1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 34 #include "exec/exec-all.h" 35 #include "exec/page-protection.h" 36 #include "exec/target_page.h" 37 #include "hw/qdev-core.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/boards.h" 40 #include "sysemu/xen.h" 41 #include "sysemu/kvm.h" 42 #include "sysemu/tcg.h" 43 #include "sysemu/qtest.h" 44 #include "qemu/timer.h" 45 #include "qemu/config-file.h" 46 #include "qemu/error-report.h" 47 #include "qemu/qemu-print.h" 48 #include "qemu/log.h" 49 #include "qemu/memalign.h" 50 #include "exec/memory.h" 51 #include "exec/ioport.h" 52 #include "sysemu/dma.h" 53 #include "sysemu/hostmem.h" 54 #include "sysemu/hw_accel.h" 55 #include "sysemu/xen-mapcache.h" 56 #include "trace.h" 57 58 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 59 #include <linux/falloc.h> 60 #endif 61 62 #include "qemu/rcu_queue.h" 63 #include "qemu/main-loop.h" 64 #include "exec/translate-all.h" 65 #include "sysemu/replay.h" 66 67 #include "exec/memory-internal.h" 68 #include "exec/ram_addr.h" 69 70 #include "qemu/pmem.h" 71 72 #include "migration/vmstate.h" 73 74 #include "qemu/range.h" 75 #ifndef _WIN32 76 #include "qemu/mmap-alloc.h" 77 #endif 78 79 #include "monitor/monitor.h" 80 81 #ifdef CONFIG_LIBDAXCTL 82 #include <daxctl/libdaxctl.h> 83 #endif 84 85 //#define DEBUG_SUBPAGE 86 87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 88 * are protected by the ramlist lock. 89 */ 90 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 91 92 static MemoryRegion *system_memory; 93 static MemoryRegion *system_io; 94 95 AddressSpace address_space_io; 96 AddressSpace address_space_memory; 97 98 static MemoryRegion io_mem_unassigned; 99 100 typedef struct PhysPageEntry PhysPageEntry; 101 102 struct PhysPageEntry { 103 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 104 uint32_t skip : 6; 105 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 106 uint32_t ptr : 26; 107 }; 108 109 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 110 111 /* Size of the L2 (and L3, etc) page tables. */ 112 #define ADDR_SPACE_BITS 64 113 114 #define P_L2_BITS 9 115 #define P_L2_SIZE (1 << P_L2_BITS) 116 117 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 118 119 typedef PhysPageEntry Node[P_L2_SIZE]; 120 121 typedef struct PhysPageMap { 122 struct rcu_head rcu; 123 124 unsigned sections_nb; 125 unsigned sections_nb_alloc; 126 unsigned nodes_nb; 127 unsigned nodes_nb_alloc; 128 Node *nodes; 129 MemoryRegionSection *sections; 130 } PhysPageMap; 131 132 struct AddressSpaceDispatch { 133 MemoryRegionSection *mru_section; 134 /* This is a multi-level map on the physical address space. 135 * The bottom level has pointers to MemoryRegionSections. 136 */ 137 PhysPageEntry phys_map; 138 PhysPageMap map; 139 }; 140 141 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 142 typedef struct subpage_t { 143 MemoryRegion iomem; 144 FlatView *fv; 145 hwaddr base; 146 uint16_t sub_section[]; 147 } subpage_t; 148 149 #define PHYS_SECTION_UNASSIGNED 0 150 151 static void io_mem_init(void); 152 static void memory_map_init(void); 153 static void tcg_log_global_after_sync(MemoryListener *listener); 154 static void tcg_commit(MemoryListener *listener); 155 156 /** 157 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 158 * @cpu: the CPU whose AddressSpace this is 159 * @as: the AddressSpace itself 160 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 161 * @tcg_as_listener: listener for tracking changes to the AddressSpace 162 */ 163 typedef struct CPUAddressSpace { 164 CPUState *cpu; 165 AddressSpace *as; 166 struct AddressSpaceDispatch *memory_dispatch; 167 MemoryListener tcg_as_listener; 168 } CPUAddressSpace; 169 170 struct DirtyBitmapSnapshot { 171 ram_addr_t start; 172 ram_addr_t end; 173 unsigned long dirty[]; 174 }; 175 176 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 177 { 178 static unsigned alloc_hint = 16; 179 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 180 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 181 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 182 alloc_hint = map->nodes_nb_alloc; 183 } 184 } 185 186 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 187 { 188 unsigned i; 189 uint32_t ret; 190 PhysPageEntry e; 191 PhysPageEntry *p; 192 193 ret = map->nodes_nb++; 194 p = map->nodes[ret]; 195 assert(ret != PHYS_MAP_NODE_NIL); 196 assert(ret != map->nodes_nb_alloc); 197 198 e.skip = leaf ? 0 : 1; 199 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 200 for (i = 0; i < P_L2_SIZE; ++i) { 201 memcpy(&p[i], &e, sizeof(e)); 202 } 203 return ret; 204 } 205 206 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 207 hwaddr *index, uint64_t *nb, uint16_t leaf, 208 int level) 209 { 210 PhysPageEntry *p; 211 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 212 213 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 214 lp->ptr = phys_map_node_alloc(map, level == 0); 215 } 216 p = map->nodes[lp->ptr]; 217 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 218 219 while (*nb && lp < &p[P_L2_SIZE]) { 220 if ((*index & (step - 1)) == 0 && *nb >= step) { 221 lp->skip = 0; 222 lp->ptr = leaf; 223 *index += step; 224 *nb -= step; 225 } else { 226 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 227 } 228 ++lp; 229 } 230 } 231 232 static void phys_page_set(AddressSpaceDispatch *d, 233 hwaddr index, uint64_t nb, 234 uint16_t leaf) 235 { 236 /* Wildly overreserve - it doesn't matter much. */ 237 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 238 239 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 240 } 241 242 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 243 * and update our entry so we can skip it and go directly to the destination. 244 */ 245 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 246 { 247 unsigned valid_ptr = P_L2_SIZE; 248 int valid = 0; 249 PhysPageEntry *p; 250 int i; 251 252 if (lp->ptr == PHYS_MAP_NODE_NIL) { 253 return; 254 } 255 256 p = nodes[lp->ptr]; 257 for (i = 0; i < P_L2_SIZE; i++) { 258 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 259 continue; 260 } 261 262 valid_ptr = i; 263 valid++; 264 if (p[i].skip) { 265 phys_page_compact(&p[i], nodes); 266 } 267 } 268 269 /* We can only compress if there's only one child. */ 270 if (valid != 1) { 271 return; 272 } 273 274 assert(valid_ptr < P_L2_SIZE); 275 276 /* Don't compress if it won't fit in the # of bits we have. */ 277 if (P_L2_LEVELS >= (1 << 6) && 278 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 279 return; 280 } 281 282 lp->ptr = p[valid_ptr].ptr; 283 if (!p[valid_ptr].skip) { 284 /* If our only child is a leaf, make this a leaf. */ 285 /* By design, we should have made this node a leaf to begin with so we 286 * should never reach here. 287 * But since it's so simple to handle this, let's do it just in case we 288 * change this rule. 289 */ 290 lp->skip = 0; 291 } else { 292 lp->skip += p[valid_ptr].skip; 293 } 294 } 295 296 void address_space_dispatch_compact(AddressSpaceDispatch *d) 297 { 298 if (d->phys_map.skip) { 299 phys_page_compact(&d->phys_map, d->map.nodes); 300 } 301 } 302 303 static inline bool section_covers_addr(const MemoryRegionSection *section, 304 hwaddr addr) 305 { 306 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 307 * the section must cover the entire address space. 308 */ 309 return int128_gethi(section->size) || 310 range_covers_byte(section->offset_within_address_space, 311 int128_getlo(section->size), addr); 312 } 313 314 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 315 { 316 PhysPageEntry lp = d->phys_map, *p; 317 Node *nodes = d->map.nodes; 318 MemoryRegionSection *sections = d->map.sections; 319 hwaddr index = addr >> TARGET_PAGE_BITS; 320 int i; 321 322 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 323 if (lp.ptr == PHYS_MAP_NODE_NIL) { 324 return §ions[PHYS_SECTION_UNASSIGNED]; 325 } 326 p = nodes[lp.ptr]; 327 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 328 } 329 330 if (section_covers_addr(§ions[lp.ptr], addr)) { 331 return §ions[lp.ptr]; 332 } else { 333 return §ions[PHYS_SECTION_UNASSIGNED]; 334 } 335 } 336 337 /* Called from RCU critical section */ 338 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 339 hwaddr addr, 340 bool resolve_subpage) 341 { 342 MemoryRegionSection *section = qatomic_read(&d->mru_section); 343 subpage_t *subpage; 344 345 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 346 !section_covers_addr(section, addr)) { 347 section = phys_page_find(d, addr); 348 qatomic_set(&d->mru_section, section); 349 } 350 if (resolve_subpage && section->mr->subpage) { 351 subpage = container_of(section->mr, subpage_t, iomem); 352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 353 } 354 return section; 355 } 356 357 /* Called from RCU critical section */ 358 static MemoryRegionSection * 359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 360 hwaddr *plen, bool resolve_subpage) 361 { 362 MemoryRegionSection *section; 363 MemoryRegion *mr; 364 Int128 diff; 365 366 section = address_space_lookup_region(d, addr, resolve_subpage); 367 /* Compute offset within MemoryRegionSection */ 368 addr -= section->offset_within_address_space; 369 370 /* Compute offset within MemoryRegion */ 371 *xlat = addr + section->offset_within_region; 372 373 mr = section->mr; 374 375 /* MMIO registers can be expected to perform full-width accesses based only 376 * on their address, without considering adjacent registers that could 377 * decode to completely different MemoryRegions. When such registers 378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 379 * regions overlap wildly. For this reason we cannot clamp the accesses 380 * here. 381 * 382 * If the length is small (as is the case for address_space_ldl/stl), 383 * everything works fine. If the incoming length is large, however, 384 * the caller really has to do the clamping through memory_access_size. 385 */ 386 if (memory_region_is_ram(mr)) { 387 diff = int128_sub(section->size, int128_make64(addr)); 388 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 389 } 390 return section; 391 } 392 393 /** 394 * address_space_translate_iommu - translate an address through an IOMMU 395 * memory region and then through the target address space. 396 * 397 * @iommu_mr: the IOMMU memory region that we start the translation from 398 * @addr: the address to be translated through the MMU 399 * @xlat: the translated address offset within the destination memory region. 400 * It cannot be %NULL. 401 * @plen_out: valid read/write length of the translated address. It 402 * cannot be %NULL. 403 * @page_mask_out: page mask for the translated address. This 404 * should only be meaningful for IOMMU translated 405 * addresses, since there may be huge pages that this bit 406 * would tell. It can be %NULL if we don't care about it. 407 * @is_write: whether the translation operation is for write 408 * @is_mmio: whether this can be MMIO, set true if it can 409 * @target_as: the address space targeted by the IOMMU 410 * @attrs: transaction attributes 411 * 412 * This function is called from RCU critical section. It is the common 413 * part of flatview_do_translate and address_space_translate_cached. 414 */ 415 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 416 hwaddr *xlat, 417 hwaddr *plen_out, 418 hwaddr *page_mask_out, 419 bool is_write, 420 bool is_mmio, 421 AddressSpace **target_as, 422 MemTxAttrs attrs) 423 { 424 MemoryRegionSection *section; 425 hwaddr page_mask = (hwaddr)-1; 426 427 do { 428 hwaddr addr = *xlat; 429 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 430 int iommu_idx = 0; 431 IOMMUTLBEntry iotlb; 432 433 if (imrc->attrs_to_index) { 434 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 435 } 436 437 iotlb = imrc->translate(iommu_mr, addr, is_write ? 438 IOMMU_WO : IOMMU_RO, iommu_idx); 439 440 if (!