions the IOMMU
706 * is giving us a failure response for. If we get down to no
707 * permissions left at all we can give up now.
708 */
709 if (!(iotlb.perm & IOMMU_RO)) {
710 *prot &= ~(PAGE_READ | PAGE_EXEC);
711 }
712 if (!(iotlb.perm & IOMMU_WO)) {
713 *prot &= ~PAGE_WRITE;
714 }
715
716 if (!*prot) {
717 goto translate_fail;
718 }
719
720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 }
722
723 assert(!memory_region_is_iommu(section->mr));
724 *xlat = addr;
725 return section;
726
727 translate_fail:
728 /*
729 * We should be given a page-aligned address -- certainly
730 * tlb_set_page_with_attrs() does so. The page offset of xlat
731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
732 * The page portion of xlat will be logged by memory_region_access_valid()
733 * when this memory access is rejected, so use the original untranslated
734 * physical address.
735 */
736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
737 *xlat = orig_addr;
738 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 }
740
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)741 void cpu_address_space_init(CPUState *cpu, int asidx,
742 const char *prefix, MemoryRegion *mr)
743 {
744 CPUAddressSpace *newas;
745 AddressSpace *as = g_new0(AddressSpace, 1);
746 char *as_name;
747
748 assert(mr);
749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
750 address_space_init(as, mr, as_name);
751 g_free(as_name);
752
753 /* Target code should have set num_ases before calling us */
754 assert(asidx < cpu->num_ases);
755
756 if (asidx == 0) {
757 /* address space 0 gets the convenience alias */
758 cpu->as = as;
759 }
760
761 /* KVM cannot currently support multiple address spaces. */
762 assert(asidx == 0 || !kvm_enabled());
763
764 if (!cpu->cpu_ases) {
765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766 cpu->cpu_ases_count = cpu->num_ases;
767 }
768
769 newas = &cpu->cpu_ases[asidx];
770 newas->cpu = cpu;
771 newas->as = as;
772 if (tcg_enabled()) {
773 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
774 newas->tcg_as_listener.commit = tcg_commit;
775 newas->tcg_as_listener.name = "tcg";
776 memory_listener_register(&newas->tcg_as_listener, as);
777 }
778 }
779
cpu_address_space_destroy(CPUState * cpu,int asidx)780 void cpu_address_space_destroy(CPUState *cpu, int asidx)
781 {
782 CPUAddressSpace *cpuas;
783
784 assert(cpu->cpu_ases);
785 assert(asidx >= 0 && asidx < cpu->num_ases);
786 /* KVM cannot currently support multiple address spaces. */
787 assert(asidx == 0 || !kvm_enabled());
788
789 cpuas = &cpu->cpu_ases[asidx];
790 if (tcg_enabled()) {
791 memory_listener_unregister(&cpuas->tcg_as_listener);
792 }
793
794 address_space_destroy(cpuas->as);
795 g_free_rcu(cpuas->as, rcu);
796
797 if (asidx == 0) {
798 /* reset the convenience alias for address space 0 */
799 cpu->as = NULL;
800 }
801
802 if (--cpu->cpu_ases_count == 0) {
803 g_free(cpu->cpu_ases);
804 cpu->cpu_ases = NULL;
805 }
806 }
807
cpu_get_address_space(CPUState * cpu,int asidx)808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
809 {
810 /* Return the AddressSpace corresponding to the specified index */
811 return cpu->cpu_ases[asidx].as;
812 }
813
814 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
816 {
817 RAMBlock *block;
818
819 block = qatomic_rcu_read(&ram_list.mru_block);
820 if (block && addr - block->offset < block->max_length) {
821 return block;
822 }
823 RAMBLOCK_FOREACH(block) {
824 if (addr - block->offset < block->max_length) {
825 goto found;
826 }
827 }
828
829 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
830 abort();
831
832 found:
833 /* It is safe to write mru_block outside the BQL. This
834 * is what happens:
835 *
836 * mru_block = xxx
837 * rcu_read_unlock()
838 * xxx removed from list
839 * rcu_read_lock()
840 * read mru_block
841 * mru_block = NULL;
842 * call_rcu(reclaim_ramblock, xxx);
843 * rcu_read_unlock()
844 *
845 * qatomic_rcu_set is not needed here. The block was already published
846 * when it was placed into the list. Here we're just making an extra
847 * copy of the pointer.
848 */
849 ram_list.mru_block = block;
850 return block;
851 }
852
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
854 {
855 CPUState *cpu;
856 ram_addr_t start1;
857 RAMBlock *block;
858 ram_addr_t end;
859
860 assert(tcg_enabled());
861 end = TARGET_PAGE_ALIGN(start + length);
862 start &= TARGET_PAGE_MASK;
863
864 RCU_READ_LOCK_GUARD();
865 block = qemu_get_ram_block(start);
866 assert(block == qemu_get_ram_block(end - 1));
867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
868 CPU_FOREACH(cpu) {
869 tlb_reset_dirty(cpu, start1, length);
870 }
871 }
872
873 /* Note: start and end must be within the same ram block. */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
875 ram_addr_t length,
876 unsigned client)
877 {
878 DirtyMemoryBlocks *blocks;
879 unsigned long end, page, start_page;
880 bool dirty = false;
881 RAMBlock *ramblock;
882 uint64_t mr_offset, mr_size;
883
884 if (length == 0) {
885 return false;
886 }
887
888 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
889 start_page = start >> TARGET_PAGE_BITS;
890 page = start_page;
891
892 WITH_RCU_READ_LOCK_GUARD() {
893 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
894 ramblock = qemu_get_ram_block(start);
895 /* Range sanity check on the ramblock */
896 assert(start >= ramblock->offset &&
897 start + length <= ramblock->offset + ramblock->used_length);
898
899 while (page < end) {
900 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
901 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
902 unsigned long num = MIN(end - page,
903 DIRTY_MEMORY_BLOCK_SIZE - offset);
904
905 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
906 offset, num);
907 page += num;
908 }
909
910 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
911 mr_size = (end - start_page) << TARGET_PAGE_BITS;
912 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
913 }
914
915 if (dirty) {
916 cpu_physical_memory_dirty_bits_cleared(start, length);
917 }
918
919 return dirty;
920 }
921
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
923 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
924 {
925 DirtyMemoryBlocks *blocks;
926 ram_addr_t start, first, last;
927 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
928 DirtyBitmapSnapshot *snap;
929 unsigned long page, end, dest;
930
931 start = memory_region_get_ram_addr(mr);
932 /* We know we're only called for RAM MemoryRegions */
933 assert(start != RAM_ADDR_INVALID);
934 start += offset;
935
936 first = QEMU_ALIGN_DOWN(start, align);
937 last = QEMU_ALIGN_UP(start + length, align);
938
939 snap = g_malloc0(sizeof(*snap) +
940 ((last - first) >> (TARGET_PAGE_BITS + 3)));
941 snap->start = first;
942 snap->end = last;
943
944 page = first >> TARGET_PAGE_BITS;
945 end = last >> TARGET_PAGE_BITS;
946 dest = 0;
947
948 WITH_RCU_READ_LOCK_GUARD() {
949 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
950
951 while (page < end) {
952 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
953 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
954 unsigned long num = MIN(end - page,
955 DIRTY_MEMORY_BLOCK_SIZE - ofs);
956
957 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
958 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
959 ofs >>= BITS_PER_LEVEL;
960
961 bitmap_copy_and_clear_atomic(snap->dirty + dest,
962 blocks->blocks[idx] + ofs,
963 num);
964 page += num;
965 dest += num >> BITS_PER_LEVEL;
966 }
967 }
968
969 cpu_physical_memory_dirty_bits_cleared(start, length);
970
971 memory_region_clear_dirty_bitmap(mr, offset, length);
972
973 return snap;
974 }
975
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
977 ram_addr_t start,
978 ram_addr_t length)
979 {
980 unsigned long page, end;
981
982 assert(start >= snap->start);
983 assert(start + length <= snap->end);
984
985 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
986 page = (start - snap->start) >> TARGET_PAGE_BITS;
987
988 while (page < end) {
989 if (test_bit(page, snap->dirty)) {
990 return true;
991 }
992 page++;
993 }
994 return false;
995 }
996
997 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)998 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
999 MemoryRegionSection *section)
1000 {
1001 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1002 return section - d->map.sections;
1003 }
1004
1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1006 uint16_t section);
1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1008
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1009 static uint16_t phys_section_add(PhysPageMap *map,
1010 MemoryRegionSection *section)
1011 {
1012 /* The physical section number is ORed with a page-aligned
1013 * pointer to produce the iotlb entries. Thus it should
1014 * never overflow into the page-aligned value.
1015 */
1016 assert(map->sections_nb < TARGET_PAGE_SIZE);
1017
1018 if (map->sections_nb == map->sections_nb_alloc) {
1019 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1020 map->sections = g_renew(MemoryRegionSection, map->sections,
1021 map->sections_nb_alloc);
1022 }
1023 map->sections[map->sections_nb] = *section;
1024 memory_region_ref(section->mr);
1025 return map->sections_nb++;
1026 }
1027
phys_section_destroy(MemoryRegion * mr)1028 static void phys_section_destroy(MemoryRegion *mr)
1029 {
1030 bool have_sub_page = mr->subpage;
1031
1032 memory_region_unref(mr);
1033
1034 if (have_sub_page) {
1035 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1036 object_unref(OBJECT(&subpage->iomem));
1037 g_free(subpage);
1038 }
1039 }
1040
phys_sections_free(PhysPageMap * map)1041 static void phys_sections_free(PhysPageMap *map)
1042 {
1043 while (map->sections_nb > 0) {
1044 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1045 phys_section_destroy(section->mr);
1046 }
1047 g_free(map->sections);
1048 g_free(map->nodes);
1049 }
1050
register_subpage(FlatView * fv,MemoryRegionSection * section)1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1052 {
1053 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1054 subpage_t *subpage;
1055 hwaddr base = section->offset_within_address_space
1056 & TARGET_PAGE_MASK;
1057 MemoryRegionSection *existing = phys_page_find(d, base);
1058 MemoryRegionSection subsection = {
1059 .offset_within_address_space = base,
1060 .size = int128_make64(TARGET_PAGE_SIZE),
1061 };
1062 hwaddr start, end;
1063
1064 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1065
1066 if (!(existing->mr->subpage)) {
1067 subpage = subpage_init(fv, base);
1068 subsection.fv = fv;
1069 subsection.mr = &subpage->iomem;
1070 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1071 phys_section_add(&d->map, &subsection));
1072 } else {
1073 subpage = container_of(existing->mr, subpage_t, iomem);
1074 }
1075 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1076 end = start + int128_get64(section->size) - 1;
1077 subpage_register(subpage, start, end,
1078 phys_section_add(&d->map, section));
1079 }
1080
1081
register_multipage(FlatView * fv,MemoryRegionSection * section)1082 static void register_multipage(FlatView *fv,
1083 MemoryRegionSection *section)
1084 {
1085 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1086 hwaddr start_addr = section->offset_within_address_space;
1087 uint16_t section_index = phys_section_add(&d->map, section);
1088 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1089 TARGET_PAGE_BITS));
1090
1091 assert(num_pages);
1092 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1093 }
1094
1095 /*
1096 * The range in *section* may look like this:
1097 *
1098 * |s|PPPPPPP|s|
1099 *
1100 * where s stands for subpage and P for page.