(iotlb.perm & (1 << is_write))) { 441 goto unassigned; 442 } 443 444 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 445 | (addr & iotlb.addr_mask)); 446 page_mask &= iotlb.addr_mask; 447 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 448 *target_as = iotlb.target_as; 449 450 section = address_space_translate_internal( 451 address_space_to_dispatch(iotlb.target_as), addr, xlat, 452 plen_out, is_mmio); 453 454 iommu_mr = memory_region_get_iommu(section->mr); 455 } while (unlikely(iommu_mr)); 456 457 if (page_mask_out) { 458 *page_mask_out = page_mask; 459 } 460 return *section; 461 462 unassigned: 463 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 464 } 465 466 /** 467 * flatview_do_translate - translate an address in FlatView 468 * 469 * @fv: the flat view that we want to translate on 470 * @addr: the address to be translated in above address space 471 * @xlat: the translated address offset within memory region. It 472 * cannot be @NULL. 473 * @plen_out: valid read/write length of the translated address. It 474 * can be @NULL when we don't care about it. 475 * @page_mask_out: page mask for the translated address. This 476 * should only be meaningful for IOMMU translated 477 * addresses, since there may be huge pages that this bit 478 * would tell. It can be @NULL if we don't care about it. 479 * @is_write: whether the translation operation is for write 480 * @is_mmio: whether this can be MMIO, set true if it can 481 * @target_as: the address space targeted by the IOMMU 482 * @attrs: memory transaction attributes 483 * 484 * This function is called from RCU critical section 485 */ 486 static MemoryRegionSection flatview_do_translate(FlatView *fv, 487 hwaddr addr, 488 hwaddr *xlat, 489 hwaddr *plen_out, 490 hwaddr *page_mask_out, 491 bool is_write, 492 bool is_mmio, 493 AddressSpace **target_as, 494 MemTxAttrs attrs) 495 { 496 MemoryRegionSection *section; 497 IOMMUMemoryRegion *iommu_mr; 498 hwaddr plen = (hwaddr)(-1); 499 500 if (!plen_out) { 501 plen_out = &plen; 502 } 503 504 section = address_space_translate_internal( 505 flatview_to_dispatch(fv), addr, xlat, 506 plen_out, is_mmio); 507 508 iommu_mr = memory_region_get_iommu(section->mr); 509 if (unlikely(iommu_mr)) { 510 return address_space_translate_iommu(iommu_mr, xlat, 511 plen_out, page_mask_out, 512 is_write, is_mmio, 513 target_as, attrs); 514 } 515 if (page_mask_out) { 516 /* Not behind an IOMMU, use default page size. */ 517 *page_mask_out = ~TARGET_PAGE_MASK; 518 } 519 520 return *section; 521 } 522 523 /* Called from RCU critical section */ 524 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 525 bool is_write, MemTxAttrs attrs) 526 { 527 MemoryRegionSection section; 528 hwaddr xlat, page_mask; 529 530 /* 531 * This can never be MMIO, and we don't really care about plen, 532 * but page mask. 533 */ 534 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 535 NULL, &page_mask, is_write, false, &as, 536 attrs); 537 538 /* Illegal translation */ 539 if (section.mr == &io_mem_unassigned) { 540 goto iotlb_fail; 541 } 542 543 /* Convert memory region offset into address space offset */ 544 xlat += section.offset_within_address_space - 545 section.offset_within_region; 546 547 return (IOMMUTLBEntry) { 548 .target_as = as, 549 .iova = addr & ~page_mask, 550 .translated_addr = xlat & ~page_mask, 551 .addr_mask = page_mask, 552 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 553 .perm = IOMMU_RW, 554 }; 555 556 iotlb_fail: 557 return (IOMMUTLBEntry) {0}; 558 } 559 560 /* Called from RCU critical section */ 561 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 562 hwaddr *plen, bool is_write, 563 MemTxAttrs attrs) 564 { 565 MemoryRegion *mr; 566 MemoryRegionSection section; 567 AddressSpace *as = NULL; 568 569 /* This can be MMIO, so setup MMIO bit. */ 570 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 571 is_write, true, &as, attrs); 572 mr = section.mr; 573 574 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 575 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 576 *plen = MIN(page, *plen); 577 } 578 579 return mr; 580 } 581 582 typedef struct TCGIOMMUNotifier { 583 IOMMUNotifier n; 584 MemoryRegion *mr; 585 CPUState *cpu; 586 int iommu_idx; 587 bool active; 588 } TCGIOMMUNotifier; 589 590 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 591 { 592 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 593 594 if (!notifier->active) { 595 return; 596 } 597 tlb_flush(notifier->cpu); 598 notifier->active = false; 599 /* We leave the notifier struct on the list to avoid reallocating it later. 600 * Generally the number of IOMMUs a CPU deals with will be small. 601 * In any case we can't unregister the iommu notifier from a notify 602 * callback. 603 */ 604 } 605 606 static void tcg_register_iommu_notifier(CPUState *cpu, 607 IOMMUMemoryRegion *iommu_mr, 608 int iommu_idx) 609 { 610 /* Make sure this CPU has an IOMMU notifier registered for this 611 * IOMMU/IOMMU index combination, so that we can flush its TLB 612 * when the IOMMU tells us the mappings we've cached have changed. 613 */ 614 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 615 TCGIOMMUNotifier *notifier = NULL; 616 int i; 617 618 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 619 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 620 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 621 break; 622 } 623 } 624 if (i == cpu->iommu_notifiers->len) { 625 /* Not found, add a new entry at the end of the array */ 626 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 627 notifier = g_new0(TCGIOMMUNotifier, 1); 628 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 629 630 notifier->mr = mr; 631 notifier->iommu_idx = iommu_idx; 632 notifier->cpu = cpu; 633 /* Rather than trying to register interest in the specific part 634 * of the iommu's address space that we've accessed and then 635 * expand it later as subsequent accesses touch more of it, we 636 * just register interest in the whole thing, on the assumption 637 * that iommu reconfiguration will be rare. 638 */ 639 iommu_notifier_init(¬ifier->n, 640 tcg_iommu_unmap_notify, 641 IOMMU_NOTIFIER_UNMAP, 642 0, 643 HWADDR_MAX, 644 iommu_idx); 645 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 646 &error_fatal); 647 } 648 649 if (!notifier->active) { 650 notifier->active = true; 651 } 652 } 653 654 void tcg_iommu_free_notifier_list(CPUState *cpu) 655 { 656 /* Destroy the CPU's notifier list */ 657 int i; 658 TCGIOMMUNotifier *notifier; 659 660 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 661 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 662 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 663 g_free(notifier); 664 } 665 g_array_free(cpu->iommu_notifiers, true); 666 } 667 668 void tcg_iommu_init_notifier_list(CPUState *cpu) 669 { 670 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 671 } 672 673 /* Called from RCU critical section */ 674 MemoryRegionSection * 675 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 676 hwaddr *xlat, hwaddr *plen, 677 MemTxAttrs attrs, int *prot) 678 { 679 MemoryRegionSection *section; 680 IOMMUMemoryRegion *iommu_mr; 681 IOMMUMemoryRegionClass *imrc; 682 IOMMUTLBEntry iotlb; 683 int iommu_idx; 684 hwaddr addr = orig_addr; 685 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 686 687 for (;;) { 688 section = address_space_translate_internal(d, addr, &addr, plen, false); 689 690 iommu_mr = memory_region_get_iommu(section->mr); 691 if (!iommu_mr) { 692 break; 693 } 694 695 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 696 697 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 698 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 699 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 700 * doesn't short-cut its translation table walk. 701 */ 702 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 703 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 704 | (addr & iotlb.addr_mask)); 705 /* Update the caller's prot bits to remove permissions the IOMMU 706 * is giving us a failure response for. If we get down to no 707 * permissions left at all we can give up now. 708 */ 709 if (!(iotlb.perm & IOMMU_RO)) { 710 *prot &= ~(PAGE_READ | PAGE_EXEC); 711 } 712 if (!(iotlb.perm & IOMMU_WO)) { 713 *prot &= ~PAGE_WRITE; 714 } 715 716 if (!*prot) { 717 goto translate_fail; 718 } 719 720 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 721 } 722 723 assert(!memory_region_is_iommu(section->mr)); 724 *xlat = addr; 725 return section; 726 727 translate_fail: 728 /* 729 * We should be given a page-aligned address -- certainly 730 * tlb_set_page_with_attrs() does so. The page offset of xlat 731 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 732 * The page portion of xlat will be logged by memory_region_access_valid() 733 * when this memory access is rejected, so use the original untranslated 734 * physical address. 735 */ 736 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 737 *xlat = orig_addr; 738 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 739 } 740 741 void cpu_address_space_init(CPUState *cpu, int asidx, 742 const char *prefix, MemoryRegion *mr) 743 { 744 CPUAddressSpace *newas; 745 AddressSpace *as = g_new0(AddressSpace, 1); 746 char *as_name; 747 748 assert(mr); 749 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 750 address_space_init(as, mr, as_name); 751 g_free(as_name); 752 753 /* Target code should have set num_ases before calling us */ 754 assert(asidx < cpu->num_ases); 755 756 if (asidx == 0) { 757 /* address space 0 gets the convenience alias */ 758 cpu->as = as; 759 } 760 761 /* KVM cannot currently support multiple address spaces. */ 762 assert(asidx == 0 || !kvm_enabled()); 763 764 if (!cpu->cpu_ases) { 765 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 766 cpu->cpu_ases_count = cpu->num_ases; 767 } 768 769 newas = &cpu->cpu_ases[asidx]; 770 newas->cpu = cpu; 771 newas->as = as; 772 if (tcg_enabled()) { 773 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 774 newas->tcg_as_listener.commit = tcg_commit; 775 newas->tcg_as_listener.name = "tcg"; 776 memory_listener_register(&newas->tcg_as_listener, as); 777 } 778 } 779 780 void cpu_address_space_destroy(CPUState *cpu, int asidx) 781 { 782 CPUAddressSpace *cpuas; 783 784 assert(cpu->cpu_ases); 785 assert(asidx >= 0 && asidx < cpu->num_ases); 786 /* KVM cannot currently support multiple address spaces. */ 787 assert(asidx == 0 || !kvm_enabled()); 788 789 cpuas = &cpu->cpu_ases[asidx]; 790 if (tcg_enabled()) { 791 memory_listener_unregister(&cpuas->tcg_as_listener); 792 } 793 794 address_space_destroy(cpuas->as); 795 g_free_rcu(cpuas->as, rcu); 796 797 if (asidx == 0) { 798 /* reset the convenience alias for address space 0 */ 799 cpu->as = NULL; 800 } 801 802 if (--cpu->cpu_ases_count == 0) { 803 g_free(cpu->cpu_ases); 804 cpu->cpu_ases = NULL; 805 } 806 } 807 808 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 809 { 810 /* Return the AddressSpace corresponding to the specified index */ 811 return cpu->cpu_ases[asidx].as; 812 } 813 814 /* Called from RCU critical section */ 815 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 816 { 817 RAMBlock *block; 818 819 block = qatomic_rcu_read(&ram_list.mru_block); 820 if (block && addr - block->offset < block->max_length) { 821 return block; 822 } 823 RAMBLOCK_FOREACH(block) { 824 if (addr - block->offset < block->max_length) { 825 goto found; 826 } 827 } 828 829 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 830 abort(); 831 832 found: 833 /* It is safe to write mru_block outside the BQL. This 834 * is what happens: 835 * 836 * mru_block = xxx 837 * rcu_read_unlock() 838 * xxx removed from list 839 * rcu_read_lock() 840 * read mru_block 841 * mru_block = NULL; 842 * call_rcu(reclaim_ramblock, xxx); 843 * rcu_read_unlock() 844 * 845 * qatomic_rcu_set is not needed here. The block was already published 846 * when it was placed into the list. Here we're just making an extra 847 * copy of the pointer. 848 */ 849 ram_list.mru_block = block; 850 return block; 851 } 852 853 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 854 { 855 CPUState *cpu; 856 ram_addr_t start1; 857 RAMBlock *block; 858 ram_addr_t end; 859 860 assert(tcg_enabled()); 861 end = TARGET_PAGE_ALIGN(start + length); 862 start &= TARGET_PAGE_MASK; 863 864 RCU_READ_LOCK_GUARD(); 865 block = qemu_get_ram_block(start); 866 assert(block == qemu_get_ram_block(end - 1)); 867 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 868 CPU_FOREACH(cpu) { 869 tlb_reset_dirty(cpu, start1, length); 870 } 871 } 872 873 /* Note: start and end must be within the same ram block. */ 874 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 875 ram_addr_t length, 876 unsigned client) 877 { 878 DirtyMemoryBlocks *blocks; 879 unsigned long end, page, start_page; 880 bool dirty = false; 881 RAMBlock *ramblock; 882 uint64_t mr_offset, mr_size; 883 884 if (length == 0) { 885 return false; 886 } 887 888 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 889 start_page = start >> TARGET_PAGE_BITS; 890 page = start_page; 891 892 WITH_RCU_READ_LOCK_GUARD() { 893 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 894 ramblock = qemu_get_ram_block(start); 895 /* Range sanity check on the ramblock */ 896 assert(start >= ramblock->offset && 897 start + length <= ramblock->offset + ramblock->used_length); 898 899 while (page < end) { 900 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 901 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 902 unsigned long num = MIN(end - page, 903 DIRTY_MEMORY_BLOCK_SIZE - offset); 904 905 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 906 offset, num); 907 page += num; 908 } 909 910 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 911 mr_size = (end - start_page) << TARGET_PAGE_BITS; 912 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 913 } 914 915 if (dirty) { 916 cpu_physical_memory_dirty_bits_cleared(start, length); 917 } 918 919 return dirty; 920 } 921 922 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 923 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 924 { 925 DirtyMemoryBlocks *blocks; 926 ram_addr_t start, first, last; 927 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 928 DirtyBitmapSnapshot *snap; 929 unsigned long page, end, dest; 930 931 start = memory_region_get_ram_addr(mr); 932 /* We know we're only called for RAM MemoryRegions */ 