1101 */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1103 {
1104 MemoryRegionSection remain = *section;
1105 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1106
1107 /* register first subpage */
1108 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1109 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1110 - remain.offset_within_address_space;
1111
1112 MemoryRegionSection now = remain;
1113 now.size = int128_min(int128_make64(left), now.size);
1114 register_subpage(fv, &now);
1115 if (int128_eq(remain.size, now.size)) {
1116 return;
1117 }
1118 remain.size = int128_sub(remain.size, now.size);
1119 remain.offset_within_address_space += int128_get64(now.size);
1120 remain.offset_within_region += int128_get64(now.size);
1121 }
1122
1123 /* register whole pages */
1124 if (int128_ge(remain.size, page_size)) {
1125 MemoryRegionSection now = remain;
1126 now.size = int128_and(now.size, int128_neg(page_size));
1127 register_multipage(fv, &now);
1128 if (int128_eq(remain.size, now.size)) {
1129 return;
1130 }
1131 remain.size = int128_sub(remain.size, now.size);
1132 remain.offset_within_address_space += int128_get64(now.size);
1133 remain.offset_within_region += int128_get64(now.size);
1134 }
1135
1136 /* register last subpage */
1137 register_subpage(fv, &remain);
1138 }
1139
qemu_flush_coalesced_mmio_buffer(void)1140 void qemu_flush_coalesced_mmio_buffer(void)
1141 {
1142 if (kvm_enabled())
1143 kvm_flush_coalesced_mmio_buffer();
1144 }
1145
qemu_mutex_lock_ramlist(void)1146 void qemu_mutex_lock_ramlist(void)
1147 {
1148 qemu_mutex_lock(&ram_list.mutex);
1149 }
1150
qemu_mutex_unlock_ramlist(void)1151 void qemu_mutex_unlock_ramlist(void)
1152 {
1153 qemu_mutex_unlock(&ram_list.mutex);
1154 }
1155
ram_block_format(void)1156 GString *ram_block_format(void)
1157 {
1158 RAMBlock *block;
1159 char *psize;
1160 GString *buf = g_string_new("");
1161
1162 RCU_READ_LOCK_GUARD();
1163 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1164 "Block Name", "PSize", "Offset", "Used", "Total",
1165 "HVA", "RO");
1166
1167 RAMBLOCK_FOREACH(block) {
1168 psize = size_to_str(block->page_size);
1169 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1170 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1171 block->idstr, psize,
1172 (uint64_t)block->offset,
1173 (uint64_t)block->used_length,
1174 (uint64_t)block->max_length,
1175 (uint64_t)(uintptr_t)block->host,
1176 block->mr->readonly ? "ro" : "rw");
1177
1178 g_free(psize);
1179 }
1180
1181 return buf;
1182 }
1183
find_min_backend_pagesize(Object * obj,void * opaque)1184 static int find_min_backend_pagesize(Object *obj, void *opaque)
1185 {
1186 long *hpsize_min = opaque;
1187
1188 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1189 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1190 long hpsize = host_memory_backend_pagesize(backend);
1191
1192 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1193 *hpsize_min = hpsize;
1194 }
1195 }
1196
1197 return 0;
1198 }
1199
find_max_backend_pagesize(Object * obj,void * opaque)1200 static int find_max_backend_pagesize(Object *obj, void *opaque)
1201 {
1202 long *hpsize_max = opaque;
1203
1204 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1205 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1206 long hpsize = host_memory_backend_pagesize(backend);
1207
1208 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1209 *hpsize_max = hpsize;
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216 /*
1217 * TODO: We assume right now that all mapped host memory backends are
1218 * used as RAM, however some might be used for different purposes.
1219 */
qemu_minrampagesize(void)1220 long qemu_minrampagesize(void)
1221 {
1222 long hpsize = LONG_MAX;
1223 Object *memdev_root = object_resolve_path("/objects", NULL);
1224
1225 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1226 return hpsize;
1227 }
1228
qemu_maxrampagesize(void)1229 long qemu_maxrampagesize(void)
1230 {
1231 long pagesize = 0;
1232 Object *memdev_root = object_resolve_path("/objects", NULL);
1233
1234 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1235 return pagesize;
1236 }
1237
1238 #ifdef CONFIG_POSIX
get_file_size(int fd)1239 static int64_t get_file_size(int fd)
1240 {
1241 int64_t size;
1242 #if defined(__linux__)
1243 struct stat st;
1244
1245 if (fstat(fd, &st) < 0) {
1246 return -errno;
1247 }
1248
1249 /* Special handling for devdax character devices */
1250 if (S_ISCHR(st.st_mode)) {
1251 g_autofree char *subsystem_path = NULL;
1252 g_autofree char *subsystem = NULL;
1253
1254 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1255 major(st.st_rdev), minor(st.st_rdev));
1256 subsystem = g_file_read_link(subsystem_path, NULL);
1257
1258 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1259 g_autofree char *size_path = NULL;
1260 g_autofree char *size_str = NULL;
1261
1262 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1263 major(st.st_rdev), minor(st.st_rdev));
1264
1265 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1266 return g_ascii_strtoll(size_str, NULL, 0);
1267 }
1268 }
1269 }
1270 #endif /* defined(__linux__) */
1271
1272 /* st.st_size may be zero for special files yet lseek(2) works */
1273 size = lseek(fd, 0, SEEK_END);
1274 if (size < 0) {
1275 return -errno;
1276 }
1277 return size;
1278 }
1279
get_file_align(int fd)1280 static int64_t get_file_align(int fd)
1281 {
1282 int64_t align = -1;
1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1284 struct stat st;
1285
1286 if (fstat(fd, &st) < 0) {
1287 return -errno;
1288 }
1289
1290 /* Special handling for devdax character devices */
1291 if (S_ISCHR(st.st_mode)) {
1292 g_autofree char *path = NULL;
1293 g_autofree char *rpath = NULL;
1294 struct daxctl_ctx *ctx;
1295 struct daxctl_region *region;
1296 int rc = 0;
1297
1298 path = g_strdup_printf("/sys/dev/char/%d:%d",
1299 major(st.st_rdev), minor(st.st_rdev));
1300 rpath = realpath(path, NULL);
1301 if (!rpath) {
1302 return -errno;
1303 }
1304
1305 rc = daxctl_new(&ctx);
1306 if (rc) {
1307 return -1;
1308 }
1309
1310 daxctl_region_foreach(ctx, region) {
1311 if (strstr(rpath, daxctl_region_get_path(region))) {
1312 align = daxctl_region_get_align(region);
1313 break;
1314 }
1315 }
1316 daxctl_unref(ctx);
1317 }
1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1319
1320 return align;
1321 }
1322
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1323 static int file_ram_open(const char *path,
1324 const char *region_name,
1325 bool readonly,
1326 bool *created)
1327 {
1328 char *filename;
1329 char *sanitized_name;
1330 char *c;
1331 int fd = -1;
1332
1333 *created = false;
1334 for (;;) {
1335 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1336 if (fd >= 0) {
1337 /*
1338 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1339 * opened a directory and fail similarly to how we fail ENOENT
1340 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1341 */
1342 if (readonly) {
1343 struct stat file_stat;
1344
1345 if (fstat(fd, &file_stat)) {
1346 close(fd);
1347 if (errno == EINTR) {
1348 continue;
1349 }
1350 return -errno;
1351 } else if (S_ISDIR(file_stat.st_mode)) {
1352 close(fd);
1353 return -EISDIR;
1354 }
1355 }
1356 /* @path names an existing file, use it */
1357 break;
1358 }
1359 if (errno == ENOENT) {
1360 if (readonly) {
1361 /* Refuse to create new, readonly files. */
1362 return -ENOENT;
1363 }
1364 /* @path names a file that doesn't exist, create it */
1365 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1366 if (fd >= 0) {
1367 *created = true;
1368 break;
1369 }
1370 } else if (errno == EISDIR) {
1371 /* @path names a directory, create a file there */
1372 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1373 sanitized_name = g_strdup(region_name);
1374 for (c = sanitized_name; *c != '\0'; c++) {
1375 if (*c == '/') {
1376 *c = '_';
1377 }
1378 }
1379
1380 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1381 sanitized_name);
1382 g_free(sanitized_name);
1383
1384 fd = mkstemp(filename);
1385 if (fd >= 0) {
1386 unlink(filename);
1387 g_free(filename);
1388 break;
1389 }
1390 g_free(filename);
1391 }
1392 if (errno != EEXIST && errno != EINTR) {
1393 return -errno;
1394 }
1395 /*
1396 * Try again on EINTR and EEXIST. The latter happens when
1397 * something else creates the file between our two open().
1398 */
1399 }
1400
1401 return fd;
1402 }
1403
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1404 static void *file_ram_alloc(RAMBlock *block,
1405 ram_addr_t memory,
1406 int fd,
1407 bool truncate,
1408 off_t offset,
1409 Error **errp)
1410 {
1411 uint32_t qemu_map_flags;
1412 void *area;
1413
1414 block->page_size = qemu_fd_getpagesize(fd);
1415 if (block->mr->align % block->page_size) {
1416 error_setg(errp, "alignment 0x%" PRIx64
1417 " must be multiples of page size 0x%zx",
1418 block->mr->align, block->page_size);
1419 return NULL;
1420 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1421 error_setg(errp, "alignment 0x%" PRIx64
1422 " must be a power of two", block->mr->align);
1423 return NULL;
1424 } else if (offset % block->page_size) {
1425 error_setg(errp, "offset 0x%" PRIx64
1426 " must be multiples of page size 0x%zx",
1427 offset, block->page_size);
1428 return NULL;
1429 }
1430 block->mr->align = MAX(block->page_size, block->mr->align);
1431 #if defined(__s390x__)
1432 if (kvm_enabled()) {
1433 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1434 }
1435 #endif
1436
1437 if (memory < block->page_size) {
1438 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1439 "or larger than page size 0x%zx",
1440 memory, block->page_size);
1441 return NULL;
1442 }
1443
1444 memory = ROUND_UP(memory, block->page_size);
1445
1446 /*
1447 * ftruncate is not supported by hugetlbfs in older
1448 * hosts, so don't bother bailing out on errors.
1449 * If anything goes wrong with it under other filesystems,
1450 * mmap will fail.
1451 *
1452 * Do not truncate the non-empty backend file to avoid corrupting
1453 * the existing data in the file. Disabling shrinking is not
1454 * enough. For example, the current vNVDIMM implementation stores
1455 * the guest NVDIMM labels at the end of the backend file. If the
1456 * backend file is later extended, QEMU will not be able to find
1457 * those labels. Therefore, extending the non-empty backend file
1458 * is disabled as well.
1459 */
1460 if (truncate && ftruncate(fd, offset + memory)) {
1461 perror("ftruncate");
1462 }
1463
1464 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1465 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1466 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1467 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1468 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1469 if (area == MAP_FAILED) {
1470 error_setg_errno(errp, errno,
1471 "unable to map backing store for guest RAM");
1472 return NULL;
1473 }
1474
1475 block->fd = fd;
1476 block->fd_offset = offset;
1477 return area;
1478 }
1479 #endif
1480
1481 /* Allocate space within the ram_addr_t space that governs the
1482 * dirty bitmaps.
1483 * Called with the ramlist lock held.
1484 */
find_ram_offset(ram_addr_t size)1485 static ram_addr_t find_ram_offset(ram_addr_t size)
1486 {
1487 RAMBlock *block, *next_block;
1488 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1489
1490 assert(size != 0); /* it would hand out same offset multiple times */
1491
1492 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1493 return 0;
1494 }
1495
1496 RAMBLOCK_FOREACH(block) {
1497 ram_addr_t candidate, next = RAM_ADDR_MAX;
1498
1499 /* Align blocks to start on a 'long' in the bitmap
1500 * which makes the bitmap sync'ing take the fast path.
1501 */
1502 candidate = block->offset + block->max_length;
1503 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1504
1505 /* Search for the closest following block
1506 * and find the gap.
1507 */
1508 RAMBLOCK_FOREACH(next_block) {
1509 if (next_block->offset >= candidate) {
1510 next = MIN(next, next_block->offset);
1511 }
1512 }
1513
1514 /* If it fits remember our place and remember the size
1515 * of gap, but keep going so that we might find a smaller
1516 * gap to fill so avoiding fragmentation.