933 assert(start != RAM_ADDR_INVALID); 934 start += offset; 935 936 first = QEMU_ALIGN_DOWN(start, align); 937 last = QEMU_ALIGN_UP(start + length, align); 938 939 snap = g_malloc0(sizeof(*snap) + 940 ((last - first) >> (TARGET_PAGE_BITS + 3))); 941 snap->start = first; 942 snap->end = last; 943 944 page = first >> TARGET_PAGE_BITS; 945 end = last >> TARGET_PAGE_BITS; 946 dest = 0; 947 948 WITH_RCU_READ_LOCK_GUARD() { 949 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 950 951 while (page < end) { 952 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 953 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 954 unsigned long num = MIN(end - page, 955 DIRTY_MEMORY_BLOCK_SIZE - ofs); 956 957 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 958 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 959 ofs >>= BITS_PER_LEVEL; 960 961 bitmap_copy_and_clear_atomic(snap->dirty + dest, 962 blocks->blocks[idx] + ofs, 963 num); 964 page += num; 965 dest += num >> BITS_PER_LEVEL; 966 } 967 } 968 969 cpu_physical_memory_dirty_bits_cleared(start, length); 970 971 memory_region_clear_dirty_bitmap(mr, offset, length); 972 973 return snap; 974 } 975 976 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 977 ram_addr_t start, 978 ram_addr_t length) 979 { 980 unsigned long page, end; 981 982 assert(start >= snap->start); 983 assert(start + length <= snap->end); 984 985 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 986 page = (start - snap->start) >> TARGET_PAGE_BITS; 987 988 while (page < end) { 989 if (test_bit(page, snap->dirty)) { 990 return true; 991 } 992 page++; 993 } 994 return false; 995 } 996 997 /* Called from RCU critical section */ 998 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 999 MemoryRegionSection *section) 1000 { 1001 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1002 return section - d->map.sections; 1003 } 1004 1005 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1006 uint16_t section); 1007 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1008 1009 static uint16_t phys_section_add(PhysPageMap *map, 1010 MemoryRegionSection *section) 1011 { 1012 /* The physical section number is ORed with a page-aligned 1013 * pointer to produce the iotlb entries. Thus it should 1014 * never overflow into the page-aligned value. 1015 */ 1016 assert(map->sections_nb < TARGET_PAGE_SIZE); 1017 1018 if (map->sections_nb == map->sections_nb_alloc) { 1019 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1020 map->sections = g_renew(MemoryRegionSection, map->sections, 1021 map->sections_nb_alloc); 1022 } 1023 map->sections[map->sections_nb] = *section; 1024 memory_region_ref(section->mr); 1025 return map->sections_nb++; 1026 } 1027 1028 static void phys_section_destroy(MemoryRegion *mr) 1029 { 1030 bool have_sub_page = mr->subpage; 1031 1032 memory_region_unref(mr); 1033 1034 if (have_sub_page) { 1035 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1036 object_unref(OBJECT(&subpage->iomem)); 1037 g_free(subpage); 1038 } 1039 } 1040 1041 static void phys_sections_free(PhysPageMap *map) 1042 { 1043 while (map->sections_nb > 0) { 1044 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1045 phys_section_destroy(section->mr); 1046 } 1047 g_free(map->sections); 1048 g_free(map->nodes); 1049 } 1050 1051 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1052 { 1053 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1054 subpage_t *subpage; 1055 hwaddr base = section->offset_within_address_space 1056 & TARGET_PAGE_MASK; 1057 MemoryRegionSection *existing = phys_page_find(d, base); 1058 MemoryRegionSection subsection = { 1059 .offset_within_address_space = base, 1060 .size = int128_make64(TARGET_PAGE_SIZE), 1061 }; 1062 hwaddr start, end; 1063 1064 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1065 1066 if (!(existing->mr->subpage)) { 1067 subpage = subpage_init(fv, base); 1068 subsection.fv = fv; 1069 subsection.mr = &subpage->iomem; 1070 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1071 phys_section_add(&d->map, &subsection)); 1072 } else { 1073 subpage = container_of(existing->mr, subpage_t, iomem); 1074 } 1075 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1076 end = start + int128_get64(section->size) - 1; 1077 subpage_register(subpage, start, end, 1078 phys_section_add(&d->map, section)); 1079 } 1080 1081 1082 static void register_multipage(FlatView *fv, 1083 MemoryRegionSection *section) 1084 { 1085 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1086 hwaddr start_addr = section->offset_within_address_space; 1087 uint16_t section_index = phys_section_add(&d->map, section); 1088 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1089 TARGET_PAGE_BITS)); 1090 1091 assert(num_pages); 1092 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1093 } 1094 1095 /* 1096 * The range in *section* may look like this: 1097 * 1098 * |s|PPPPPPP|s| 1099 * 1100 * where s stands for subpage and P for page. 1101 */ 1102 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1103 { 1104 MemoryRegionSection remain = *section; 1105 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1106 1107 /* register first subpage */ 1108 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1109 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1110 - remain.offset_within_address_space; 1111 1112 MemoryRegionSection now = remain; 1113 now.size = int128_min(int128_make64(left), now.size); 1114 register_subpage(fv, &now); 1115 if (int128_eq(remain.size, now.size)) { 1116 return; 1117 } 1118 remain.size = int128_sub(remain.size, now.size); 1119 remain.offset_within_address_space += int128_get64(now.size); 1120 remain.offset_within_region += int128_get64(now.size); 1121 } 1122 1123 /* register whole pages */ 1124 if (int128_ge(remain.size, page_size)) { 1125 MemoryRegionSection now = remain; 1126 now.size = int128_and(now.size, int128_neg(page_size)); 1127 register_multipage(fv, &now); 1128 if (int128_eq(remain.size, now.size)) { 1129 return; 1130 } 1131 remain.size = int128_sub(remain.size, now.size); 1132 remain.offset_within_address_space += int128_get64(now.size); 1133 remain.offset_within_region += int128_get64(now.size); 1134 } 1135 1136 /* register last subpage */ 1137 register_subpage(fv, &remain); 1138 } 1139 1140 void qemu_flush_coalesced_mmio_buffer(void) 1141 { 1142 if (kvm_enabled()) 1143 kvm_flush_coalesced_mmio_buffer(); 1144 } 1145 1146 void qemu_mutex_lock_ramlist(void) 1147 { 1148 qemu_mutex_lock(&ram_list.mutex); 1149 } 1150 1151 void qemu_mutex_unlock_ramlist(void) 1152 { 1153 qemu_mutex_unlock(&ram_list.mutex); 1154 } 1155 1156 GString *ram_block_format(void) 1157 { 1158 RAMBlock *block; 1159 char *psize; 1160 GString *buf = g_string_new(""); 1161 1162 RCU_READ_LOCK_GUARD(); 1163 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1164 "Block Name", "PSize", "Offset", "Used", "Total", 1165 "HVA", "RO"); 1166 1167 RAMBLOCK_FOREACH(block) { 1168 psize = size_to_str(block->page_size); 1169 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1170 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1171 block->idstr, psize, 1172 (uint64_t)block->offset, 1173 (uint64_t)block->used_length, 1174 (uint64_t)block->max_length, 1175 (uint64_t)(uintptr_t)block->host, 1176 block->mr->readonly ? "ro" : "rw"); 1177 1178 g_free(psize); 1179 } 1180 1181 return buf; 1182 } 1183 1184 static int find_min_backend_pagesize(Object *obj, void *opaque) 1185 { 1186 long *hpsize_min = opaque; 1187 1188 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1189 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1190 long hpsize = host_memory_backend_pagesize(backend); 1191 1192 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1193 *hpsize_min = hpsize; 1194 } 1195 } 1196 1197 return 0; 1198 } 1199 1200 static int find_max_backend_pagesize(Object *obj, void *opaque) 1201 { 1202 long *hpsize_max = opaque; 1203 1204 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1205 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1206 long hpsize = host_memory_backend_pagesize(backend); 1207 1208 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1209 *hpsize_max = hpsize; 1210 } 1211 } 1212 1213 return 0; 1214 } 1215 1216 /* 1217 * TODO: We assume right now that all mapped host memory backends are 1218 * used as RAM, however some might be used for different purposes. 1219 */ 1220 long qemu_minrampagesize(void) 1221 { 1222 long hpsize = LONG_MAX; 1223 Object *memdev_root = object_resolve_path("/objects", NULL); 1224 1225 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1226 return hpsize; 1227 } 1228 1229 long qemu_maxrampagesize(void) 1230 { 1231 long pagesize = 0; 1232 Object *memdev_root = object_resolve_path("/objects", NULL); 1233 1234 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1235 return pagesize; 1236 } 1237 1238 #ifdef CONFIG_POSIX 1239 static int64_t get_file_size(int fd) 1240 { 1241 int64_t size; 1242 #if defined(__linux__) 1243 struct stat st; 1244 1245 if (fstat(fd, &st) < 0) { 1246 return -errno; 1247 } 1248 1249 /* Special handling for devdax character devices */ 1250 if (S_ISCHR(st.st_mode)) { 1251 g_autofree char *subsystem_path = NULL; 1252 g_autofree char *subsystem = NULL; 1253 1254 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1255 major(st.st_rdev), minor(st.st_rdev)); 1256 subsystem = g_file_read_link(subsystem_path, NULL); 1257 1258 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1259 g_autofree char *size_path = NULL; 1260 g_autofree char *size_str = NULL; 1261 1262 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1263 major(st.st_rdev), minor(st.st_rdev)); 1264 1265 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1266 return g_ascii_strtoll(size_str, NULL, 0); 1267 } 1268 } 1269 } 1270 #endif /* defined(__linux__) */ 1271 1272 /* st.st_size may be zero for special files yet lseek(2) works */ 1273 size = lseek(fd, 0, SEEK_END); 1274 if (size < 0) { 1275 return -errno; 1276 } 1277 return size; 1278 } 1279 1280 static int64_t get_file_align(int fd) 1281 { 1282 int64_t align = -1; 1283 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1284 struct stat st; 1285 1286 if (fstat(fd, &st) < 0) { 1287 return -errno; 1288 } 1289 1290 /* Special handling for devdax character devices */ 1291 if (S_ISCHR(st.st_mode)) { 1292 g_autofree char *path = NULL; 1293 g_autofree char *rpath = NULL; 1294 struct daxctl_ctx *ctx; 1295 struct daxctl_region *region; 1296 int rc = 0; 1297 1298 path = g_strdup_printf("/sys/dev/char/%d:%d", 1299 major(st.st_rdev), minor(st.st_rdev)); 1300 rpath = realpath(path, NULL); 1301 if (!rpath) { 1302 return -errno; 1303 } 1304 1305 rc = daxctl_new(&ctx); 1306 if (rc) { 1307 return -1; 1308 } 1309 1310 daxctl_region_foreach(ctx, region) { 1311 if (strstr(rpath, daxctl_region_get_path(region))) { 1312 align = daxctl_region_get_align(region); 1313 break; 1314 } 1315 } 1316 daxctl_unref(ctx); 1317 } 1318 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1319 1320 return align; 1321 } 1322 1323 static int file_ram_open(const char *path, 1324 const char *region_name, 1325 bool readonly, 1326 bool *created) 1327 { 1328 char *filename; 1329 char *sanitized_name; 1330 char *c; 1331 int fd = -1; 1332 1333 *created = false; 1334 for (;;) { 1335 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1336 if (fd >= 0) { 1337 /* 1338 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1339 * opened a directory and fail similarly to how we fail ENOENT 1340 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1341 */ 1342 if (readonly) { 1343 struct stat file_stat; 1344 1345 if (fstat(fd, &file_stat)) { 1346 close(fd); 1347 if (errno == EINTR) { 1348 continue; 1349 } 1350 return -errno; 1351 } else if (S_ISDIR(file_stat.st_mode)) { 1352 close(fd); 1353 return -EISDIR; 1354 } 1355 } 1356 /* @path names an existing file, use it */ 1357 break; 1358 } 1359 if (errno == ENOENT) { 1360 if (readonly) { 1361 /* Refuse to create new, readonly files. */ 1362 return -ENOENT; 1363 } 1364 /* @path names a file that doesn't exist, create it */ 1365 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1366 if (fd >= 0) { 1367 *created = true; 1368 break; 1369 } 1370 } else if (errno == EISDIR) { 1371 /* @path names a directory, create a file there */ 1372 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1373 sanitized_name = g_strdup(region_name); 1374 for (c = sanitized_name; *c != '\0'; c++) { 1375 if (*c == '/') { 1376 *c = '_'; 1377 } 1378 } 1379 1380 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1381 sanitized_name); 1382 g_free(sanitized_name); 1383 1384 fd = mkstemp(filename); 1385 if (fd >= 0) { 1386 unlink(filename); 1387 g_free(filename); 1388 break; 1389 } 1390 g_free(filename); 1391 } 1392 if (errno != EEXIST && errno != EINTR) { 1393 return -errno; 1394 } 1395 /* 1396 * Try again on EINTR and EEXIST. The latter happens when 1397 * something else creates the file between our two open(). 