1517 */
1518 if (next - candidate >= size && next - candidate < mingap) {
1519 offset = candidate;
1520 mingap = next - candidate;
1521 }
1522
1523 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1524 }
1525
1526 if (offset == RAM_ADDR_MAX) {
1527 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1528 (uint64_t)size);
1529 abort();
1530 }
1531
1532 trace_find_ram_offset(size, offset);
1533
1534 return offset;
1535 }
1536
qemu_ram_setup_dump(void * addr,ram_addr_t size)1537 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1538 {
1539 int ret;
1540
1541 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1542 if (!machine_dump_guest_core(current_machine)) {
1543 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1544 if (ret) {
1545 perror("qemu_madvise");
1546 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1547 "but dump-guest-core=off specified\n");
1548 }
1549 }
1550 }
1551
qemu_ram_get_idstr(RAMBlock * rb)1552 const char *qemu_ram_get_idstr(RAMBlock *rb)
1553 {
1554 return rb->idstr;
1555 }
1556
qemu_ram_get_host_addr(RAMBlock * rb)1557 void *qemu_ram_get_host_addr(RAMBlock *rb)
1558 {
1559 return rb->host;
1560 }
1561
qemu_ram_get_offset(RAMBlock * rb)1562 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1563 {
1564 return rb->offset;
1565 }
1566
qemu_ram_get_used_length(RAMBlock * rb)1567 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1568 {
1569 return rb->used_length;
1570 }
1571
qemu_ram_get_max_length(RAMBlock * rb)1572 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1573 {
1574 return rb->max_length;
1575 }
1576
qemu_ram_is_shared(RAMBlock * rb)1577 bool qemu_ram_is_shared(RAMBlock *rb)
1578 {
1579 return rb->flags & RAM_SHARED;
1580 }
1581
qemu_ram_is_noreserve(RAMBlock * rb)1582 bool qemu_ram_is_noreserve(RAMBlock *rb)
1583 {
1584 return rb->flags & RAM_NORESERVE;
1585 }
1586
1587 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1588 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1589 {
1590 return rb->flags & RAM_UF_ZEROPAGE;
1591 }
1592
qemu_ram_set_uf_zeroable(RAMBlock * rb)1593 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1594 {
1595 rb->flags |= RAM_UF_ZEROPAGE;
1596 }
1597
qemu_ram_is_migratable(RAMBlock * rb)1598 bool qemu_ram_is_migratable(RAMBlock *rb)
1599 {
1600 return rb->flags & RAM_MIGRATABLE;
1601 }
1602
qemu_ram_set_migratable(RAMBlock * rb)1603 void qemu_ram_set_migratable(RAMBlock *rb)
1604 {
1605 rb->flags |= RAM_MIGRATABLE;
1606 }
1607
qemu_ram_unset_migratable(RAMBlock * rb)1608 void qemu_ram_unset_migratable(RAMBlock *rb)
1609 {
1610 rb->flags &= ~RAM_MIGRATABLE;
1611 }
1612
qemu_ram_is_named_file(RAMBlock * rb)1613 bool qemu_ram_is_named_file(RAMBlock *rb)
1614 {
1615 return rb->flags & RAM_NAMED_FILE;
1616 }
1617
qemu_ram_get_fd(RAMBlock * rb)1618 int qemu_ram_get_fd(RAMBlock *rb)
1619 {
1620 return rb->fd;
1621 }
1622
1623 /* Called with the BQL held. */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1624 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1625 {
1626 RAMBlock *block;
1627
1628 assert(new_block);
1629 assert(!new_block->idstr[0]);
1630
1631 if (dev) {
1632 char *id = qdev_get_dev_path(dev);
1633 if (id) {
1634 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1635 g_free(id);
1636 }
1637 }
1638 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1639
1640 RCU_READ_LOCK_GUARD();
1641 RAMBLOCK_FOREACH(block) {
1642 if (block != new_block &&
1643 !strcmp(block->idstr, new_block->idstr)) {
1644 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1645 new_block->idstr);
1646 abort();
1647 }
1648 }
1649 }
1650
1651 /* Called with the BQL held. */
qemu_ram_unset_idstr(RAMBlock * block)1652 void qemu_ram_unset_idstr(RAMBlock *block)
1653 {
1654 /* FIXME: arch_init.c assumes that this is not called throughout
1655 * migration. Ignore the problem since hot-unplug during migration
1656 * does not work anyway.
1657 */
1658 if (block) {
1659 memset(block->idstr, 0, sizeof(block->idstr));
1660 }
1661 }
1662
qemu_ram_pagesize(RAMBlock * rb)1663 size_t qemu_ram_pagesize(RAMBlock *rb)
1664 {
1665 return rb->page_size;
1666 }
1667
1668 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1669 size_t qemu_ram_pagesize_largest(void)
1670 {
1671 RAMBlock *block;
1672 size_t largest = 0;
1673
1674 RAMBLOCK_FOREACH(block) {
1675 largest = MAX(largest, qemu_ram_pagesize(block));
1676 }
1677
1678 return largest;
1679 }
1680
memory_try_enable_merging(void * addr,size_t len)1681 static int memory_try_enable_merging(void *addr, size_t len)
1682 {
1683 if (!machine_mem_merge(current_machine)) {
1684 /* disabled by the user */
1685 return 0;
1686 }
1687
1688 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1689 }
1690
1691 /*
1692 * Resizing RAM while migrating can result in the migration being canceled.
1693 * Care has to be taken if the guest might have already detected the memory.
1694 *
1695 * As memory core doesn't know how is memory accessed, it is up to
1696 * resize callback to update device state and/or add assertions to detect
1697 * misuse, if necessary.
1698 */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1699 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1700 {
1701 const ram_addr_t oldsize = block->used_length;
1702 const ram_addr_t unaligned_size = newsize;
1703
1704 assert(block);
1705
1706 newsize = TARGET_PAGE_ALIGN(newsize);
1707 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1708
1709 if (block->used_length == newsize) {
1710 /*
1711 * We don't have to resize the ram block (which only knows aligned
1712 * sizes), however, we have to notify if the unaligned size changed.
1713 */
1714 if (unaligned_size != memory_region_size(block->mr)) {
1715 memory_region_set_size(block->mr, unaligned_size);
1716 if (block->resized) {
1717 block->resized(block->idstr, unaligned_size, block->host);
1718 }
1719 }
1720 return 0;
1721 }
1722
1723 if (!(block->flags & RAM_RESIZEABLE)) {
1724 error_setg_errno(errp, EINVAL,
1725 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1726 " != 0x" RAM_ADDR_FMT, block->idstr,
1727 newsize, block->used_length);
1728 return -EINVAL;
1729 }
1730
1731 if (block->max_length < newsize) {
1732 error_setg_errno(errp, EINVAL,
1733 "Size too large: %s: 0x" RAM_ADDR_FMT
1734 " > 0x" RAM_ADDR_FMT, block->idstr,
1735 newsize, block->max_length);
1736 return -EINVAL;
1737 }
1738
1739 /* Notify before modifying the ram block and touching the bitmaps. */
1740 if (block->host) {
1741 ram_block_notify_resize(block->host, oldsize, newsize);
1742 }
1743
1744 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1745 block->used_length = newsize;
1746 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1747 DIRTY_CLIENTS_ALL);
1748 memory_region_set_size(block->mr, unaligned_size);
1749 if (block->resized) {
1750 block->resized(block->idstr, unaligned_size, block->host);
1751 }
1752 return 0;
1753 }
1754
1755 /*
1756 * Trigger sync on the given ram block for range [start, start + length]
1757 * with the backing store if one is available.
1758 * Otherwise no-op.
1759 * @Note: this is supposed to be a synchronous op.
1760 */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1761 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1762 {
1763 /* The requested range should fit in within the block range */
1764 g_assert((start + length) <= block->used_length);
1765
1766 #ifdef CONFIG_LIBPMEM
1767 /* The lack of support for pmem should not block the sync */
1768 if (ramblock_is_pmem(block)) {
1769 void *addr = ramblock_ptr(block, start);
1770 pmem_persist(addr, length);
1771 return;
1772 }
1773 #endif
1774 if (block->fd >= 0) {
1775 /**
1776 * Case there is no support for PMEM or the memory has not been
1777 * specified as persistent (or is not one) - use the msync.
1778 * Less optimal but still achieves the same goal
1779 */
1780 void *addr = ramblock_ptr(block, start);
1781 if (qemu_msync(addr, length, block->fd)) {
1782 warn_report("%s: failed to sync memory range: start: "
1783 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1784 __func__, start, length);
1785 }
1786 }
1787 }
1788
1789 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1790 static void dirty_memory_extend(ram_addr_t new_ram_size)
1791 {
1792 unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1793 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1794 DIRTY_MEMORY_BLOCK_SIZE);
1795 int i;
1796
1797 /* Only need to extend if block count increased */
1798 if (new_num_blocks <= old_num_blocks) {
1799 return;
1800 }
1801
1802 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1803 DirtyMemoryBlocks *old_blocks;
1804 DirtyMemoryBlocks *new_blocks;
1805 int j;
1806
1807 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1808 new_blocks = g_malloc(sizeof(*new_blocks) +
1809 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1810
1811 if (old_num_blocks) {
1812 memcpy(new_blocks->blocks, old_blocks->blocks,
1813 old_num_blocks * sizeof(old_blocks->blocks[0]));
1814 }
1815
1816 for (j = old_num_blocks; j < new_num_blocks; j++) {
1817 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1818 }
1819
1820 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1821
1822 if (old_blocks) {
1823 g_free_rcu(old_blocks, rcu);
1824 }
1825 }
1826
1827 ram_list.num_dirty_blocks = new_num_blocks;
1828 }
1829
ram_block_add(RAMBlock * new_block,Error ** errp)1830 static void ram_block_add(RAMBlock *new_block, Error **errp)
1831 {
1832 const bool noreserve = qemu_ram_is_noreserve(new_block);
1833 const bool shared = qemu_ram_is_shared(new_block);
1834 RAMBlock *block;
1835 RAMBlock *last_block = NULL;
1836 bool free_on_error = false;
1837 ram_addr_t ram_size;
1838 Error *err = NULL;
1839
1840 qemu_mutex_lock_ramlist();
1841 new_block->offset = find_ram_offset(new_block->max_length);
1842
1843 if (!new_block->host) {
1844 if (xen_enabled()) {
1845 xen_ram_alloc(new_block->offset, new_block->max_length,
1846 new_block->mr, &err);
1847 if (err) {
1848 error_propagate(errp, err);
1849 qemu_mutex_unlock_ramlist();
1850 return;
1851 }
1852 } else {
1853 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1854 &new_block->mr->align,
1855 shared, noreserve);
1856 if (!new_block->host) {
1857 error_setg_errno(errp, errno,
1858 "cannot set up guest memory '%s'",
1859 memory_region_name(new_block->mr));
1860 qemu_mutex_unlock_ramlist();
1861 return;
1862 }
1863 memory_try_enable_merging(new_block->host, new_block->max_length);
1864 free_on_error = true;
1865 }
1866 }
1867
1868 if (new_block->flags & RAM_GUEST_MEMFD) {
1869 int ret;
1870
1871 assert(kvm_enabled());
1872 assert(new_block->guest_memfd < 0);
1873
1874 ret = ram_block_discard_require(true);
1875 if (ret < 0) {
1876 error_setg_errno(errp, -ret,
1877 "cannot set up private guest memory: discard currently blocked");
1878 error_append_hint(errp, "Are you using assigned devices?\n");
1879 goto out_free;
1880 }
1881
1882 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1883 0, errp);
1884 if (new_block->guest_memfd < 0) {
1885 qemu_mutex_unlock_ramlist();
1886 goto out_free;
1887 }
1888 }
1889
1890 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1891 dirty_memory_extend(ram_size);
1892 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1893 * QLIST (which has an RCU-friendly variant) does not have insertion at
1894 * tail, so save the last element in last_block.