1398 */ 1399 } 1400 1401 return fd; 1402 } 1403 1404 static void *file_ram_alloc(RAMBlock *block, 1405 ram_addr_t memory, 1406 int fd, 1407 bool truncate, 1408 off_t offset, 1409 Error **errp) 1410 { 1411 uint32_t qemu_map_flags; 1412 void *area; 1413 1414 block->page_size = qemu_fd_getpagesize(fd); 1415 if (block->mr->align % block->page_size) { 1416 error_setg(errp, "alignment 0x%" PRIx64 1417 " must be multiples of page size 0x%zx", 1418 block->mr->align, block->page_size); 1419 return NULL; 1420 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1421 error_setg(errp, "alignment 0x%" PRIx64 1422 " must be a power of two", block->mr->align); 1423 return NULL; 1424 } else if (offset % block->page_size) { 1425 error_setg(errp, "offset 0x%" PRIx64 1426 " must be multiples of page size 0x%zx", 1427 offset, block->page_size); 1428 return NULL; 1429 } 1430 block->mr->align = MAX(block->page_size, block->mr->align); 1431 #if defined(__s390x__) 1432 if (kvm_enabled()) { 1433 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1434 } 1435 #endif 1436 1437 if (memory < block->page_size) { 1438 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1439 "or larger than page size 0x%zx", 1440 memory, block->page_size); 1441 return NULL; 1442 } 1443 1444 memory = ROUND_UP(memory, block->page_size); 1445 1446 /* 1447 * ftruncate is not supported by hugetlbfs in older 1448 * hosts, so don't bother bailing out on errors. 1449 * If anything goes wrong with it under other filesystems, 1450 * mmap will fail. 1451 * 1452 * Do not truncate the non-empty backend file to avoid corrupting 1453 * the existing data in the file. Disabling shrinking is not 1454 * enough. For example, the current vNVDIMM implementation stores 1455 * the guest NVDIMM labels at the end of the backend file. If the 1456 * backend file is later extended, QEMU will not be able to find 1457 * those labels. Therefore, extending the non-empty backend file 1458 * is disabled as well. 1459 */ 1460 if (truncate && ftruncate(fd, offset + memory)) { 1461 perror("ftruncate"); 1462 } 1463 1464 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1465 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1466 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1467 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1468 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1469 if (area == MAP_FAILED) { 1470 error_setg_errno(errp, errno, 1471 "unable to map backing store for guest RAM"); 1472 return NULL; 1473 } 1474 1475 block->fd = fd; 1476 block->fd_offset = offset; 1477 return area; 1478 } 1479 #endif 1480 1481 /* Allocate space within the ram_addr_t space that governs the 1482 * dirty bitmaps. 1483 * Called with the ramlist lock held. 1484 */ 1485 static ram_addr_t find_ram_offset(ram_addr_t size) 1486 { 1487 RAMBlock *block, *next_block; 1488 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1489 1490 assert(size != 0); /* it would hand out same offset multiple times */ 1491 1492 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1493 return 0; 1494 } 1495 1496 RAMBLOCK_FOREACH(block) { 1497 ram_addr_t candidate, next = RAM_ADDR_MAX; 1498 1499 /* Align blocks to start on a 'long' in the bitmap 1500 * which makes the bitmap sync'ing take the fast path. 1501 */ 1502 candidate = block->offset + block->max_length; 1503 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1504 1505 /* Search for the closest following block 1506 * and find the gap. 1507 */ 1508 RAMBLOCK_FOREACH(next_block) { 1509 if (next_block->offset >= candidate) { 1510 next = MIN(next, next_block->offset); 1511 } 1512 } 1513 1514 /* If it fits remember our place and remember the size 1515 * of gap, but keep going so that we might find a smaller 1516 * gap to fill so avoiding fragmentation. 1517 */ 1518 if (next - candidate >= size && next - candidate < mingap) { 1519 offset = candidate; 1520 mingap = next - candidate; 1521 } 1522 1523 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1524 } 1525 1526 if (offset == RAM_ADDR_MAX) { 1527 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1528 (uint64_t)size); 1529 abort(); 1530 } 1531 1532 trace_find_ram_offset(size, offset); 1533 1534 return offset; 1535 } 1536 1537 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1538 { 1539 int ret; 1540 1541 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1542 if (!machine_dump_guest_core(current_machine)) { 1543 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1544 if (ret) { 1545 perror("qemu_madvise"); 1546 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1547 "but dump-guest-core=off specified\n"); 1548 } 1549 } 1550 } 1551 1552 const char *qemu_ram_get_idstr(RAMBlock *rb) 1553 { 1554 return rb->idstr; 1555 } 1556 1557 void *qemu_ram_get_host_addr(RAMBlock *rb) 1558 { 1559 return rb->host; 1560 } 1561 1562 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1563 { 1564 return rb->offset; 1565 } 1566 1567 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1568 { 1569 return rb->used_length; 1570 } 1571 1572 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1573 { 1574 return rb->max_length; 1575 } 1576 1577 bool qemu_ram_is_shared(RAMBlock *rb) 1578 { 1579 return rb->flags & RAM_SHARED; 1580 } 1581 1582 bool qemu_ram_is_noreserve(RAMBlock *rb) 1583 { 1584 return rb->flags & RAM_NORESERVE; 1585 } 1586 1587 /* Note: Only set at the start of postcopy */ 1588 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1589 { 1590 return rb->flags & RAM_UF_ZEROPAGE; 1591 } 1592 1593 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1594 { 1595 rb->flags |= RAM_UF_ZEROPAGE; 1596 } 1597 1598 bool qemu_ram_is_migratable(RAMBlock *rb) 1599 { 1600 return rb->flags & RAM_MIGRATABLE; 1601 } 1602 1603 void qemu_ram_set_migratable(RAMBlock *rb) 1604 { 1605 rb->flags |= RAM_MIGRATABLE; 1606 } 1607 1608 void qemu_ram_unset_migratable(RAMBlock *rb) 1609 { 1610 rb->flags &= ~RAM_MIGRATABLE; 1611 } 1612 1613 bool qemu_ram_is_named_file(RAMBlock *rb) 1614 { 1615 return rb->flags & RAM_NAMED_FILE; 1616 } 1617 1618 int qemu_ram_get_fd(RAMBlock *rb) 1619 { 1620 return rb->fd; 1621 } 1622 1623 /* Called with the BQL held. */ 1624 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1625 { 1626 RAMBlock *block; 1627 1628 assert(new_block); 1629 assert(!new_block->idstr[0]); 1630 1631 if (dev) { 1632 char *id = qdev_get_dev_path(dev); 1633 if (id) { 1634 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1635 g_free(id); 1636 } 1637 } 1638 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1639 1640 RCU_READ_LOCK_GUARD(); 1641 RAMBLOCK_FOREACH(block) { 1642 if (block != new_block && 1643 !strcmp(block->idstr, new_block->idstr)) { 1644 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1645 new_block->idstr); 1646 abort(); 1647 } 1648 } 1649 } 1650 1651 /* Called with the BQL held. */ 1652 void qemu_ram_unset_idstr(RAMBlock *block) 1653 { 1654 /* FIXME: arch_init.c assumes that this is not called throughout 1655 * migration. Ignore the problem since hot-unplug during migration 1656 * does not work anyway. 1657 */ 1658 if (block) { 1659 memset(block->idstr, 0, sizeof(block->idstr)); 1660 } 1661 } 1662 1663 size_t qemu_ram_pagesize(RAMBlock *rb) 1664 { 1665 return rb->page_size; 1666 } 1667 1668 /* Returns the largest size of page in use */ 1669 size_t qemu_ram_pagesize_largest(void) 1670 { 1671 RAMBlock *block; 1672 size_t largest = 0; 1673 1674 RAMBLOCK_FOREACH(block) { 1675 largest = MAX(largest, qemu_ram_pagesize(block)); 1676 } 1677 1678 return largest; 1679 } 1680 1681 static int memory_try_enable_merging(void *addr, size_t len) 1682 { 1683 if (!machine_mem_merge(current_machine)) { 1684 /* disabled by the user */ 1685 return 0; 1686 } 1687 1688 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1689 } 1690 1691 /* 1692 * Resizing RAM while migrating can result in the migration being canceled. 1693 * Care has to be taken if the guest might have already detected the memory. 1694 * 1695 * As memory core doesn't know how is memory accessed, it is up to 1696 * resize callback to update device state and/or add assertions to detect 1697 * misuse, if necessary. 1698 */ 1699 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1700 { 1701 const ram_addr_t oldsize = block->used_length; 1702 const ram_addr_t unaligned_size = newsize; 1703 1704 assert(block); 1705 1706 newsize = TARGET_PAGE_ALIGN(newsize); 1707 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1708 1709 if (block->used_length == newsize) { 1710 /* 1711 * We don't have to resize the ram block (which only knows aligned 1712 * sizes), however, we have to notify if the unaligned size changed. 1713 */ 1714 if (unaligned_size != memory_region_size(block->mr)) { 1715 memory_region_set_size(block->mr, unaligned_size); 1716 if (block->resized) { 1717 block->resized(block->idstr, unaligned_size, block->host); 1718 } 1719 } 1720 return 0; 1721 } 1722 1723 if (!(block->flags & RAM_RESIZEABLE)) { 1724 error_setg_errno(errp, EINVAL, 1725 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1726 " != 0x" RAM_ADDR_FMT, block->idstr, 1727 newsize, block->used_length); 1728 return -EINVAL; 1729 } 1730 1731 if (block->max_length < newsize) { 1732 error_setg_errno(errp, EINVAL, 1733 "Size too large: %s: 0x" RAM_ADDR_FMT 1734 " > 0x" RAM_ADDR_FMT, block->idstr, 1735 newsize, block->max_length); 1736 return -EINVAL; 1737 } 1738 1739 /* Notify before modifying the ram block and touching the bitmaps. */ 1740 if (block->host) { 1741 ram_block_notify_resize(block->host, oldsize, newsize); 1742 } 1743 1744 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1745 block->used_length = newsize; 1746 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1747 DIRTY_CLIENTS_ALL); 1748 memory_region_set_size(block->mr, unaligned_size); 1749 if (block->resized) { 1750 block->resized(block->idstr, unaligned_size, block->host); 1751 } 1752 return 0; 1753 } 1754 1755 /* 1756 * Trigger sync on the given ram block for range [start, start + length] 1757 * with the backing store if one is available. 1758 * Otherwise no-op. 1759 * @Note: this is supposed to be a synchronous op. 1760 */ 1761 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1762 { 1763 /* The requested range should fit in within the block range */ 1764 g_assert((start + length) <= block->used_length); 1765 1766 #ifdef CONFIG_LIBPMEM 1767 /* The lack of support for pmem should not block the sync */ 1768 if (ramblock_is_pmem(block)) { 1769 void *addr = ramblock_ptr(block, start); 1770 pmem_persist(addr, length); 1771 return; 1772 } 1773 #endif 1774 if (block->fd >= 0) { 1775 /** 1776 * Case there is no support for PMEM or the memory has not been 1777 * specified as persistent (or is not one) - use the msync. 1778 * Less optimal but still achieves the same goal 1779 */ 1780 void *addr = ramblock_ptr(block, start); 1781 if (qemu_msync(addr, length, block->fd)) { 1782 warn_report("%s: failed to sync memory range: start: " 1783 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1784 __func__, start, length); 1785 } 1786 } 1787 } 1788 1789 /* Called with ram_list.mutex held */ 1790 static void dirty_memory_extend(ram_addr_t new_ram_size) 1791 { 1792 unsigned int old_num_blocks = ram_list.num_dirty_blocks; 1793 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size, 1794 DIRTY_MEMORY_BLOCK_SIZE); 1795 int i; 1796 1797 /* Only need to extend if block count increased */ 1798 if (new_num_blocks <= old_num_blocks) { 1799 return; 1800 } 1801 1802 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1803 DirtyMemoryBlocks *old_blocks; 1804 DirtyMemoryBlocks *new_blocks; 1805 int j; 1806 1807 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1808 new_blocks = g_malloc(sizeof(*new_blocks) + 1809 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1810 1811 if (old_num_blocks) { 1812 memcpy(new_blocks->blocks, old_blocks->blocks, 1813 old_num_blocks * sizeof(old_blocks->blocks[0])); 1814 } 1815 1816 for (j = old_num_blocks; j < new_num_blocks; j++) { 1817 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1818 } 1819 1820 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1821 1822 if (old_blocks) { 1823 g_free_rcu(old_blocks, rcu); 1824 } 1825 } 1826 1827 ram_list.num_dirty_blocks = new_num_blocks; 1828 } 1829 1830 static void ram_block_add(RAMBlock *new_block, Error **errp) 1831 { 1832 const bool noreserve = qemu_ram_is_noreserve(new_block); 1833 const bool shared = qemu_ram_is_shared(new_block); 1834 RAMBlock *block; 1835 RAMBlock *last_block = NULL; 1836 bool free_on_error = false; 1837 ram_addr_t ram_size; 1838 Error *err = NULL; 1839 1840 qemu_mutex_lock_ramlist(); 1841 new_block->offset = find_ram_offset(new_block->max_length); 1842 1843 if (!new_block->host) { 1844 if (xen_enabled()) { 1845 xen_ram_alloc(new_block->offset, new_block->max_length, 1846 new_block->mr, &err); 1847 if (err) { 1848 error_propagate(errp, err); 1849 qemu_mutex_unlock_ramlist(); 1850 return; 1851 } 1852 } else { 1853 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1854 &new_block->mr->align, 1855 shared, noreserve); 1856 if (!new_block->host) { 1857 error_setg_errno(errp, errno, 1858 "cannot set up guest memory '%s'", 1859 memory_region_name(new_block->mr)); 1860 qemu_mutex_unlock_ramlist(); 1861 return; 1862 } 1863 memory_try_enable_merging(new_block->host, new_block->max_length); 1864 free_on_error = true; 1865 } 1866 } 1867 1868 if (new_block->flags & RAM_GUEST_MEMFD) { 1869 int ret; 1870 1871 assert(kvm_enabled()); 1872 assert(new_block->guest_memfd < 0); 1873 1874 ret = ram_block_discard_require(true); 1875 if (ret < 0) { 1876 error_setg_errno(errp, -ret, 1877 "cannot set up private guest memory: discard currently blocked"); 1878 error_append_hint(errp, "Are you using assigned devices?\n"); 1879 goto out_free; 1880 } 1881 1882 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1883 0, errp); 1884 if (new_block->guest_memfd < 0) { 1885 qemu_mutex_unlock_ramlist(); 1886 goto out_free; 1887 } 1888 } 1889 1890 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS; 1891 dirty_memory_extend(ram_size); 1892 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1893 * QLIST (which has an RCU-friendly variant) does not have insertion at 1894 * tail, so save the last element in last_block. 1895 */ 1896 RAMBLOCK_FOREACH(block) { 1897 last_block = block; 1898 if (block->max_length < new_block->max_length) { 1899 break; 1900 } 1901 } 1902 if (block) { 1903 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1904 } else if (last_block) { 1905 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1906 } else { /* list is empty */ 1907 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1908 } 1909 ram_list.mru_block = NULL; 1910 1911 /* Write list before version */ 1912 smp_wmb(); 1913 ram_list.version++; 1914 qemu_mutex_unlock_ramlist(); 1915 1916 cpu_physical_memory_set_dirty_range(new_block->offset, 1917 new_block->used_length, 1918 DIRTY_CLIENTS_ALL); 1919 1920 if (new_block->host) { 1921 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1922 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1923 /* 1924 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1925 * Configure it unless the machine is a qtest server, in which case 1926 * KVM is not used and it may be forked (eg for fuzzing purposes). 1927 */ 1928 if (!qtest_enabled()) { 1929 qemu_madvise(new_block->host, new_block->max_length, 1930 QEMU_MADV_DONTFORK); 1931 } 1932 ram_block_notify_add(new_block->host, new_block->used_length, 1933 new_block->max_length); 1934 } 1935 return; 1936 1937 out_free: 1938 if (free_on_error) { 1939 qemu_anon_ram_free(new_block->host, new_block->max_length); 1940 new_block->host = NULL; 1941 } 1942 } 1943 1944 #ifdef CONFIG_POSIX 1945 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1946 uint32_t ram_flags, int fd, off_t offset, 1947 Error **errp) 1948 { 1949 RAMBlock *new_block; 1950 Error *local_err = NULL; 1951 int64_t file_size, file_align; 1952 1953 /* Just support these ram flags by now. */ 1954 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1955 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1956 RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0); 1957 1958 if (xen_enabled()) { 1959 error_setg(errp, "-mem-path not supported with Xen"); 1960 return NULL; 1961 } 1962 1963 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1964 error_setg(errp, 1965 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1966 return NULL; 1967 } 1968 1969 size = TARGET_PAGE_ALIGN(size); 1970 size = REAL_HOST_PAGE_ALIGN(size); 1971 1972 file_size = get_file_size(fd); 1973 if (file_size > offset && file_size < (offset + size)) { 1974 error_setg(errp, "backing store size 0x%" PRIx64 1975 " does not match 'size' option 0x" RAM_ADDR_FMT, 1976 file_size, size); 1977 return NULL; 1978 } 1979 1980 file_align = get_file_align(fd); 1981 if (file_align > 0 && file_align > mr->align) { 1982 error_setg(errp, "backing store align 0x%" PRIx64 1983 " is larger than 'align' option 0x%" PRIx64, 1984 file_align, mr->align); 1985 return NULL; 1986 } 1987 1988 new_block = g_malloc0(sizeof(*new_block)); 1989 new_block->mr = mr; 1990 new_block->used_length = size; 1991 new_block->max_length = size; 1992 new_block->flags = ram_flags; 1993 new_block->guest_memfd = -1; 1994 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 1995 errp); 1996 if (!new_block->host) { 1997 g_free(new_block); 1998 return NULL; 1999 } 2000 2001 ram_block_add(new_block, &local_err); 2002 if (local_err) { 2003 g_free(new_block); 2004 error_propagate(errp, local_err); 2005 return NULL; 2006 } 2007 return new_block; 2008 2009 } 2010 2011 2012 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2013 uint32_t ram_flags, const char *mem_path, 2014 off_t offset, Error **errp) 2015 { 2016 int fd; 2017 bool created; 2018 RAMBlock *block; 2019 2020 fd = file_ram_open(mem_path, memory_region_name(mr), 2021 !!(ram_flags & RAM_READONLY_FD), &created); 2022 if (fd < 0) { 2023 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2024 mem_path); 2025 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2026 fd == -EACCES) { 2027 /* 2028 * If we can open the file R/O (note: will never create a new file) 2029 * and we are dealing with a private mapping, there are still ways 2030 * to consume such files and get RAM instead of ROM. 2031 */ 2032 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2033 &created); 2034 if (fd < 0) { 2035 return NULL; 2036 } 2037 assert(!created); 2038 close(fd); 2039 error_append_hint(errp, "Consider opening the backing store" 2040 " read-only but still creating writable RAM using" 2041 " '-object memory-backend-file,readonly=on,rom=off...'" 2042 " (see \"VM templating\" documentation)\n"); 2043 } 2044 return NULL; 2045 } 2046 2047 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 2048 if (!block) { 2049 if (created) { 2050 unlink(mem_path); 2051 } 2052 close(fd); 2053 return NULL; 2054 } 2055 2056 return block; 2057 } 2058 #endif 2059 2060 static 2061 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2062 void (*resized)(const char*, 2063 uint64_t length, 2064 void *host), 2065 void *host, uint32_t ram_flags, 2066 MemoryRegion *mr, Error **errp) 2067 { 2068 RAMBlock *new_block; 2069 Error *local_err = NULL; 2070 int align; 2071 2072 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2073 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2074 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2075 2076 align = qemu_real_host_page_size(); 2077 align = MAX(align, TARGET_PAGE_SIZE); 2078 size = ROUND_UP(size, align); 2079 max_size = ROUND_UP(max_size, align); 2080 2081 new_block = g_malloc0(sizeof(*new_block)); 2082 new_block->mr = mr; 2083 new_block->resized = resized; 2084 new_block->used_length = size; 2085 new_block->max_length = max_size; 2086 assert(max_size >= size); 2087 new_block->fd = -1; 2088 new_block->guest_memfd = -1; 2089 new_block->page_size = qemu_real_host_page_size(); 2090 new_block->host = host; 2091 new_block->flags = ram_flags; 2092 ram_block_add(new_block, &local_err); 2093 if (local_err) { 2094 g_free(new_block); 2095 error_propagate(errp, local_err); 2096 return NULL; 2097 } 2098 return new_block; 2099 } 2100 2101 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2102 MemoryRegion *mr, Error **errp) 2103 { 2104 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2105 errp); 2106 } 2107 2108 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2109 MemoryRegion *mr, Error **errp) 2110 { 2111 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2112 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2113 } 2114 2115 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2116 void (*resized)(const char*, 2117 uint64_t length, 2118 void *host), 2119 MemoryRegion *mr, Error **errp) 2120 { 2121 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2122 RAM_RESIZEABLE, mr, errp); 2123 } 2124 2125 static void reclaim_ramblock(RAMBlock *block) 2126 { 2127 if (block->flags & RAM_PREALLOC) { 2128 ; 2129 } else if (xen_enabled()) { 2130 xen_invalidate_map_cache_entry(block->host); 2131 #ifndef _WIN32 2132 } else if (block->fd >= 0) { 2133 qemu_ram_munmap(block->fd, block->host, block->max_length); 2134 close(block->fd); 2135 #endif 2136 } else { 2137 qemu_anon_ram_free(block->host, block->max_length); 2138 } 2139 2140 if (block->guest_memfd >= 0) { 2141 close(block->guest_memfd); 2142 ram_block_discard_require(false); 2143 } 2144 2145 g_free(block); 2146 } 2147 2148 void qemu_ram_free(RAMBlock *block) 2149 { 2150 if (!block) { 2151 return; 2152 } 2153 2154 if (block->host) { 2155 ram_block_notify_remove(block->host, block->used_length, 2156 block->max_length); 2157 } 2158 2159 qemu_mutex_lock_ramlist(); 2160 QLIST_REMOVE_RCU(block, next); 2161 ram_list.mru_block = NULL; 2162 /* Write list before version */ 2163 smp_wmb(); 2164 ram_list.version++; 2165 call_rcu(block, reclaim_ramblock, rcu); 2166 qemu_mutex_unlock_ramlist(); 2167 } 2168 2169 #ifndef _WIN32 2170 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2171 { 2172 RAMBlock *block; 2173 ram_addr_t offset; 2174 int flags; 2175 void *area, *vaddr; 2176 int prot; 2177 2178 RAMBLOCK_FOREACH(block) { 2179 offset = addr - block->offset; 2180 if (offset < block->max_length) { 2181 vaddr = ramblock_ptr(block, offset); 2182 if (block->flags & RAM_PREALLOC) { 2183 ; 2184 } else if (xen_enabled()) { 2185 abort(); 2186 } else { 2187 flags = MAP_FIXED; 2188 flags |= block->flags & RAM_SHARED ? 2189 MAP_SHARED : MAP_PRIVATE; 2190 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2191 prot = PROT_READ; 2192 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2193 if (block->fd >= 0) { 2194 area = mmap(vaddr, length, prot, flags, block->fd, 2195 offset + block->fd_offset); 2196 } else { 2197 flags |= MAP_ANONYMOUS; 2198 area = mmap(vaddr, length, prot, flags, -1, 0); 2199 } 2200 if (area != vaddr) { 2201 error_report("Could not remap addr: " 2202 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2203 length, addr); 2204 exit(1); 2205 } 2206 memory_try_enable_merging(vaddr, length); 2207 qemu_ram_setup_dump(vaddr, length); 2208 } 2209 } 2210 } 2211 } 2212 #endif /* !_WIN32 */ 2213 2214 /* 2215 * Return a host pointer to guest's ram. 2216 * For Xen, foreign mappings get created if they don't already exist. 2217 * 2218 * @block: block for the RAM to lookup (optional and may be NULL). 2219 * @addr: address within the memory region. 2220 * @size: pointer to requested size (optional and may be NULL). 2221 * size may get modified and return a value smaller than 2222 * what was requested. 2223 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2224 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2225 * (optional and may always be set to true). 2226 * 2227 * Called within RCU critical section. 2228 */ 2229 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2230 hwaddr *size, bool lock, 2231 bool is_write) 2232 { 2233 hwaddr len = 0; 2234 2235 if (size && *size == 0) { 2236 return NULL; 2237 } 2238 2239 if (block == NULL) { 2240 block = qemu_get_ram_block(addr); 2241 addr -= block->offset; 2242 } 2243 if (size) { 2244 *size = MIN(*size, block->max_length - addr); 2245 len = *size; 2246 } 2247 2248 if (xen_enabled() && block->host == NULL) { 2249 /* We need to check if the requested address is in the RAM 2250 * because we don't want to map the entire memory in QEMU. 2251 * In that case just map the requested area. 2252 */ 2253 if (xen_mr_is_memory(block->mr)) { 2254 return xen_map_cache(block->mr, block->offset + addr, 2255 len, block->offset, 2256 lock, lock, is_write); 2257 } 2258 2259 block->host = xen_map_cache(block->mr, block->offset, 2260 block->max_length, 2261 block->offset, 2262 1, lock, is_write); 2263 } 2264 2265 return ramblock_ptr(block, addr); 2266 } 2267 2268 /* 2269 * Return a host pointer to ram allocated with qemu_ram_alloc. 2270 * This should not be used for general purpose DMA. Use address_space_map 2271 * or address_space_rw instead. For local memory (e.g. video ram) that the 2272 * device owns, use memory_region_get_ram_ptr. 2273 * 2274 * Called within RCU critical section. 2275 */ 2276 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2277 { 2278 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2279 } 2280 2281 /* Return the offset of a hostpointer within a ramblock */ 2282 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2283 { 2284 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2285 assert((uintptr_t)host >= (uintptr_t)rb->host); 2286 assert(res < rb->max_length); 2287 2288 return res; 2289 } 2290 2291 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2292 ram_addr_t *offset) 2293 { 2294 RAMBlock *block; 2295 uint8_t *host = ptr; 2296 2297 if (xen_enabled()) { 2298 ram_addr_t ram_addr; 2299 RCU_READ_LOCK_GUARD(); 2300 ram_addr = xen_ram_addr_from_mapcache(ptr); 2301 if (ram_addr == RAM_ADDR_INVALID) { 2302 return NULL; 2303 } 2304 2305 block = qemu_get_ram_block(ram_addr); 2306 if (block) { 2307 *offset = ram_addr - block->offset; 2308 } 2309 return block; 2310 } 2311 2312 RCU_READ_LOCK_GUARD(); 2313 block = qatomic_rcu_read(&ram_list.mru_block); 2314 if (block && block->host && host - block->host < block->max_length) { 2315 goto found; 2316 } 2317 2318 RAMBLOCK_FOREACH(block) { 2319 /* This case append when the block is not mapped. */ 2320 if (block->host == NULL) { 2321 continue; 2322 } 2323 if (host - block->host < block->max_length) { 2324 goto found; 2325 } 2326 } 2327 2328 return NULL; 2329 2330 found: 2331 *offset = (host - block->host); 2332 if (round_offset) { 2333 *offset &= TARGET_PAGE_MASK; 2334 } 2335 return block; 2336 } 2337 2338 /* 2339 * Finds the named RAMBlock 2340 * 2341 * name: The name of RAMBlock to find 2342 * 2343 * Returns: RAMBlock (or NULL if not found) 2344 */ 2345 RAMBlock *qemu_ram_block_by_name(const char *name) 2346 { 2347 RAMBlock *block; 2348 2349 RAMBLOCK_FOREACH(block) { 2350 if (!strcmp(name, block->idstr)) { 2351 return block; 2352 } 2353 } 2354 2355 return NULL; 2356 } 2357 2358 /* 2359 * Some of the system routines need to translate from a host pointer 2360 * (typically a TLB entry) back to a ram offset. 