1895 */
1896 RAMBLOCK_FOREACH(block) {
1897 last_block = block;
1898 if (block->max_length < new_block->max_length) {
1899 break;
1900 }
1901 }
1902 if (block) {
1903 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1904 } else if (last_block) {
1905 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1906 } else { /* list is empty */
1907 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1908 }
1909 ram_list.mru_block = NULL;
1910
1911 /* Write list before version */
1912 smp_wmb();
1913 ram_list.version++;
1914 qemu_mutex_unlock_ramlist();
1915
1916 cpu_physical_memory_set_dirty_range(new_block->offset,
1917 new_block->used_length,
1918 DIRTY_CLIENTS_ALL);
1919
1920 if (new_block->host) {
1921 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1922 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1923 /*
1924 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1925 * Configure it unless the machine is a qtest server, in which case
1926 * KVM is not used and it may be forked (eg for fuzzing purposes).
1927 */
1928 if (!qtest_enabled()) {
1929 qemu_madvise(new_block->host, new_block->max_length,
1930 QEMU_MADV_DONTFORK);
1931 }
1932 ram_block_notify_add(new_block->host, new_block->used_length,
1933 new_block->max_length);
1934 }
1935 return;
1936
1937 out_free:
1938 if (free_on_error) {
1939 qemu_anon_ram_free(new_block->host, new_block->max_length);
1940 new_block->host = NULL;
1941 }
1942 }
1943
1944 #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,Error ** errp)1945 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1946 uint32_t ram_flags, int fd, off_t offset,
1947 Error **errp)
1948 {
1949 RAMBlock *new_block;
1950 Error *local_err = NULL;
1951 int64_t file_size, file_align;
1952
1953 /* Just support these ram flags by now. */
1954 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1955 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1956 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0);
1957
1958 if (xen_enabled()) {
1959 error_setg(errp, "-mem-path not supported with Xen");
1960 return NULL;
1961 }
1962
1963 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1964 error_setg(errp,
1965 "host lacks kvm mmu notifiers, -mem-path unsupported");
1966 return NULL;
1967 }
1968
1969 size = TARGET_PAGE_ALIGN(size);
1970 size = REAL_HOST_PAGE_ALIGN(size);
1971
1972 file_size = get_file_size(fd);
1973 if (file_size > offset && file_size < (offset + size)) {
1974 error_setg(errp, "backing store size 0x%" PRIx64
1975 " does not match 'size' option 0x" RAM_ADDR_FMT,
1976 file_size, size);
1977 return NULL;
1978 }
1979
1980 file_align = get_file_align(fd);
1981 if (file_align > 0 && file_align > mr->align) {
1982 error_setg(errp, "backing store align 0x%" PRIx64
1983 " is larger than 'align' option 0x%" PRIx64,
1984 file_align, mr->align);
1985 return NULL;
1986 }
1987
1988 new_block = g_malloc0(sizeof(*new_block));
1989 new_block->mr = mr;
1990 new_block->used_length = size;
1991 new_block->max_length = size;
1992 new_block->flags = ram_flags;
1993 new_block->guest_memfd = -1;
1994 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1995 errp);
1996 if (!new_block->host) {
1997 g_free(new_block);
1998 return NULL;
1999 }
2000
2001 ram_block_add(new_block, &local_err);
2002 if (local_err) {
2003 g_free(new_block);
2004 error_propagate(errp, local_err);
2005 return NULL;
2006 }
2007 return new_block;
2008
2009 }
2010
2011
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2012 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2013 uint32_t ram_flags, const char *mem_path,
2014 off_t offset, Error **errp)
2015 {
2016 int fd;
2017 bool created;
2018 RAMBlock *block;
2019
2020 fd = file_ram_open(mem_path, memory_region_name(mr),
2021 !!(ram_flags & RAM_READONLY_FD), &created);
2022 if (fd < 0) {
2023 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2024 mem_path);
2025 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2026 fd == -EACCES) {
2027 /*
2028 * If we can open the file R/O (note: will never create a new file)
2029 * and we are dealing with a private mapping, there are still ways
2030 * to consume such files and get RAM instead of ROM.
2031 */
2032 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2033 &created);
2034 if (fd < 0) {
2035 return NULL;
2036 }
2037 assert(!created);
2038 close(fd);
2039 error_append_hint(errp, "Consider opening the backing store"
2040 " read-only but still creating writable RAM using"
2041 " '-object memory-backend-file,readonly=on,rom=off...'"
2042 " (see \"VM templating\" documentation)\n");
2043 }
2044 return NULL;
2045 }
2046
2047 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
2048 if (!block) {
2049 if (created) {
2050 unlink(mem_path);
2051 }
2052 close(fd);
2053 return NULL;
2054 }
2055
2056 return block;
2057 }
2058 #endif
2059
2060 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,void (* resized)(const char *,uint64_t length,void * host),void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2061 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2062 void (*resized)(const char*,
2063 uint64_t length,
2064 void *host),
2065 void *host, uint32_t ram_flags,
2066 MemoryRegion *mr, Error **errp)
2067 {
2068 RAMBlock *new_block;
2069 Error *local_err = NULL;
2070 int align;
2071
2072 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2073 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2074 assert(!host ^ (ram_flags & RAM_PREALLOC));
2075
2076 align = qemu_real_host_page_size();
2077 align = MAX(align, TARGET_PAGE_SIZE);
2078 size = ROUND_UP(size, align);
2079 max_size = ROUND_UP(max_size, align);
2080
2081 new_block = g_malloc0(sizeof(*new_block));
2082 new_block->mr = mr;
2083 new_block->resized = resized;
2084 new_block->used_length = size;
2085 new_block->max_length = max_size;
2086 assert(max_size >= size);
2087 new_block->fd = -1;
2088 new_block->guest_memfd = -1;
2089 new_block->page_size = qemu_real_host_page_size();
2090 new_block->host = host;
2091 new_block->flags = ram_flags;
2092 ram_block_add(new_block, &local_err);
2093 if (local_err) {
2094 g_free(new_block);
2095 error_propagate(errp, local_err);
2096 return NULL;
2097 }
2098 return new_block;
2099 }
2100
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2101 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2102 MemoryRegion *mr, Error **errp)
2103 {
2104 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2105 errp);
2106 }
2107
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2108 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2109 MemoryRegion *mr, Error **errp)
2110 {
2111 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2112 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2113 }
2114
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,void (* resized)(const char *,uint64_t length,void * host),MemoryRegion * mr,Error ** errp)2115 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2116 void (*resized)(const char*,
2117 uint64_t length,
2118 void *host),
2119 MemoryRegion *mr, Error **errp)
2120 {
2121 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2122 RAM_RESIZEABLE, mr, errp);
2123 }
2124
reclaim_ramblock(RAMBlock * block)2125 static void reclaim_ramblock(RAMBlock *block)
2126 {
2127 if (block->flags & RAM_PREALLOC) {
2128 ;
2129 } else if (xen_enabled()) {
2130 xen_invalidate_map_cache_entry(block->host);
2131 #ifndef _WIN32
2132 } else if (block->fd >= 0) {
2133 qemu_ram_munmap(block->fd, block->host, block->max_length);
2134 close(block->fd);
2135 #endif
2136 } else {
2137 qemu_anon_ram_free(block->host, block->max_length);
2138 }
2139
2140 if (block->guest_memfd >= 0) {
2141 close(block->guest_memfd);
2142 ram_block_discard_require(false);
2143 }
2144
2145 g_free(block);
2146 }
2147
qemu_ram_free(RAMBlock * block)2148 void qemu_ram_free(RAMBlock *block)
2149 {
2150 if (!block) {
2151 return;
2152 }
2153
2154 if (block->host) {
2155 ram_block_notify_remove(block->host, block->used_length,
2156 block->max_length);
2157 }
2158
2159 qemu_mutex_lock_ramlist();
2160 QLIST_REMOVE_RCU(block, next);
2161 ram_list.mru_block = NULL;
2162 /* Write list before version */
2163 smp_wmb();
2164 ram_list.version++;
2165 call_rcu(block, reclaim_ramblock, rcu);
2166 qemu_mutex_unlock_ramlist();
2167 }
2168
2169 #ifndef _WIN32
qemu_ram_remap(ram_addr_t addr,ram_addr_t length)2170 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2171 {
2172 RAMBlock *block;
2173 ram_addr_t offset;
2174 int flags;
2175 void *area, *vaddr;
2176 int prot;
2177
2178 RAMBLOCK_FOREACH(block) {
2179 offset = addr - block->offset;
2180 if (offset < block->max_length) {
2181 vaddr = ramblock_ptr(block, offset);
2182 if (block->flags & RAM_PREALLOC) {
2183 ;
2184 } else if (xen_enabled()) {
2185 abort();
2186 } else {
2187 flags = MAP_FIXED;
2188 flags |= block->flags & RAM_SHARED ?
2189 MAP_SHARED : MAP_PRIVATE;
2190 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2191 prot = PROT_READ;
2192 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2193 if (block->fd >= 0) {
2194 area = mmap(vaddr, length, prot, flags, block->fd,
2195 offset + block->fd_offset);
2196 } else {
2197 flags |= MAP_ANONYMOUS;
2198 area = mmap(vaddr, length, prot, flags, -1, 0);
2199 }
2200 if (area != vaddr) {
2201 error_report("Could not remap addr: "
2202 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2203 length, addr);
2204 exit(1);
2205 }
2206 memory_try_enable_merging(vaddr, length);
2207 qemu_ram_setup_dump(vaddr, length);
2208 }
2209 }
2210 }
2211 }
2212 #endif /* !_WIN32 */
2213
2214 /*
2215 * Return a host pointer to guest's ram.
2216 * For Xen, foreign mappings get created if they don't already exist.
2217 *
2218 * @block: block for the RAM to lookup (optional and may be NULL).
2219 * @addr: address within the memory region.
2220 * @size: pointer to requested size (optional and may be NULL).
2221 * size may get modified and return a value smaller than
2222 * what was requested.
2223 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2224 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2225 * (optional and may always be set to true).
2226 *
2227 * Called within RCU critical section.
2228 */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2229 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2230 hwaddr *size, bool lock,
2231 bool is_write)
2232 {
2233 hwaddr len = 0;
2234
2235 if (size && *size == 0) {
2236 return NULL;
2237 }
2238
2239 if (block == NULL) {
2240 block = qemu_get_ram_block(addr);
2241 addr -= block->offset;
2242 }
2243 if (size) {
2244 *size = MIN(*size, block->max_length - addr);
2245 len = *size;
2246 }
2247
2248 if (xen_enabled() && block->host == NULL) {
2249 /* We need to check if the requested address is in the RAM
2250 * because we don't want to map the entire memory in QEMU.
2251 * In that case just map the requested area.
2252 */
2253 if (xen_mr_is_memory(block->mr)) {
2254 return xen_map_cache(block->mr, block->offset + addr,
2255 len, block->offset,
2256 lock, lock, is_write);
2257 }
2258
2259 block->host = xen_map_cache(block->mr, block->offset,
2260 block->max_length,
2261 block->offset,
2262 1, lock, is_write);
2263 }
2264
2265 return ramblock_ptr(block, addr);
2266 }
2267
2268 /*
2269 * Return a host pointer to ram allocated with qemu_ram_alloc.
2270 * This should not be used for general purpose DMA. Use address_space_map
2271 * or address_space_rw instead. For local memory (e.g. video ram) that the
2272 * device owns, use memory_region_get_ram_ptr.
2273 *
2274 * Called within RCU critical section.
2275 */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2276 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2277 {
2278 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2279 }
2280
2281 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2282 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2283 {
2284 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2285 assert((uintptr_t)host >= (uintptr_t)rb->host);
2286 assert(res < rb->max_length);
2287
2288 return res;
2289 }
2290
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2291 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2292 ram_addr_t *offset)
2293 {
2294 RAMBlock *block;
2295 uint8_t *host = ptr;
2296
2297 if (xen_enabled()) {
2298 ram_addr_t ram_addr;
2299 RCU_READ_LOCK_GUARD();
2300 ram_addr = xen_ram_addr_from_mapcache(ptr);
2301 if (ram_addr == RAM_ADDR_INVALID) {
2302 return NULL;
2303 }
2304
2305 block = qemu_get_ram_block(ram_addr);
2306 if (block) {
2307 *offset = ram_addr - block->offset;
2308 }
2309 return block;
2310 }
2311
2312 RCU_READ_LOCK_GUARD();
2313 block = qatomic_rcu_read(&ram_list.mru_block);
2314 if (block && block->host && host - block->host < block->max_length) {
2315 goto found;
2316 }
2317
2318 RAMBLOCK_FOREACH(block) {
2319 /* This case append when the block is not mapped. */
2320 if (block->host == NULL) {
2321 continue;
2322 }
2323 if (host - block->host < block->max_length) {
2324 goto found;
2325 }
2326 }
2327
2328 return NULL;
2329
2330 found:
2331 *offset = (host - block->host);
2332 if (round_offset) {
2333 *offset &= TARGET_PAGE_MASK;
2334 }
2335 return block;
2336 }
2337
2338 /*
2339 * Finds the named RAMBlock
2340 *
2341 * name: The name of RAMBlock to find
2342 *
2343 * Returns: RAMBlock (or NULL if not found)
2344 */
qemu_ram_block_by_name(const char * name)2345 RAMBlock *qemu_ram_block_by_name(const char *name)
2346 {
2347 RAMBlock *block;
2348
2349 RAMBLOCK_FOREACH(block) {
2350 if (!strcmp(name, block->idstr)) {
2351 return block;
2352 }
2353 }
2354
2355 return NULL;
2356 }
2357
2358 /*
2359 * Some of the system routines need to translate from a host pointer
2360 * (typically a TLB entry) back to a ram offset.
2361 */
qemu_ram_addr_from_host(void * ptr)2362 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2363 {
2364 RAMBlock *block;
2365 ram_addr_t offset;
2366
2367 block = qemu_ram_block_from_host(ptr, false, &offset);
2368 if (!block) {
2369 return RAM_ADDR_INVALID;
2370 }
2371
2372 return block->offset + offset;
2373 }
2374
qemu_ram_addr_from_host_nofail(void * ptr)2375 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2376 {
2377 ram_addr_t ram_addr;
2378
2379 ram_addr = qemu_ram_addr_from_host(ptr);
2380 if (ram_addr == RAM_ADDR_INVALID) {
2381 error_report("Bad ram pointer %p", ptr);
2382 abort();
2383 }
2384 return ram_addr;
2385 }
2386
2387 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2388 MemTxAttrs attrs, void *buf, hwaddr len);
2389 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2390 const void *buf, hwaddr len);
2391 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2392 bool is_write, MemTxAttrs attrs);
2393
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2394 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2395 unsigned len, MemTxAttrs attrs)
2396 {
2397 subpage_t *subpage = opaque;
2398 uint8_t buf[8];
2399 MemTxResult res;
2400
2401 #if defined(DEBUG_SUBPAGE)
2402 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2403 subpage, len, addr);
2404 #endif
2405 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2406 if (res) {
2407 return res;
2408 }
2409 *data = ldn_p(buf, len);
2410 return MEMTX_OK;
2411 }
2412
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2413 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2414 uint64_t value, unsigned len, MemTxAttrs attrs)
2415 {
2416 subpage_t *subpage = opaque;
2417 uint8_t buf[8];
2418
2419 #if defined(DEBUG_SUBPAGE)
2420 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2421 " value %"PRIx64"\n",
2422 __func__, subpage, len, addr, value);
2423 #endif
2424 stn_p(buf, len, value);
2425 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2426 }
2427
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2428 static bool subpage_accepts(void *opaque, hwaddr addr,
2429 unsigned len, bool is_write,
2430 MemTxAttrs attrs)
2431 {
2432 subpage_t *subpage = opaque;
2433 #if defined(DEBUG_SUBPAGE)
2434 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2435 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2436 #endif
2437
2438 return flatview_access_valid(subpage->fv, addr + subpage->base,
2439 len, is_write, attrs);
2440 }
2441
2442 static const MemoryRegionOps subpage_ops = {
2443 .read_with_attrs = subpage_read,
2444 .write_with_attrs = subpage_write,
2445 .impl.min_access_size = 1,
2446 .impl.max_access_size = 8,
2447 .valid.min_access_size = 1,
2448 .valid.max_access_size = 8,
2449 .valid.accepts = subpage_accepts,
2450 .endianness = DEVICE_NATIVE_ENDIAN,
2451 };
2452
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2453 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2454 uint16_t section)
2455 {
2456 int idx, eidx;
2457
2458 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2459 return -1;
2460 idx = SUBPAGE_IDX(start);
2461 eidx = SUBPAGE_IDX(end);
2462 #if defined(DEBUG_SUBPAGE)
2463 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2464 __func__, mmio, start, end, idx, eidx, section);
2465 #endif
2466 for (; idx <= eidx; idx++) {
2467 mmio->sub_section[idx] = section;
2468 }
2469
2470 return 0;
2471 }
2472
subpage_init(FlatView * fv,hwaddr base)2473 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2474 {
2475 subpage_t *mmio;
2476
2477 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2478 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2479 mmio->fv = fv;
2480 mmio->base = base;
2481 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2482 NULL, TARGET_PAGE_SIZE);
2483 mmio->iomem.subpage = true;
2484 #if defined(DEBUG_SUBPAGE)
2485 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2486 mmio, base, TARGET_PAGE_SIZE);
2487 #endif
2488
2489 return mmio;
2490 }
2491
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2492 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2493 {
2494 assert(fv);
2495 MemoryRegionSection section = {
2496 .fv = fv,
2497 .mr = mr,
2498 .offset_within_address_space = 0,
2499 .offset_within_region = 0,
2500 .size = int128_2_64(),
2501 };
2502
2503 return phys_section_add(map, §ion);
2504 }
2505
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2506 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2507 hwaddr index, MemTxAttrs attrs)
2508 {
2509 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2510 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2511 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2512 int section_index = index & ~TARGET_PAGE_MASK;
2513 MemoryRegionSection *ret;
2514
2515 assert(section_index < d->map.sections_nb);
2516 ret = d->map.sections + section_index;
2517 assert(ret->mr);
2518 assert(ret->mr->ops);
2519
2520 return ret;
2521 }
2522
io_mem_init(void)2523 static void io_mem_init(void)
2524 {
2525 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2526 NULL, UINT64_MAX);
2527 }
2528
address_space_dispatch_new(FlatView * fv)2529 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2530 {
2531 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2532 uint16_t n;
2533
2534 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2535 assert(n == PHYS_SECTION_UNASSIGNED);
2536
2537 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2538
2539 return d;
2540 }
2541
address_space_dispatch_free(AddressSpaceDispatch * d)2542 void address_space_dispatch_free(AddressSpaceDispatch *d)
2543 {
2544 phys_sections_free(&d->map);
2545 g_free(d);
2546 }
2547
do_nothing(CPUState * cpu,run_on_cpu_data d)2548 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2549 {
2550 }
2551
tcg_log_global_after_sync(MemoryListener * listener)2552 static void tcg_log_global_after_sync(MemoryListener *listener)
2553 {
2554 CPUAddressSpace *cpuas;
2555
2556 /* Wait for the CPU to end the current TB. This avoids the following
2557 * incorrect race:
2558 *
2559 * vCPU migration
2560 * ---------------------- -------------------------
2561 * TLB check -> slow path
2562 * notdirty_mem_write
2563 * write to RAM
2564 * mark dirty
2565 * clear dirty flag
2566 * TLB check -> fast path
2567 * read memory
2568 * write to RAM
2569 *
2570 * by pushing the migration thread's memory read after the vCPU thread has
2571 * written the memory.
2572 */
2573 if (replay_mode == REPLAY_MODE_NONE) {
2574 /*
2575 * VGA can make calls to this function while updating the screen.
2576 * In record/replay mode this causes a deadlock, because
2577 * run_on_cpu waits for rr mutex. Therefore no races are possible
2578 * in this case and no need for making run_on_cpu when
2579 * record/replay is enabled.
2580 */
2581 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2582 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2583 }
2584 }
2585
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2586 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2587 {
2588 CPUAddressSpace *cpuas = data.host_ptr;
2589
2590 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2591 tlb_flush(cpu);
2592 }
2593
tcg_commit(MemoryListener * listener)2594 static void tcg_commit(MemoryListener *listener)
2595 {
2596 CPUAddressSpace *cpuas;
2597 CPUState *cpu;
2598
2599 assert(tcg_enabled());
2600 /* since each CPU stores ram addresses in its TLB cache, we must
2601 reset the modified entries */
2602 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2603 cpu = cpuas->cpu;
2604
2605 /*
2606 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2607 * Otherwise we race between (1) other cpu threads and (2) ongoing
2608 * i/o for the current cpu thread, with data cached by mmu_lookup().
2609 *
2610 * In addition, queueing the work function will kick the cpu back to
2611 * the main loop, which will end the RCU critical section and reclaim
2612 * the memory data structures.
2613 *
2614 * That said, the listener is also called during realize, before
2615 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2616 */
2617 if (cpu->halt_cond) {
2618 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2619 } else {
2620 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2621 }
2622 }
2623
memory_map_init(void)2624 static void memory_map_init(void)
2625 {
2626 system_memory = g_malloc(sizeof(*system_memory));
2627
2628 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2629 address_space_init(&address_space_memory, system_memory, "memory");
2630
2631 system_io = g_malloc(sizeof(*system_io));
2632 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2633 65536);
2634 address_space_init(&address_space_io, system_io, "I/O");
2635 }
2636
get_system_memory(void)2637 MemoryRegion *get_system_memory(void)
2638 {
2639 return system_memory;
2640 }
2641
get_system_io(void)2642 MemoryRegion *get_system_io(void)
2643 {
2644 return system_io;
2645 }
2646
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2647 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2648 hwaddr length)
2649 {
2650 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2651 ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2652
2653 /* We know we're only called for RAM MemoryRegions */
2654 assert(ramaddr != RAM_ADDR_INVALID);
2655 addr += ramaddr;
2656
2657 /* No early return if dirty_log_mask is or becomes 0, because
2658 * cpu_physical_memory_set_dirty_range will still call
2659 * xen_modified_memory.
2660 */
2661 if (dirty_log_mask) {
2662 dirty_log_mask =
2663 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2664 }
2665 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2666 assert(tcg_enabled());
2667 tb_invalidate_phys_range(addr, addr + length - 1);
2668 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2669 }
2670 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2671 }
2672
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2673 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2674 {
2675 /*
2676 * In principle this function would work on other memory region types too,
2677 * but the ROM device use case is the only one where this operation is
2678 * necessary. Other memory regions should use the
2679 * address_space_read/write() APIs.
2680 */
2681 assert(memory_region_is_romd(mr));
2682
2683 invalidate_and_set_dirty(mr, addr, size);
2684 }
2685
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2686 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2687 {
2688 unsigned access_size_max = mr->ops->valid.max_access_size;
2689
2690 /* Regions are assumed to support 1-4 byte accesses unless
2691 otherwise specified. */
2692 if (access_size_max == 0) {
2693 access_size_max = 4;
2694 }
2695
2696 /* Bound the maximum access by the alignment of the address. */
2697 if (!mr->ops->impl.unaligned) {
2698 unsigned align_size_max = addr & -addr;
2699 if (align_size_max != 0 && align_size_max < access_size_max) {
2700 access_size_max = align_size_max;
2701 }
2702 }
2703
2704 /* Don't attempt accesses larger than the maximum. */
2705 if (l > access_size_max) {
2706 l = access_size_max;
2707 }
2708 l = pow2floor(l);
2709
2710 return l;
2711 }
2712
prepare_mmio_access(MemoryRegion * mr)2713 bool prepare_mmio_access(MemoryRegion *mr)
2714 {
2715 bool release_lock = false;
2716
2717 if (!bql_locked()) {
2718 bql_lock();
2719 release_lock = true;
2720 }
2721 if (mr->flush_coalesced_mmio) {
2722 qemu_flush_coalesced_mmio_buffer();
2723 }
2724
2725 return release_lock;
2726 }
2727
2728 /**
2729 * flatview_access_allowed
2730 * @mr: #MemoryRegion to be accessed
2731 * @attrs: memory transaction attributes
2732 * @addr: address within that memory region
2733 * @len: the number of bytes to access
2734 *
2735 * Check if a memory transaction is allowed.