2361 */ 2362 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2363 { 2364 RAMBlock *block; 2365 ram_addr_t offset; 2366 2367 block = qemu_ram_block_from_host(ptr, false, &offset); 2368 if (!block) { 2369 return RAM_ADDR_INVALID; 2370 } 2371 2372 return block->offset + offset; 2373 } 2374 2375 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2376 { 2377 ram_addr_t ram_addr; 2378 2379 ram_addr = qemu_ram_addr_from_host(ptr); 2380 if (ram_addr == RAM_ADDR_INVALID) { 2381 error_report("Bad ram pointer %p", ptr); 2382 abort(); 2383 } 2384 return ram_addr; 2385 } 2386 2387 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2388 MemTxAttrs attrs, void *buf, hwaddr len); 2389 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2390 const void *buf, hwaddr len); 2391 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2392 bool is_write, MemTxAttrs attrs); 2393 2394 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2395 unsigned len, MemTxAttrs attrs) 2396 { 2397 subpage_t *subpage = opaque; 2398 uint8_t buf[8]; 2399 MemTxResult res; 2400 2401 #if defined(DEBUG_SUBPAGE) 2402 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2403 subpage, len, addr); 2404 #endif 2405 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2406 if (res) { 2407 return res; 2408 } 2409 *data = ldn_p(buf, len); 2410 return MEMTX_OK; 2411 } 2412 2413 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2414 uint64_t value, unsigned len, MemTxAttrs attrs) 2415 { 2416 subpage_t *subpage = opaque; 2417 uint8_t buf[8]; 2418 2419 #if defined(DEBUG_SUBPAGE) 2420 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2421 " value %"PRIx64"\n", 2422 __func__, subpage, len, addr, value); 2423 #endif 2424 stn_p(buf, len, value); 2425 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2426 } 2427 2428 static bool subpage_accepts(void *opaque, hwaddr addr, 2429 unsigned len, bool is_write, 2430 MemTxAttrs attrs) 2431 { 2432 subpage_t *subpage = opaque; 2433 #if defined(DEBUG_SUBPAGE) 2434 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2435 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2436 #endif 2437 2438 return flatview_access_valid(subpage->fv, addr + subpage->base, 2439 len, is_write, attrs); 2440 } 2441 2442 static const MemoryRegionOps subpage_ops = { 2443 .read_with_attrs = subpage_read, 2444 .write_with_attrs = subpage_write, 2445 .impl.min_access_size = 1, 2446 .impl.max_access_size = 8, 2447 .valid.min_access_size = 1, 2448 .valid.max_access_size = 8, 2449 .valid.accepts = subpage_accepts, 2450 .endianness = DEVICE_NATIVE_ENDIAN, 2451 }; 2452 2453 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2454 uint16_t section) 2455 { 2456 int idx, eidx; 2457 2458 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2459 return -1; 2460 idx = SUBPAGE_IDX(start); 2461 eidx = SUBPAGE_IDX(end); 2462 #if defined(DEBUG_SUBPAGE) 2463 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2464 __func__, mmio, start, end, idx, eidx, section); 2465 #endif 2466 for (; idx <= eidx; idx++) { 2467 mmio->sub_section[idx] = section; 2468 } 2469 2470 return 0; 2471 } 2472 2473 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2474 { 2475 subpage_t *mmio; 2476 2477 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2478 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2479 mmio->fv = fv; 2480 mmio->base = base; 2481 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2482 NULL, TARGET_PAGE_SIZE); 2483 mmio->iomem.subpage = true; 2484 #if defined(DEBUG_SUBPAGE) 2485 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2486 mmio, base, TARGET_PAGE_SIZE); 2487 #endif 2488 2489 return mmio; 2490 } 2491 2492 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2493 { 2494 assert(fv); 2495 MemoryRegionSection section = { 2496 .fv = fv, 2497 .mr = mr, 2498 .offset_within_address_space = 0, 2499 .offset_within_region = 0, 2500 .size = int128_2_64(), 2501 }; 2502 2503 return phys_section_add(map, §ion); 2504 } 2505 2506 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2507 hwaddr index, MemTxAttrs attrs) 2508 { 2509 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2510 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2511 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2512 int section_index = index & ~TARGET_PAGE_MASK; 2513 MemoryRegionSection *ret; 2514 2515 assert(section_index < d->map.sections_nb); 2516 ret = d->map.sections + section_index; 2517 assert(ret->mr); 2518 assert(ret->mr->ops); 2519 2520 return ret; 2521 } 2522 2523 static void io_mem_init(void) 2524 { 2525 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2526 NULL, UINT64_MAX); 2527 } 2528 2529 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2530 { 2531 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2532 uint16_t n; 2533 2534 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2535 assert(n == PHYS_SECTION_UNASSIGNED); 2536 2537 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2538 2539 return d; 2540 } 2541 2542 void address_space_dispatch_free(AddressSpaceDispatch *d) 2543 { 2544 phys_sections_free(&d->map); 2545 g_free(d); 2546 } 2547 2548 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2549 { 2550 } 2551 2552 static void tcg_log_global_after_sync(MemoryListener *listener) 2553 { 2554 CPUAddressSpace *cpuas; 2555 2556 /* Wait for the CPU to end the current TB. This avoids the following 2557 * incorrect race: 2558 * 2559 * vCPU migration 2560 * ---------------------- ------------------------- 2561 * TLB check -> slow path 2562 * notdirty_mem_write 2563 * write to RAM 2564 * mark dirty 2565 * clear dirty flag 2566 * TLB check -> fast path 2567 * read memory 2568 * write to RAM 2569 * 2570 * by pushing the migration thread's memory read after the vCPU thread has 2571 * written the memory. 2572 */ 2573 if (replay_mode == REPLAY_MODE_NONE) { 2574 /* 2575 * VGA can make calls to this function while updating the screen. 2576 * In record/replay mode this causes a deadlock, because 2577 * run_on_cpu waits for rr mutex. Therefore no races are possible 2578 * in this case and no need for making run_on_cpu when 2579 * record/replay is enabled. 2580 */ 2581 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2582 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2583 } 2584 } 2585 2586 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2587 { 2588 CPUAddressSpace *cpuas = data.host_ptr; 2589 2590 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2591 tlb_flush(cpu); 2592 } 2593 2594 static void tcg_commit(MemoryListener *listener) 2595 { 2596 CPUAddressSpace *cpuas; 2597 CPUState *cpu; 2598 2599 assert(tcg_enabled()); 2600 /* since each CPU stores ram addresses in its TLB cache, we must 2601 reset the modified entries */ 2602 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2603 cpu = cpuas->cpu; 2604 2605 /* 2606 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2607 * Otherwise we race between (1) other cpu threads and (2) ongoing 2608 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2609 * 2610 * In addition, queueing the work function will kick the cpu back to 2611 * the main loop, which will end the RCU critical section and reclaim 2612 * the memory data structures. 2613 * 2614 * That said, the listener is also called during realize, before 2615 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2616 */ 2617 if (cpu->halt_cond) { 2618 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2619 } else { 2620 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2621 } 2622 } 2623 2624 static void memory_map_init(void) 2625 { 2626 system_memory = g_malloc(sizeof(*system_memory)); 2627 2628 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2629 address_space_init(&address_space_memory, system_memory, "memory"); 2630 2631 system_io = g_malloc(sizeof(*system_io)); 2632 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2633 65536); 2634 address_space_init(&address_space_io, system_io, "I/O"); 2635 } 2636 2637 MemoryRegion *get_system_memory(void) 2638 { 2639 return system_memory; 2640 } 2641 2642 MemoryRegion *get_system_io(void) 2643 { 2644 return system_io; 2645 } 2646 2647 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2648 hwaddr length) 2649 { 2650 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2651 ram_addr_t ramaddr = memory_region_get_ram_addr(mr); 2652 2653 /* We know we're only called for RAM MemoryRegions */ 2654 assert(ramaddr != RAM_ADDR_INVALID); 2655 addr += ramaddr; 2656 2657 /* No early return if dirty_log_mask is or becomes 0, because 2658 * cpu_physical_memory_set_dirty_range will still call 2659 * xen_modified_memory. 2660 */ 2661 if (dirty_log_mask) { 2662 dirty_log_mask = 2663 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2664 } 2665 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2666 assert(tcg_enabled()); 2667 tb_invalidate_phys_range(addr, addr + length - 1); 2668 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2669 } 2670 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2671 } 2672 2673 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2674 { 2675 /* 2676 * In principle this function would work on other memory region types too, 2677 * but the ROM device use case is the only one where this operation is 2678 * necessary. Other memory regions should use the 2679 * address_space_read/write() APIs. 2680 */ 2681 assert(memory_region_is_romd(mr)); 2682 2683 invalidate_and_set_dirty(mr, addr, size); 2684 } 2685 2686 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2687 { 2688 unsigned access_size_max = mr->ops->valid.max_access_size; 2689 2690 /* Regions are assumed to support 1-4 byte accesses unless 2691 otherwise specified. */ 2692 if (access_size_max == 0) { 2693 access_size_max = 4; 2694 } 2695 2696 /* Bound the maximum access by the alignment of the address. */ 2697 if (!mr->ops->impl.unaligned) { 2698 unsigned align_size_max = addr & -addr; 2699 if (align_size_max != 0 && align_size_max < access_size_max) { 2700 access_size_max = align_size_max; 2701 } 2702 } 2703 2704 /* Don't attempt accesses larger than the maximum. */ 2705 if (l > access_size_max) { 2706 l = access_size_max; 2707 } 2708 l = pow2floor(l); 2709 2710 return l; 2711 } 2712 2713 bool prepare_mmio_access(MemoryRegion *mr) 2714 { 2715 bool release_lock = false; 2716 2717 if (!bql_locked()) { 2718 bql_lock(); 2719 release_lock = true; 2720 } 2721 if (mr->flush_coalesced_mmio) { 2722 qemu_flush_coalesced_mmio_buffer(); 2723 } 2724 2725 return release_lock; 2726 } 2727 2728 /** 2729 * flatview_access_allowed 2730 * @mr: #MemoryRegion to be accessed 2731 * @attrs: memory transaction attributes 2732 * @addr: address within that memory region 2733 * @len: the number of bytes to access 2734 * 2735 * Check if a memory transaction is allowed. 2736 * 2737 * Returns: true if transaction is allowed, false if denied. 2738 */ 2739 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2740 hwaddr addr, hwaddr len) 2741 { 2742 if (likely(!attrs.memory)) { 2743 return true; 2744 } 2745 if (memory_region_is_ram(mr)) { 2746 return true; 2747 } 2748 qemu_log_mask(LOG_GUEST_ERROR, 2749 "Invalid access to non-RAM device at " 2750 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2751 "region '%s'\n", addr, len, memory_region_name(mr)); 2752 return false; 2753 } 2754 2755 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2756 const uint8_t *buf, 2757 hwaddr len, hwaddr mr_addr, 2758 hwaddr *l, MemoryRegion *mr) 2759 { 2760 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2761 return MEMTX_ACCESS_ERROR; 2762 } 2763 2764 if (!memory_access_is_direct(mr, true)) { 2765 uint64_t val; 2766 MemTxResult result; 2767 bool release_lock = prepare_mmio_access(mr); 2768 2769 *l = memory_access_size(mr, *l, mr_addr); 2770 /* 2771 * XXX: could force current_cpu to NULL to avoid 2772 * potential bugs 2773 */ 2774 2775 /* 2776 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2777 * the buffer by following ldn_he_p(). 