2736 *
2737 * Returns: true if transaction is allowed, false if denied.
2738 */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2739 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2740 hwaddr addr, hwaddr len)
2741 {
2742 if (likely(!attrs.memory)) {
2743 return true;
2744 }
2745 if (memory_region_is_ram(mr)) {
2746 return true;
2747 }
2748 qemu_log_mask(LOG_GUEST_ERROR,
2749 "Invalid access to non-RAM device at "
2750 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2751 "region '%s'\n", addr, len, memory_region_name(mr));
2752 return false;
2753 }
2754
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2755 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2756 const uint8_t *buf,
2757 hwaddr len, hwaddr mr_addr,
2758 hwaddr *l, MemoryRegion *mr)
2759 {
2760 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2761 return MEMTX_ACCESS_ERROR;
2762 }
2763
2764 if (!memory_access_is_direct(mr, true)) {
2765 uint64_t val;
2766 MemTxResult result;
2767 bool release_lock = prepare_mmio_access(mr);
2768
2769 *l = memory_access_size(mr, *l, mr_addr);
2770 /*
2771 * XXX: could force current_cpu to NULL to avoid
2772 * potential bugs
2773 */
2774
2775 /*
2776 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2777 * the buffer by following ldn_he_p().
2778 */
2779 #ifdef QEMU_STATIC_ANALYSIS
2780 assert((*l == 1 && len >= 1) ||
2781 (*l == 2 && len >= 2) ||
2782 (*l == 4 && len >= 4) ||
2783 (*l == 8 && len >= 8));
2784 #endif
2785 val = ldn_he_p(buf, *l);
2786 result = memory_region_dispatch_write(mr, mr_addr, val,
2787 size_memop(*l), attrs);
2788 if (release_lock) {
2789 bql_unlock();
2790 }
2791
2792 return result;
2793 } else {
2794 /* RAM case */
2795 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2796 false, true);
2797
2798 memmove(ram_ptr, buf, *l);
2799 invalidate_and_set_dirty(mr, mr_addr, *l);
2800
2801 return MEMTX_OK;
2802 }
2803 }
2804
2805 /* Called within RCU critical section. */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2806 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2807 MemTxAttrs attrs,
2808 const void *ptr,
2809 hwaddr len, hwaddr mr_addr,
2810 hwaddr l, MemoryRegion *mr)
2811 {
2812 MemTxResult result = MEMTX_OK;
2813 const uint8_t *buf = ptr;
2814
2815 for (;;) {
2816 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2817 mr);
2818
2819 len -= l;
2820 buf += l;
2821 addr += l;
2822
2823 if (!len) {
2824 break;
2825 }
2826
2827 l = len;
2828 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2829 }
2830
2831 return result;
2832 }
2833
2834 /* Called from RCU critical section. */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2835 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2836 const void *buf, hwaddr len)
2837 {
2838 hwaddr l;
2839 hwaddr mr_addr;
2840 MemoryRegion *mr;
2841
2842 l = len;
2843 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2844 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2845 return MEMTX_ACCESS_ERROR;
2846 }
2847 return flatview_write_continue(fv, addr, attrs, buf, len,
2848 mr_addr, l, mr);
2849 }
2850
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2851 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2852 hwaddr len, hwaddr mr_addr,
2853 hwaddr *l,
2854 MemoryRegion *mr)
2855 {
2856 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2857 return MEMTX_ACCESS_ERROR;
2858 }
2859
2860 if (!memory_access_is_direct(mr, false)) {
2861 /* I/O case */
2862 uint64_t val;
2863 MemTxResult result;
2864 bool release_lock = prepare_mmio_access(mr);
2865
2866 *l = memory_access_size(mr, *l, mr_addr);
2867 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2868 attrs);
2869
2870 /*
2871 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2872 * the buffer by following stn_he_p().
2873 */
2874 #ifdef QEMU_STATIC_ANALYSIS
2875 assert((*l == 1 && len >= 1) ||
2876 (*l == 2 && len >= 2) ||
2877 (*l == 4 && len >= 4) ||
2878 (*l == 8 && len >= 8));
2879 #endif
2880 stn_he_p(buf, *l, val);
2881
2882 if (release_lock) {
2883 bql_unlock();
2884 }
2885 return result;
2886 } else {
2887 /* RAM case */
2888 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2889 false, false);
2890
2891 memcpy(buf, ram_ptr, *l);
2892
2893 return MEMTX_OK;
2894 }
2895 }
2896
2897 /* Called within RCU critical section. */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2898 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2899 MemTxAttrs attrs, void *ptr,
2900 hwaddr len, hwaddr mr_addr, hwaddr l,
2901 MemoryRegion *mr)
2902 {
2903 MemTxResult result = MEMTX_OK;
2904 uint8_t *buf = ptr;
2905
2906 fuzz_dma_read_cb(addr, len, mr);
2907 for (;;) {
2908 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2909
2910 len -= l;
2911 buf += l;
2912 addr += l;
2913
2914 if (!len) {
2915 break;
2916 }
2917
2918 l = len;
2919 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2920 }
2921
2922 return result;
2923 }
2924
2925 /* Called from RCU critical section. */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2926 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2927 MemTxAttrs attrs, void *buf, hwaddr len)
2928 {
2929 hwaddr l;
2930 hwaddr mr_addr;
2931 MemoryRegion *mr;
2932
2933 l = len;
2934 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2935 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2936 return MEMTX_ACCESS_ERROR;
2937 }
2938 return flatview_read_continue(fv, addr, attrs, buf, len,
2939 mr_addr, l, mr);
2940 }
2941
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2942 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2943 MemTxAttrs attrs, void *buf, hwaddr len)
2944 {
2945 MemTxResult result = MEMTX_OK;
2946 FlatView *fv;
2947
2948 if (len > 0) {
2949 RCU_READ_LOCK_GUARD();
2950 fv = address_space_to_flatview(as);
2951 result = flatview_read(fv, addr, attrs, buf, len);
2952 }
2953
2954 return result;
2955 }
2956
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2957 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2958 MemTxAttrs attrs,
2959 const void *buf, hwaddr len)
2960 {
2961 MemTxResult result = MEMTX_OK;
2962 FlatView *fv;
2963
2964 if (len > 0) {
2965 RCU_READ_LOCK_GUARD();
2966 fv = address_space_to_flatview(as);
2967 result = flatview_write(fv, addr, attrs, buf, len);
2968 }
2969
2970 return result;
2971 }
2972
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)2973 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2974 void *buf, hwaddr len, bool is_write)
2975 {
2976 if (is_write) {
2977 return address_space_write(as, addr, attrs, buf, len);
2978 } else {
2979 return address_space_read_full(as, addr, attrs, buf, len);
2980 }
2981 }
2982
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)2983 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2984 uint8_t c, hwaddr len, MemTxAttrs attrs)
2985 {
2986 #define FILLBUF_SIZE 512
2987 uint8_t fillbuf[FILLBUF_SIZE];
2988 int l;
2989 MemTxResult error = MEMTX_OK;
2990
2991 memset(fillbuf, c, FILLBUF_SIZE);
2992 while (len > 0) {
2993 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2994 error |= address_space_write(as, addr, attrs, fillbuf, l);
2995 len -= l;
2996 addr += l;
2997 }
2998
2999 return error;
3000 }
3001
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3002 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3003 hwaddr len, bool is_write)
3004 {
3005 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3006 buf, len, is_write);
3007 }
3008
3009 enum write_rom_type {
3010 WRITE_DATA,
3011 FLUSH_CACHE,
3012 };
3013
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3014 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3015 hwaddr addr,
3016 MemTxAttrs attrs,
3017 const void *ptr,
3018 hwaddr len,
3019 enum write_rom_type type)
3020 {
3021 hwaddr l;
3022 uint8_t *ram_ptr;
3023 hwaddr addr1;
3024 MemoryRegion *mr;
3025 const uint8_t *buf = ptr;
3026
3027 RCU_READ_LOCK_GUARD();
3028 while (len > 0) {
3029 l = len;
3030 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3031
3032 if (!(memory_region_is_ram(mr) ||
3033 memory_region_is_romd(mr))) {
3034 l = memory_access_size(mr, l, addr1);
3035 } else {
3036 /* ROM/RAM case */
3037 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3038 switch (type) {
3039 case WRITE_DATA:
3040 memcpy(ram_ptr, buf, l);
3041 invalidate_and_set_dirty(mr, addr1, l);
3042 break;
3043 case FLUSH_CACHE:
3044 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3045 break;
3046 }
3047 }
3048 len -= l;
3049 buf += l;
3050 addr += l;
3051 }
3052 return MEMTX_OK;
3053 }
3054
3055 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3056 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3057 MemTxAttrs attrs,
3058 const void *buf, hwaddr len)
3059 {
3060 return address_space_write_rom_internal(as, addr, attrs,
3061 buf, len, WRITE_DATA);
3062 }
3063
cpu_flush_icache_range(hwaddr start,hwaddr len)3064 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3065 {
3066 /*
3067 * This function should do the same thing as an icache flush that was
3068 * triggered from within the guest. For TCG we are always cache coherent,
3069 * so there is no need to flush anything. For KVM / Xen we need to flush
3070 * the host's instruction cache at least.
3071 */
3072 if (tcg_enabled()) {
3073 return;
3074 }
3075
3076 address_space_write_rom_internal(&address_space_memory,
3077 start, MEMTXATTRS_UNSPECIFIED,
3078 NULL, len, FLUSH_CACHE);
3079 }
3080
3081 /*
3082 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3083 * to detect illegal pointers passed to address_space_unmap.
3084 */
3085 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3086
3087 typedef struct {
3088 uint64_t magic;
3089 MemoryRegion *mr;
3090 hwaddr addr;
3091 size_t len;
3092 uint8_t buffer[];
3093 } BounceBuffer;
3094
3095 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3096 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3097 {
3098 QLIST_REMOVE(client, link);
3099 g_free(client);
3100 }
3101
address_space_notify_map_clients_locked(AddressSpace * as)3102 static void address_space_notify_map_clients_locked(AddressSpace *as)
3103 {
3104 AddressSpaceMapClient *client;
3105
3106 while (!QLIST_EMPTY(&as->map_client_list)) {
3107 client = QLIST_FIRST(&as->map_client_list);
3108 qemu_bh_schedule(client->bh);
3109 address_space_unregister_map_client_do(client);
3110 }
3111 }
3112
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3113 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3114 {
3115 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3116
3117 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3118 client->bh = bh;
3119 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3120 /* Write map_client_list before reading bounce_buffer_size. */
3121 smp_mb();
3122 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3123 address_space_notify_map_clients_locked(as);
3124 }
3125 }
3126
cpu_exec_init_all(void)3127 void cpu_exec_init_all(void)
3128 {
3129 qemu_mutex_init(&ram_list.mutex);
3130 /* The data structures we set up here depend on knowing the page size,
3131 * so no more changes can be made after this point.
3132 * In an ideal world, nothing we did before we had finished the
3133 * machine setup would care about the target page size, and we could
3134 * do this much later, rather than requiring board models to state
3135 * up front what their requirements are.