2778 */ 2779 #ifdef QEMU_STATIC_ANALYSIS 2780 assert((*l == 1 && len >= 1) || 2781 (*l == 2 && len >= 2) || 2782 (*l == 4 && len >= 4) || 2783 (*l == 8 && len >= 8)); 2784 #endif 2785 val = ldn_he_p(buf, *l); 2786 result = memory_region_dispatch_write(mr, mr_addr, val, 2787 size_memop(*l), attrs); 2788 if (release_lock) { 2789 bql_unlock(); 2790 } 2791 2792 return result; 2793 } else { 2794 /* RAM case */ 2795 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2796 false, true); 2797 2798 memmove(ram_ptr, buf, *l); 2799 invalidate_and_set_dirty(mr, mr_addr, *l); 2800 2801 return MEMTX_OK; 2802 } 2803 } 2804 2805 /* Called within RCU critical section. */ 2806 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2807 MemTxAttrs attrs, 2808 const void *ptr, 2809 hwaddr len, hwaddr mr_addr, 2810 hwaddr l, MemoryRegion *mr) 2811 { 2812 MemTxResult result = MEMTX_OK; 2813 const uint8_t *buf = ptr; 2814 2815 for (;;) { 2816 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2817 mr); 2818 2819 len -= l; 2820 buf += l; 2821 addr += l; 2822 2823 if (!len) { 2824 break; 2825 } 2826 2827 l = len; 2828 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2829 } 2830 2831 return result; 2832 } 2833 2834 /* Called from RCU critical section. */ 2835 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2836 const void *buf, hwaddr len) 2837 { 2838 hwaddr l; 2839 hwaddr mr_addr; 2840 MemoryRegion *mr; 2841 2842 l = len; 2843 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2844 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2845 return MEMTX_ACCESS_ERROR; 2846 } 2847 return flatview_write_continue(fv, addr, attrs, buf, len, 2848 mr_addr, l, mr); 2849 } 2850 2851 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2852 hwaddr len, hwaddr mr_addr, 2853 hwaddr *l, 2854 MemoryRegion *mr) 2855 { 2856 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2857 return MEMTX_ACCESS_ERROR; 2858 } 2859 2860 if (!memory_access_is_direct(mr, false)) { 2861 /* I/O case */ 2862 uint64_t val; 2863 MemTxResult result; 2864 bool release_lock = prepare_mmio_access(mr); 2865 2866 *l = memory_access_size(mr, *l, mr_addr); 2867 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 2868 attrs); 2869 2870 /* 2871 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2872 * the buffer by following stn_he_p(). 2873 */ 2874 #ifdef QEMU_STATIC_ANALYSIS 2875 assert((*l == 1 && len >= 1) || 2876 (*l == 2 && len >= 2) || 2877 (*l == 4 && len >= 4) || 2878 (*l == 8 && len >= 8)); 2879 #endif 2880 stn_he_p(buf, *l, val); 2881 2882 if (release_lock) { 2883 bql_unlock(); 2884 } 2885 return result; 2886 } else { 2887 /* RAM case */ 2888 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2889 false, false); 2890 2891 memcpy(buf, ram_ptr, *l); 2892 2893 return MEMTX_OK; 2894 } 2895 } 2896 2897 /* Called within RCU critical section. */ 2898 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2899 MemTxAttrs attrs, void *ptr, 2900 hwaddr len, hwaddr mr_addr, hwaddr l, 2901 MemoryRegion *mr) 2902 { 2903 MemTxResult result = MEMTX_OK; 2904 uint8_t *buf = ptr; 2905 2906 fuzz_dma_read_cb(addr, len, mr); 2907 for (;;) { 2908 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 2909 2910 len -= l; 2911 buf += l; 2912 addr += l; 2913 2914 if (!len) { 2915 break; 2916 } 2917 2918 l = len; 2919 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2920 } 2921 2922 return result; 2923 } 2924 2925 /* Called from RCU critical section. */ 2926 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2927 MemTxAttrs attrs, void *buf, hwaddr len) 2928 { 2929 hwaddr l; 2930 hwaddr mr_addr; 2931 MemoryRegion *mr; 2932 2933 l = len; 2934 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 2935 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2936 return MEMTX_ACCESS_ERROR; 2937 } 2938 return flatview_read_continue(fv, addr, attrs, buf, len, 2939 mr_addr, l, mr); 2940 } 2941 2942 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2943 MemTxAttrs attrs, void *buf, hwaddr len) 2944 { 2945 MemTxResult result = MEMTX_OK; 2946 FlatView *fv; 2947 2948 if (len > 0) { 2949 RCU_READ_LOCK_GUARD(); 2950 fv = address_space_to_flatview(as); 2951 result = flatview_read(fv, addr, attrs, buf, len); 2952 } 2953 2954 return result; 2955 } 2956 2957 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2958 MemTxAttrs attrs, 2959 const void *buf, hwaddr len) 2960 { 2961 MemTxResult result = MEMTX_OK; 2962 FlatView *fv; 2963 2964 if (len > 0) { 2965 RCU_READ_LOCK_GUARD(); 2966 fv = address_space_to_flatview(as); 2967 result = flatview_write(fv, addr, attrs, buf, len); 2968 } 2969 2970 return result; 2971 } 2972 2973 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2974 void *buf, hwaddr len, bool is_write) 2975 { 2976 if (is_write) { 2977 return address_space_write(as, addr, attrs, buf, len); 2978 } else { 2979 return address_space_read_full(as, addr, attrs, buf, len); 2980 } 2981 } 2982 2983 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2984 uint8_t c, hwaddr len, MemTxAttrs attrs) 2985 { 2986 #define FILLBUF_SIZE 512 2987 uint8_t fillbuf[FILLBUF_SIZE]; 2988 int l; 2989 MemTxResult error = MEMTX_OK; 2990 2991 memset(fillbuf, c, FILLBUF_SIZE); 2992 while (len > 0) { 2993 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2994 error |= address_space_write(as, addr, attrs, fillbuf, l); 2995 len -= l; 2996 addr += l; 2997 } 2998 2999 return error; 3000 } 3001 3002 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3003 hwaddr len, bool is_write) 3004 { 3005 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3006 buf, len, is_write); 3007 } 3008 3009 enum write_rom_type { 3010 WRITE_DATA, 3011 FLUSH_CACHE, 3012 }; 3013 3014 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3015 hwaddr addr, 3016 MemTxAttrs attrs, 3017 const void *ptr, 3018 hwaddr len, 3019 enum write_rom_type type) 3020 { 3021 hwaddr l; 3022 uint8_t *ram_ptr; 3023 hwaddr addr1; 3024 MemoryRegion *mr; 3025 const uint8_t *buf = ptr; 3026 3027 RCU_READ_LOCK_GUARD(); 3028 while (len > 0) { 3029 l = len; 3030 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3031 3032 if (!(memory_region_is_ram(mr) || 3033 memory_region_is_romd(mr))) { 3034 l = memory_access_size(mr, l, addr1); 3035 } else { 3036 /* ROM/RAM case */ 3037 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3038 switch (type) { 3039 case WRITE_DATA: 3040 memcpy(ram_ptr, buf, l); 3041 invalidate_and_set_dirty(mr, addr1, l); 3042 break; 3043 case FLUSH_CACHE: 3044 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3045 break; 3046 } 3047 } 3048 len -= l; 3049 buf += l; 3050 addr += l; 3051 } 3052 return MEMTX_OK; 3053 } 3054 3055 /* used for ROM loading : can write in RAM and ROM */ 3056 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3057 MemTxAttrs attrs, 3058 const void *buf, hwaddr len) 3059 { 3060 return address_space_write_rom_internal(as, addr, attrs, 3061 buf, len, WRITE_DATA); 3062 } 3063 3064 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3065 { 3066 /* 3067 * This function should do the same thing as an icache flush that was 3068 * triggered from within the guest. For TCG we are always cache coherent, 3069 * so there is no need to flush anything. For KVM / Xen we need to flush 3070 * the host's instruction cache at least. 3071 */ 3072 if (tcg_enabled()) { 3073 return; 3074 } 3075 3076 address_space_write_rom_internal(&address_space_memory, 3077 start, MEMTXATTRS_UNSPECIFIED, 3078 NULL, len, FLUSH_CACHE); 3079 } 3080 3081 /* 3082 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used 3083 * to detect illegal pointers passed to address_space_unmap. 3084 */ 3085 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed 3086 3087 typedef struct { 3088 uint64_t magic; 3089 MemoryRegion *mr; 3090 hwaddr addr; 3091 size_t len; 3092 uint8_t buffer[]; 3093 } BounceBuffer; 3094 3095 static void 3096 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3097 { 3098 QLIST_REMOVE(client, link); 3099 g_free(client); 3100 } 3101 3102 static void address_space_notify_map_clients_locked(AddressSpace *as) 3103 { 3104 AddressSpaceMapClient *client; 3105 3106 while (!QLIST_EMPTY(&as->map_client_list)) { 3107 client = QLIST_FIRST(&as->map_client_list); 3108 qemu_bh_schedule(client->bh); 3109 address_space_unregister_map_client_do(client); 3110 } 3111 } 3112 3113 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3114 { 3115 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3116 3117 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3118 client->bh = bh; 3119 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3120 /* Write map_client_list before reading bounce_buffer_size. */ 3121 smp_mb(); 3122 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) { 3123 address_space_notify_map_clients_locked(as); 3124 } 3125 } 3126 3127 void cpu_exec_init_all(void) 3128 { 3129 qemu_mutex_init(&ram_list.mutex); 3130 /* The data structures we set up here depend on knowing the page size, 3131 * so no more changes can be made after this point. 3132 * In an ideal world, nothing we did before we had finished the 3133 * machine setup would care about the target page size, and we could 3134 * do this much later, rather than requiring board models to state 3135 * up front what their requirements are. 3136 */ 3137 finalize_target_page_bits(); 3138 io_mem_init(); 3139 memory_map_init(); 3140 } 3141 3142 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3143 { 3144 AddressSpaceMapClient *client; 3145 3146 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3147 QLIST_FOREACH(client, &as->map_client_list, link) { 3148 if (client->bh == bh) { 3149 address_space_unregister_map_client_do(client); 3150 break; 3151 } 3152 } 3153 } 3154 3155 static void address_space_notify_map_clients(AddressSpace *as) 3156 { 3157 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3158 address_space_notify_map_clients_locked(as); 3159 } 3160 3161 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3162 bool is_write, MemTxAttrs attrs) 3163 { 3164 MemoryRegion *mr; 3165 hwaddr l, xlat; 3166 3167 while (len > 0) { 3168 l = len; 3169 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3170 if (!memory_access_is_direct(mr, is_write)) { 3171 l = memory_access_size(mr, l, addr); 3172 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3173 return false; 3174 } 3175 } 3176 3177 len -= l; 3178 addr += l; 3179 } 3180 return true; 3181 } 3182 3183 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3184 hwaddr len, bool is_write, 3185 MemTxAttrs attrs) 3186 { 3187 FlatView *fv; 3188 3189 RCU_READ_LOCK_GUARD(); 3190 fv = address_space_to_flatview(as); 3191 return flatview_access_valid(fv, addr, len, is_write, attrs); 3192 } 3193 3194 static hwaddr 3195 flatview_extend_translation(FlatView *fv, hwaddr addr, 3196 hwaddr target_len, 3197 MemoryRegion *mr, hwaddr base, hwaddr len, 3198 bool is_write, MemTxAttrs attrs) 3199 { 3200 hwaddr done = 0; 3201 hwaddr xlat; 3202 MemoryRegion *this_mr; 3203 3204 for (;;) { 3205 target_len -= len; 3206 addr += len; 3207 done += len; 3208 if (target_len == 0) { 3209 return done; 3210 } 3211 3212 len = target_len; 3213 this_mr = flatview_translate(fv, addr, &xlat, 3214 &len, is_write, attrs); 3215 if (this_mr != mr || xlat != base + done) { 3216 return done; 3217 } 3218 } 3219 } 3220 3221 /* Map a physical memory region into a host virtual address. 3222 * May map a subset of the requested range, given by and returned in *plen. 3223 * May return NULL if resources needed to perform the mapping are exhausted. 3224 * Use only for reads OR writes - not for read-modify-write operations. 3225 * Use address_space_register_map_client() to know when retrying the map 3226 * operation is likely to succeed. 3227 */ 3228 void *address_space_map(AddressSpace *as, 3229 hwaddr addr, 3230 hwaddr *plen, 3231 bool is_write, 3232 MemTxAttrs attrs) 3233 { 3234 hwaddr len = *plen; 3235 hwaddr l, xlat; 3236 MemoryRegion *mr; 3237 FlatView *fv; 3238 3239 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3240 3241 if (len == 0) { 3242 return NULL; 3243 } 3244 3245 l = len; 3246 RCU_READ_LOCK_GUARD(); 3247 fv = address_space_to_flatview(as); 3248 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3249 3250 if (!memory_access_is_direct(mr, is_write)) { 3251 size_t used = qatomic_read(&as->bounce_buffer_size); 3252 for (;;) { 3253 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l); 3254 size_t new_size = used + alloc; 3255 size_t actual = 3256 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size); 3257 if (actual == used) { 3258 l = alloc; 3259 break; 3260 } 3261 used = actual; 3262 } 3263 3264 if (l == 0) { 3265 *plen = 0; 3266 return NULL; 3267 } 3268 3269 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer)); 3270 bounce->magic = BOUNCE_BUFFER_MAGIC; 3271 memory_region_ref(mr); 3272 bounce->mr = mr; 3273 bounce->addr = addr; 3274 bounce->len = l; 3275 3276 if (!is_write) { 3277 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3278 bounce->buffer, l); 3279 } 3280 3281 *plen = l; 3282 return bounce->buffer; 3283 } 3284 3285 memory_region_ref(mr); 3286 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3287 l, is_write, attrs); 3288 fuzz_dma_read_cb(addr, *plen, mr); 3289 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3290 } 3291 3292 /* Unmaps a memory region previously mapped by address_space_map(). 3293 * Will also mark the memory as dirty if is_write is true. access_len gives 3294 * the amount of memory that was actually read or written by the caller. 