3136 */
3137 finalize_target_page_bits();
3138 io_mem_init();
3139 memory_map_init();
3140 }
3141
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3142 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3143 {
3144 AddressSpaceMapClient *client;
3145
3146 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3147 QLIST_FOREACH(client, &as->map_client_list, link) {
3148 if (client->bh == bh) {
3149 address_space_unregister_map_client_do(client);
3150 break;
3151 }
3152 }
3153 }
3154
address_space_notify_map_clients(AddressSpace * as)3155 static void address_space_notify_map_clients(AddressSpace *as)
3156 {
3157 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3158 address_space_notify_map_clients_locked(as);
3159 }
3160
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3161 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3162 bool is_write, MemTxAttrs attrs)
3163 {
3164 MemoryRegion *mr;
3165 hwaddr l, xlat;
3166
3167 while (len > 0) {
3168 l = len;
3169 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3170 if (!memory_access_is_direct(mr, is_write)) {
3171 l = memory_access_size(mr, l, addr);
3172 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3173 return false;
3174 }
3175 }
3176
3177 len -= l;
3178 addr += l;
3179 }
3180 return true;
3181 }
3182
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3183 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3184 hwaddr len, bool is_write,
3185 MemTxAttrs attrs)
3186 {
3187 FlatView *fv;
3188
3189 RCU_READ_LOCK_GUARD();
3190 fv = address_space_to_flatview(as);
3191 return flatview_access_valid(fv, addr, len, is_write, attrs);
3192 }
3193
3194 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3195 flatview_extend_translation(FlatView *fv, hwaddr addr,
3196 hwaddr target_len,
3197 MemoryRegion *mr, hwaddr base, hwaddr len,
3198 bool is_write, MemTxAttrs attrs)
3199 {
3200 hwaddr done = 0;
3201 hwaddr xlat;
3202 MemoryRegion *this_mr;
3203
3204 for (;;) {
3205 target_len -= len;
3206 addr += len;
3207 done += len;
3208 if (target_len == 0) {
3209 return done;
3210 }
3211
3212 len = target_len;
3213 this_mr = flatview_translate(fv, addr, &xlat,
3214 &len, is_write, attrs);
3215 if (this_mr != mr || xlat != base + done) {
3216 return done;
3217 }
3218 }
3219 }
3220
3221 /* Map a physical memory region into a host virtual address.
3222 * May map a subset of the requested range, given by and returned in *plen.
3223 * May return NULL if resources needed to perform the mapping are exhausted.
3224 * Use only for reads OR writes - not for read-modify-write operations.
3225 * Use address_space_register_map_client() to know when retrying the map
3226 * operation is likely to succeed.
3227 */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3228 void *address_space_map(AddressSpace *as,
3229 hwaddr addr,
3230 hwaddr *plen,
3231 bool is_write,
3232 MemTxAttrs attrs)
3233 {
3234 hwaddr len = *plen;
3235 hwaddr l, xlat;
3236 MemoryRegion *mr;
3237 FlatView *fv;
3238
3239 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3240
3241 if (len == 0) {
3242 return NULL;
3243 }
3244
3245 l = len;
3246 RCU_READ_LOCK_GUARD();
3247 fv = address_space_to_flatview(as);
3248 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3249
3250 if (!memory_access_is_direct(mr, is_write)) {
3251 size_t used = qatomic_read(&as->bounce_buffer_size);
3252 for (;;) {
3253 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3254 size_t new_size = used + alloc;
3255 size_t actual =
3256 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3257 if (actual == used) {
3258 l = alloc;
3259 break;
3260 }
3261 used = actual;
3262 }
3263
3264 if (l == 0) {
3265 *plen = 0;
3266 return NULL;
3267 }
3268
3269 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3270 bounce->magic = BOUNCE_BUFFER_MAGIC;
3271 memory_region_ref(mr);
3272 bounce->mr = mr;
3273 bounce->addr = addr;
3274 bounce->len = l;
3275
3276 if (!is_write) {
3277 flatview_read(fv, addr, attrs,
3278 bounce->buffer, l);
3279 }
3280
3281 *plen = l;
3282 return bounce->buffer;
3283 }
3284
3285 memory_region_ref(mr);
3286 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3287 l, is_write, attrs);
3288 fuzz_dma_read_cb(addr, *plen, mr);
3289 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3290 }
3291
3292 /* Unmaps a memory region previously mapped by address_space_map().
3293 * Will also mark the memory as dirty if is_write is true. access_len gives
3294 * the amount of memory that was actually read or written by the caller.
3295 */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3296 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3297 bool is_write, hwaddr access_len)
3298 {
3299 MemoryRegion *mr;
3300 ram_addr_t addr1;
3301
3302 mr = memory_region_from_host(buffer, &addr1);
3303 if (mr != NULL) {
3304 if (is_write) {
3305 invalidate_and_set_dirty(mr, addr1, access_len);
3306 }
3307 if (xen_enabled()) {
3308 xen_invalidate_map_cache_entry(buffer);
3309 }
3310 memory_region_unref(mr);
3311 return;
3312 }
3313
3314
3315 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3316 assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3317
3318 if (is_write) {
3319 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3320 bounce->buffer, access_len);
3321 }
3322
3323 qatomic_sub(&as->bounce_buffer_size, bounce->len);
3324 bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3325 memory_region_unref(bounce->mr);
3326 g_free(bounce);
3327 /* Write bounce_buffer_size before reading map_client_list. */
3328 smp_mb();
3329 address_space_notify_map_clients(as);
3330 }
3331
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3332 void *cpu_physical_memory_map(hwaddr addr,
3333 hwaddr *plen,
3334 bool is_write)
3335 {
3336 return address_space_map(&address_space_memory, addr, plen, is_write,
3337 MEMTXATTRS_UNSPECIFIED);
3338 }
3339
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3340 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3341 bool is_write, hwaddr access_len)
3342 {
3343 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3344 }
3345
3346 #define ARG1_DECL AddressSpace *as
3347 #define ARG1 as
3348 #define SUFFIX
3349 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3350 #define RCU_READ_LOCK(...) rcu_read_lock()
3351 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3352 #include "memory_ldst.c.inc"
3353
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3354 int64_t address_space_cache_init(MemoryRegionCache *cache,
3355 AddressSpace *as,
3356 hwaddr addr,
3357 hwaddr len,
3358 bool is_write)
3359 {
3360 AddressSpaceDispatch *d;
3361 hwaddr l;
3362 MemoryRegion *mr;
3363 Int128 diff;
3364
3365 assert(len > 0);
3366
3367 l = len;
3368 cache->fv = address_space_get_flatview(as);
3369 d = flatview_to_dispatch(cache->fv);
3370 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3371
3372 /*
3373 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3374 * Take that into account to compute how many bytes are there between
3375 * cache->xlat and the end of the section.
3376 */
3377 diff = int128_sub(cache->mrs.size,
3378 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3379 l = int128_get64(int128_min(diff, int128_make64(l)));
3380
3381 mr = cache->mrs.mr;
3382 memory_region_ref(mr);
3383 if (memory_access_is_direct(mr, is_write)) {
3384 /* We don't care about the memory attributes here as we're only
3385 * doing this if we found actual RAM, which behaves the same
3386 * regardless of attributes; so UNSPECIFIED is fine.
3387 */
3388 l = flatview_extend_translation(cache->fv, addr, len, mr,
3389 cache->xlat, l, is_write,
3390 MEMTXATTRS_UNSPECIFIED);
3391 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3392 is_write);
3393 } else {
3394 cache->ptr = NULL;
3395 }
3396
3397 cache->len = l;
3398 cache->is_write = is_write;
3399 return l;
3400 }
3401
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3402 void address_space_cache_invalidate(MemoryRegionCache *cache,
3403 hwaddr addr,
3404 hwaddr access_len)
3405 {
3406 assert(cache->is_write);
3407 if (likely(cache->ptr)) {
3408 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3409 }
3410 }
3411
address_space_cache_destroy(MemoryRegionCache * cache)3412 void address_space_cache_destroy(MemoryRegionCache *cache)
3413 {
3414 if (!cache->mrs.mr) {
3415 return;
3416 }
3417
3418 if (xen_enabled()) {
3419 xen_invalidate_map_cache_entry(cache->ptr);
3420 }
3421 memory_region_unref(cache->mrs.mr);
3422 flatview_unref(cache->fv);
3423 cache->mrs.mr = NULL;
3424 cache->fv = NULL;
3425 }
3426
3427 /* Called from RCU critical section. This function has the same
3428 * semantics as address_space_translate, but it only works on a
3429 * predefined range of a MemoryRegion that was mapped with
3430 * address_space_cache_init.
3431 */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3432 static inline MemoryRegion *address_space_translate_cached(
3433 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3434 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3435 {
3436 MemoryRegionSection section;
3437 MemoryRegion *mr;
3438 IOMMUMemoryRegion *iommu_mr;
3439 AddressSpace *target_as;
3440
3441 assert(!cache->ptr);
3442 *xlat = addr + cache->xlat;
3443
3444 mr = cache->mrs.mr;
3445 iommu_mr = memory_region_get_iommu(mr);
3446 if (!iommu_mr) {
3447 /* MMIO region. */
3448 return mr;
3449 }
3450
3451 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3452 NULL, is_write, true,
3453 &target_as, attrs);
3454 return section.mr;
3455 }
3456
3457 /* Called within RCU critical section. */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3458 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3459 const void *ptr,
3460 hwaddr len,
3461 hwaddr mr_addr,
3462 hwaddr l,
3463 MemoryRegion *mr)
3464 {
3465 MemTxResult result = MEMTX_OK;
3466 const uint8_t *buf = ptr;
3467
3468 for (;;) {
3469 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3470 mr);
3471
3472 len -= l;
3473 buf += l;
3474 mr_addr += l;
3475
3476 if (!len) {
3477 break;
3478 }
3479
3480 l = len;
3481 }
3482
3483 return result;
3484 }
3485
3486 /* Called within RCU critical section. */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3487 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3488 void *ptr, hwaddr len,
3489 hwaddr mr_addr, hwaddr l,
3490 MemoryRegion *mr)
3491 {
3492 MemTxResult result = MEMTX_OK;
3493 uint8_t *buf = ptr;
3494
3495 for (;;) {
3496 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3497 len -= l;
3498 buf += l;
3499 mr_addr += l;
3500
3501 if (!len) {
3502 break;
3503 }
3504 l = len;
3505 }
3506
3507 return result;
3508 }
3509
3510 /* Called from RCU critical section. address_space_read_cached uses this
3511 * out of line function when the target is an MMIO or IOMMU region.
3512 */
3513 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3514 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3515 void *buf, hwaddr len)
3516 {
3517 hwaddr mr_addr, l;
3518 MemoryRegion *mr;
3519
3520 l = len;
3521 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3522 MEMTXATTRS_UNSPECIFIED);
3523 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3524 buf, len, mr_addr, l, mr);
3525 }
3526
3527 /* Called from RCU critical section. address_space_write_cached uses this
3528 * out of line function when the target is an MMIO or IOMMU region.
3529 */
3530 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3531 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3532 const void *buf, hwaddr len)
3533 {
3534 hwaddr mr_addr, l;
3535 MemoryRegion *mr;
3536
3537 l = len;
3538 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3539 MEMTXATTRS_UNSPECIFIED);
3540 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3541 buf, len, mr_addr, l, mr);
3542 }
3543
3544 #define ARG1_DECL MemoryRegionCache *cache
3545 #define ARG1 cache
3546 #define SUFFIX _cached_slow
3547 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3548 #define RCU_READ_LOCK() ((void)0)
3549 #define RCU_READ_UNLOCK() ((void)0)
3550 #include "memory_ldst.c.inc"
3551
3552 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3553 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3554 void *ptr, size_t len, bool is_write)
3555 {
3556 hwaddr phys_addr;
3557 vaddr l, page;
3558 uint8_t *buf = ptr;
3559
3560 cpu_synchronize_state(cpu);
3561 while (len > 0) {
3562 int asidx;
3563 MemTxAttrs attrs;
3564 MemTxResult res;
3565
3566 page = addr & TARGET_PAGE_MASK;
3567 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3568 asidx = cpu_asidx_from_attrs(cpu, attrs);
3569 /* if no physical page mapped, return an error */
3570 if (phys_addr == -1)
3571 return -1;
3572 l = (page + TARGET_PAGE_SIZE) - addr;
3573 if (l > len)
3574 l = len;
3575 phys_addr += (addr & ~TARGET_PAGE_MASK);
3576 if (is_write) {
3577 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3578 attrs, buf, l);
3579 } else {
3580 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3581 attrs, buf, l);
3582 }
3583 if (res != MEMTX_OK) {
3584 return -1;
3585 }
3586 len -= l;
3587 buf += l;
3588 addr += l;
3589 }
3590 return 0;
3591 }
3592
cpu_physical_memory_is_io(hwaddr phys_addr)3593 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3594 {
3595 MemoryRegion*mr;
3596 hwaddr l = 1;
3597
3598 RCU_READ_LOCK_GUARD();
3599 mr = address_space_translate(&address_space_memory,
3600 phys_addr, &phys_addr, &l, false,
3601 MEMTXATTRS_UNSPECIFIED);
3602
3603 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3604 }
3605
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3606 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3607 {
3608 RAMBlock *block;
3609 int ret = 0;
3610
3611 RCU_READ_LOCK_GUARD();
3612 RAMBLOCK_FOREACH(block) {
3613 ret = func(block, opaque);
3614 if (ret) {
3615 break;
3616 }
3617 }
3618 return ret;
3619 }
3620
3621 /*
3622 * Unmap pages of memory from start to start+length such that
3623 * they a) read as 0, b) Trigger whatever fault mechanism
3624 * the OS provides for postcopy.
3625 * The pages must be unmapped by the end of the function.
3626 * Returns: 0 on success, none-0 on failure
3627 *
3628 */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3629 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3630 {
3631 int ret = -1;
3632
3633 uint8_t *host_startaddr = rb->host + start;
3634
3635 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3636 error_report("%s: Unaligned start address: %p",
3637 __func__, host_startaddr);
3638 goto err;
3639 }
3640
3641 if ((start + length) <= rb->max_length) {
3642 bool need_madvise, need_fallocate;
3643 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3644 error_report("%s: Unaligned length: %zx", __func__, length);
3645 goto err;
3646 }
3647
3648 errno = ENOTSUP; /* If we are missing MADVISE etc */
3649
3650 /* The logic here is messy;
3651 * madvise DONTNEED fails for hugepages
3652 * fallocate works on hugepages and shmem
3653 * shared anonymous memory requires madvise REMOVE
3654 */
3655 need_madvise = (rb->page_size == qemu_real_host_page_size());
3656 need_fallocate = rb->fd != -1;
3657 if (need_fallocate) {
3658 /* For a file, this causes the area of the file to be zero'd
3659 * if read, and for hugetlbfs also causes it to be unmapped
3660 * so a userfault will trigger.
3661 */
3662 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3663 /*
3664 * fallocate() will fail with readonly files. Let's print a
3665 * proper error message.
3666 */
3667 if (rb->flags & RAM_READONLY_FD) {
3668 error_report("%s: Discarding RAM with readonly files is not"
3669 " supported", __func__);
3670 goto err;
3671
3672 }
3673 /*
3674 * We'll discard data from the actual file, even though we only
3675 * have a MAP_PRIVATE mapping, possibly messing with other
3676 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3677 * change that behavior whithout violating the promised
3678 * semantics of ram_block_discard_range().
3679 *
3680 * Only warn, because it works as long as nobody else uses that
3681 * file.
3682 */
3683 if (!qemu_ram_is_shared(rb)) {
3684 warn_report_once("%s: Discarding RAM"
3685 " in private file mappings is possibly"
3686 " dangerous, because it will modify the"
3687 " underlying file and will affect other"
3688 " users of the file", __func__);
3689 }
3690
3691 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3692 start, length);
3693 if (ret) {
3694 ret = -errno;
3695 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3696 __func__, rb->idstr, start, length, ret);
3697 goto err;
3698 }
3699 #else
3700 ret = -ENOSYS;
3701 error_report("%s: fallocate not available/file"
3702 "%s:%" PRIx64 " +%zx (%d)",
3703 __func__, rb->idstr, start, length, ret);
3704 goto err;
3705 #endif
3706 }
3707 if (need_madvise) {
3708 /* For normal RAM this causes it to be unmapped,
3709 * for shared memory it causes the local mapping to disappear
3710 * and to fall back on the file contents (which we just
3711 * fallocate'd away).
3712 */
3713 #if defined(CONFIG_MADVISE)
3714 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3715 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3716 } else {
3717 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3718 }
3719 if (ret) {
3720 ret = -errno;
3721 error_report("%s: Failed to discard range "
3722 "%s:%" PRIx64 " +%zx (%d)",
3723 __func__, rb->idstr, start, length, ret);
3724 goto err;
3725 }
3726 #else
3727 ret = -ENOSYS;
3728 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3729 __func__, rb->idstr, start, length, ret);
3730 goto err;
3731 #endif
3732 }
3733 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3734 need_madvise, need_fallocate, ret);
3735 } else {
3736 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3737 __func__, rb->idstr, start, length, rb->max_length);
3738 }
3739
3740 err:
3741 return ret;
3742 }
3743
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3744 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3745 size_t length)
3746 {
3747 int ret = -1;
3748
3749 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3750 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3751 start, length);
3752
3753 if (ret) {
3754 ret = -errno;
3755 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3756 __func__, rb->idstr, start, length, ret);
3757 }
3758 #else
3759 ret = -ENOSYS;
3760 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3761 __func__, rb->idstr, start, length, ret);
3762 #endif
3763
3764 return ret;
3765 }
3766
ramblock_is_pmem(RAMBlock * rb)3767 bool ramblock_is_pmem(RAMBlock *rb)
3768 {
3769 return rb->flags & RAM_PMEM;
3770 }
3771
mtree_print_phys_entries(int start,int end,int skip,int ptr)3772 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3773 {
3774 if (start == end - 1) {
3775 qemu_printf("\t%3d ", start);
3776 } else {
3777 qemu_printf("\t%3d..%-3d ", start, end - 1);
3778 }
3779 qemu_printf(" skip=%d ", skip);
3780 if (ptr == PHYS_MAP_NODE_NIL) {
3781 qemu_printf(" ptr=NIL");
3782 } else if (!skip) {
3783 qemu_printf(" ptr=#%d", ptr);
3784 } else {
3785 qemu_printf(" ptr=[%d]", ptr);
3786 }
3787 qemu_printf("\n");
3788 }
3789
3790 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3791 int128_sub((size), int128_one())) : 0)
3792
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3793 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3794 {
3795 int i;
3796
3797 qemu_printf(" Dispatch\n");
3798 qemu_printf(" Physical sections\n");
3799
3800 for (i = 0; i < d->map.sections_nb; ++i) {
3801 MemoryRegionSection *s = d->map.sections + i;
3802 const char *names[] = { " [unassigned]", " [not dirty]",
3803 " [ROM]", " [watch]" };
3804
3805 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3806 " %s%s%s%s%s",
3807 i,
3808 s->offset_within_address_space,
3809 s->offset_within_address_space + MR_SIZE(s->size),
3810 s->mr->name ? s->mr->name : "(noname)",
3811 i < ARRAY_SIZE(names) ? names[i] : "",
3812 s->mr == root ? " [ROOT]" : "",
3813 s == d->mru_section ? " [MRU]" : "",
3814 s->mr->is_iommu ? " [iommu]" : "");
3815
3816 if (s->mr->alias) {
3817 qemu_printf(" alias=%s", s->mr->alias->name ?
3818 s->mr->alias->name : "noname");
3819 }
3820 qemu_printf("\n");
3821 }
3822
3823 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3824 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3825 for (i = 0; i < d->map.nodes_nb; ++i) {
3826 int j, jprev;
3827 PhysPageEntry prev;
3828 Node *n = d->map.nodes + i;
3829
3830 qemu_printf(" [%d]\n", i);
3831
3832 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3833 PhysPageEntry *pe = *n + j;
3834
3835 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3836 continue;
3837 }
3838
3839 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3840
3841 jprev = j;
3842 prev = *pe;
3843 }
3844
3845 if (jprev != ARRAY_SIZE(*n)) {
3846 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3847 }
3848 }
3849 }
3850
3851 /* Require any discards to work. */
3852 static unsigned int ram_block_discard_required_cnt;
3853 /* Require only coordinated discards to work. */
3854 static unsigned int ram_block_coordinated_discard_required_cnt;
3855 /* Disable any discards. */
3856 static unsigned int ram_block_discard_disabled_cnt;
3857 /* Disable only uncoordinated discards. */
3858 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3859 static QemuMutex ram_block_discard_disable_mutex;
3860
ram_block_discard_disable_mutex_lock(void)3861 static void ram_block_discard_disable_mutex_lock(void)
3862 {
3863 static gsize initialized;
3864
3865 if (g_once_init_enter(&initialized)) {
3866 qemu_mutex_init(&ram_block_discard_disable_mutex);
3867 g_once_init_leave(&initialized, 1);
3868 }
3869 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3870 }
3871
ram_block_discard_disable_mutex_unlock(void)3872 static void ram_block_discard_disable_mutex_unlock(void)
3873 {
3874 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3875 }
3876
ram_block_discard_disable(bool state)3877 int ram_block_discard_disable(bool state)
3878 {
3879 int ret = 0;
3880
3881 ram_block_discard_disable_mutex_lock();
3882 if (!state) {
3883 ram_block_discard_disabled_cnt--;
3884 } else if (ram_block_discard_required_cnt ||
3885 ram_block_coordinated_discard_required_cnt) {
3886 ret = -EBUSY;
3887 } else {
3888 ram_block_discard_disabled_cnt++;
3889 }
3890 ram_block_discard_disable_mutex_unlock();
3891 return ret;
3892 }
3893
ram_block_uncoordinated_discard_disable(bool state)3894 int ram_block_uncoordinated_discard_disable(bool state)
3895 {
3896 int ret = 0;
3897
3898 ram_block_discard_disable_mutex_lock();
3899 if (!state) {
3900 ram_block_uncoordinated_discard_disabled_cnt--;
3901 } else if (ram_block_discard_required_cnt) {
3902 ret = -EBUSY;
3903 } else {
3904 ram_block_uncoordinated_discard_disabled_cnt++;
3905 }
3906 ram_block_discard_disable_mutex_unlock();
3907 return ret;
3908 }
3909
ram_block_discard_require(bool state)3910 int ram_block_discard_require(bool state)
3911 {
3912 int ret = 0;
3913
3914 ram_block_discard_disable_mutex_lock();
3915 if (!state) {
3916 ram_block_discard_required_cnt--;
3917 } else if (ram_block_discard_disabled_cnt ||
3918 ram_block_uncoordinated_discard_disabled_cnt) {
3919 ret = -EBUSY;
3920 } else {
3921 ram_block_discard_required_cnt++;
3922 }
3923 ram_block_discard_disable_mutex_unlock();
3924 return ret;
3925 }
3926
ram_block_coordinated_discard_require(bool state)3927 int ram_block_coordinated_discard_require(bool state)
3928 {
3929 int ret = 0;
3930
3931 ram_block_discard_disable_mutex_lock();
3932 if (!state) {
3933 ram_block_coordinated_discard_required_cnt--;
3934 } else if (ram_block_discard_disabled_cnt) {
3935 ret = -EBUSY;
3936 } else {
3937 ram_block_coordinated_discard_required_cnt++;
3938 }
3939 ram_block_discard_disable_mutex_unlock();
3940 return ret;
3941 }
3942
ram_block_discard_is_disabled(void)3943 bool ram_block_discard_is_disabled(void)
3944 {
3945 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3946 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3947 }
3948
ram_block_discard_is_required(void)3949 bool ram_block_discard_is_required(void)
3950 {
3951 return qatomic_read(&ram_block_discard_required_cnt) ||
3952 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3953 }
3954