3295 */ 3296 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3297 bool is_write, hwaddr access_len) 3298 { 3299 MemoryRegion *mr; 3300 ram_addr_t addr1; 3301 3302 mr = memory_region_from_host(buffer, &addr1); 3303 if (mr != NULL) { 3304 if (is_write) { 3305 invalidate_and_set_dirty(mr, addr1, access_len); 3306 } 3307 if (xen_enabled()) { 3308 xen_invalidate_map_cache_entry(buffer); 3309 } 3310 memory_region_unref(mr); 3311 return; 3312 } 3313 3314 3315 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer); 3316 assert(bounce->magic == BOUNCE_BUFFER_MAGIC); 3317 3318 if (is_write) { 3319 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED, 3320 bounce->buffer, access_len); 3321 } 3322 3323 qatomic_sub(&as->bounce_buffer_size, bounce->len); 3324 bounce->magic = ~BOUNCE_BUFFER_MAGIC; 3325 memory_region_unref(bounce->mr); 3326 g_free(bounce); 3327 /* Write bounce_buffer_size before reading map_client_list. */ 3328 smp_mb(); 3329 address_space_notify_map_clients(as); 3330 } 3331 3332 void *cpu_physical_memory_map(hwaddr addr, 3333 hwaddr *plen, 3334 bool is_write) 3335 { 3336 return address_space_map(&address_space_memory, addr, plen, is_write, 3337 MEMTXATTRS_UNSPECIFIED); 3338 } 3339 3340 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3341 bool is_write, hwaddr access_len) 3342 { 3343 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3344 } 3345 3346 #define ARG1_DECL AddressSpace *as 3347 #define ARG1 as 3348 #define SUFFIX 3349 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3350 #define RCU_READ_LOCK(...) rcu_read_lock() 3351 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3352 #include "memory_ldst.c.inc" 3353 3354 int64_t address_space_cache_init(MemoryRegionCache *cache, 3355 AddressSpace *as, 3356 hwaddr addr, 3357 hwaddr len, 3358 bool is_write) 3359 { 3360 AddressSpaceDispatch *d; 3361 hwaddr l; 3362 MemoryRegion *mr; 3363 Int128 diff; 3364 3365 assert(len > 0); 3366 3367 l = len; 3368 cache->fv = address_space_get_flatview(as); 3369 d = flatview_to_dispatch(cache->fv); 3370 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3371 3372 /* 3373 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3374 * Take that into account to compute how many bytes are there between 3375 * cache->xlat and the end of the section. 3376 */ 3377 diff = int128_sub(cache->mrs.size, 3378 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3379 l = int128_get64(int128_min(diff, int128_make64(l))); 3380 3381 mr = cache->mrs.mr; 3382 memory_region_ref(mr); 3383 if (memory_access_is_direct(mr, is_write)) { 3384 /* We don't care about the memory attributes here as we're only 3385 * doing this if we found actual RAM, which behaves the same 3386 * regardless of attributes; so UNSPECIFIED is fine. 3387 */ 3388 l = flatview_extend_translation(cache->fv, addr, len, mr, 3389 cache->xlat, l, is_write, 3390 MEMTXATTRS_UNSPECIFIED); 3391 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3392 is_write); 3393 } else { 3394 cache->ptr = NULL; 3395 } 3396 3397 cache->len = l; 3398 cache->is_write = is_write; 3399 return l; 3400 } 3401 3402 void address_space_cache_invalidate(MemoryRegionCache *cache, 3403 hwaddr addr, 3404 hwaddr access_len) 3405 { 3406 assert(cache->is_write); 3407 if (likely(cache->ptr)) { 3408 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3409 } 3410 } 3411 3412 void address_space_cache_destroy(MemoryRegionCache *cache) 3413 { 3414 if (!cache->mrs.mr) { 3415 return; 3416 } 3417 3418 if (xen_enabled()) { 3419 xen_invalidate_map_cache_entry(cache->ptr); 3420 } 3421 memory_region_unref(cache->mrs.mr); 3422 flatview_unref(cache->fv); 3423 cache->mrs.mr = NULL; 3424 cache->fv = NULL; 3425 } 3426 3427 /* Called from RCU critical section. This function has the same 3428 * semantics as address_space_translate, but it only works on a 3429 * predefined range of a MemoryRegion that was mapped with 3430 * address_space_cache_init. 3431 */ 3432 static inline MemoryRegion *address_space_translate_cached( 3433 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3434 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3435 { 3436 MemoryRegionSection section; 3437 MemoryRegion *mr; 3438 IOMMUMemoryRegion *iommu_mr; 3439 AddressSpace *target_as; 3440 3441 assert(!cache->ptr); 3442 *xlat = addr + cache->xlat; 3443 3444 mr = cache->mrs.mr; 3445 iommu_mr = memory_region_get_iommu(mr); 3446 if (!iommu_mr) { 3447 /* MMIO region. */ 3448 return mr; 3449 } 3450 3451 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3452 NULL, is_write, true, 3453 &target_as, attrs); 3454 return section.mr; 3455 } 3456 3457 /* Called within RCU critical section. */ 3458 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3459 const void *ptr, 3460 hwaddr len, 3461 hwaddr mr_addr, 3462 hwaddr l, 3463 MemoryRegion *mr) 3464 { 3465 MemTxResult result = MEMTX_OK; 3466 const uint8_t *buf = ptr; 3467 3468 for (;;) { 3469 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3470 mr); 3471 3472 len -= l; 3473 buf += l; 3474 mr_addr += l; 3475 3476 if (!len) { 3477 break; 3478 } 3479 3480 l = len; 3481 } 3482 3483 return result; 3484 } 3485 3486 /* Called within RCU critical section. */ 3487 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3488 void *ptr, hwaddr len, 3489 hwaddr mr_addr, hwaddr l, 3490 MemoryRegion *mr) 3491 { 3492 MemTxResult result = MEMTX_OK; 3493 uint8_t *buf = ptr; 3494 3495 for (;;) { 3496 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3497 len -= l; 3498 buf += l; 3499 mr_addr += l; 3500 3501 if (!len) { 3502 break; 3503 } 3504 l = len; 3505 } 3506 3507 return result; 3508 } 3509 3510 /* Called from RCU critical section. address_space_read_cached uses this 3511 * out of line function when the target is an MMIO or IOMMU region. 3512 */ 3513 MemTxResult 3514 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3515 void *buf, hwaddr len) 3516 { 3517 hwaddr mr_addr, l; 3518 MemoryRegion *mr; 3519 3520 l = len; 3521 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3522 MEMTXATTRS_UNSPECIFIED); 3523 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3524 buf, len, mr_addr, l, mr); 3525 } 3526 3527 /* Called from RCU critical section. address_space_write_cached uses this 3528 * out of line function when the target is an MMIO or IOMMU region. 3529 */ 3530 MemTxResult 3531 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3532 const void *buf, hwaddr len) 3533 { 3534 hwaddr mr_addr, l; 3535 MemoryRegion *mr; 3536 3537 l = len; 3538 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3539 MEMTXATTRS_UNSPECIFIED); 3540 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3541 buf, len, mr_addr, l, mr); 3542 } 3543 3544 #define ARG1_DECL MemoryRegionCache *cache 3545 #define ARG1 cache 3546 #define SUFFIX _cached_slow 3547 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3548 #define RCU_READ_LOCK() ((void)0) 3549 #define RCU_READ_UNLOCK() ((void)0) 3550 #include "memory_ldst.c.inc" 3551 3552 /* virtual memory access for debug (includes writing to ROM) */ 3553 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3554 void *ptr, size_t len, bool is_write) 3555 { 3556 hwaddr phys_addr; 3557 vaddr l, page; 3558 uint8_t *buf = ptr; 3559 3560 cpu_synchronize_state(cpu); 3561 while (len > 0) { 3562 int asidx; 3563 MemTxAttrs attrs; 3564 MemTxResult res; 3565 3566 page = addr & TARGET_PAGE_MASK; 3567 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3568 asidx = cpu_asidx_from_attrs(cpu, attrs); 3569 /* if no physical page mapped, return an error */ 3570 if (phys_addr == -1) 3571 return -1; 3572 l = (page + TARGET_PAGE_SIZE) - addr; 3573 if (l > len) 3574 l = len; 3575 phys_addr += (addr & ~TARGET_PAGE_MASK); 3576 if (is_write) { 3577 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3578 attrs, buf, l); 3579 } else { 3580 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3581 attrs, buf, l); 3582 } 3583 if (res != MEMTX_OK) { 3584 return -1; 3585 } 3586 len -= l; 3587 buf += l; 3588 addr += l; 3589 } 3590 return 0; 3591 } 3592 3593 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3594 { 3595 MemoryRegion*mr; 3596 hwaddr l = 1; 3597 3598 RCU_READ_LOCK_GUARD(); 3599 mr = address_space_translate(&address_space_memory, 3600 phys_addr, &phys_addr, &l, false, 3601 MEMTXATTRS_UNSPECIFIED); 3602 3603 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3604 } 3605 3606 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3607 { 3608 RAMBlock *block; 3609 int ret = 0; 3610 3611 RCU_READ_LOCK_GUARD(); 3612 RAMBLOCK_FOREACH(block) { 3613 ret = func(block, opaque); 3614 if (ret) { 3615 break; 3616 } 3617 } 3618 return ret; 3619 } 3620 3621 /* 3622 * Unmap pages of memory from start to start+length such that 3623 * they a) read as 0, b) Trigger whatever fault mechanism 3624 * the OS provides for postcopy. 3625 * The pages must be unmapped by the end of the function. 3626 * Returns: 0 on success, none-0 on failure 3627 * 3628 */ 3629 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3630 { 3631 int ret = -1; 3632 3633 uint8_t *host_startaddr = rb->host + start; 3634 3635 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3636 error_report("%s: Unaligned start address: %p", 3637 __func__, host_startaddr); 3638 goto err; 3639 } 3640 3641 if ((start + length) <= rb->max_length) { 3642 bool need_madvise, need_fallocate; 3643 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3644 error_report("%s: Unaligned length: %zx", __func__, length); 3645 goto err; 3646 } 3647 3648 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3649 3650 /* The logic here is messy; 3651 * madvise DONTNEED fails for hugepages 3652 * fallocate works on hugepages and shmem 3653 * shared anonymous memory requires madvise REMOVE 3654 */ 3655 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3656 need_fallocate = rb->fd != -1; 3657 if (need_fallocate) { 3658 /* For a file, this causes the area of the file to be zero'd 3659 * if read, and for hugetlbfs also causes it to be unmapped 3660 * so a userfault will trigger. 3661 */ 3662 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3663 /* 3664 * fallocate() will fail with readonly files. Let's print a 3665 * proper error message. 3666 */ 3667 if (rb->flags & RAM_READONLY_FD) { 3668 error_report("%s: Discarding RAM with readonly files is not" 3669 " supported", __func__); 3670 goto err; 3671 3672 } 3673 /* 3674 * We'll discard data from the actual file, even though we only 3675 * have a MAP_PRIVATE mapping, possibly messing with other 3676 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3677 * change that behavior whithout violating the promised 3678 * semantics of ram_block_discard_range(). 3679 * 3680 * Only warn, because it works as long as nobody else uses that 3681 * file. 3682 */ 3683 if (!qemu_ram_is_shared(rb)) { 3684 warn_report_once("%s: Discarding RAM" 3685 " in private file mappings is possibly" 3686 " dangerous, because it will modify the" 3687 " underlying file and will affect other" 3688 " users of the file", __func__); 3689 } 3690 3691 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3692 start, length); 3693 if (ret) { 3694 ret = -errno; 3695 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3696 __func__, rb->idstr, start, length, ret); 3697 goto err; 3698 } 3699 #else 3700 ret = -ENOSYS; 3701 error_report("%s: fallocate not available/file" 3702 "%s:%" PRIx64 " +%zx (%d)", 3703 __func__, rb->idstr, start, length, ret); 3704 goto err; 3705 #endif 3706 } 3707 if (need_madvise) { 3708 /* For normal RAM this causes it to be unmapped, 3709 * for shared memory it causes the local mapping to disappear 3710 * and to fall back on the file contents (which we just 3711 * fallocate'd away). 3712 */ 3713 #if defined(CONFIG_MADVISE) 3714 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3715 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3716 } else { 3717 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3718 } 3719 if (ret) { 3720 ret = -errno; 3721 error_report("%s: Failed to discard range " 3722 "%s:%" PRIx64 " +%zx (%d)", 3723 __func__, rb->idstr, start, length, ret); 3724 goto err; 3725 } 3726 #else 3727 ret = -ENOSYS; 3728 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3729 __func__, rb->idstr, start, length, ret); 3730 goto err; 3731 #endif 3732 } 3733 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3734 need_madvise, need_fallocate, ret); 3735 } else { 3736 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3737 __func__, rb->idstr, start, length, rb->max_length); 3738 } 3739 3740 err: 3741 return ret; 3742 } 3743 3744 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3745 size_t length) 3746 { 3747 int ret = -1; 3748 3749 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3750 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3751 start, length); 3752 3753 if (ret) { 3754 ret = -errno; 3755 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3756 __func__, rb->idstr, start, length, ret); 3757 } 3758 #else 3759 ret = -ENOSYS; 3760 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3761 __func__, rb->idstr, start, length, ret); 3762 #endif 3763 3764 return ret; 3765 } 3766 3767 bool ramblock_is_pmem(RAMBlock *rb) 3768 { 3769 return rb->flags & RAM_PMEM; 3770 } 3771 3772 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3773 { 3774 if (start == end - 1) { 3775 qemu_printf("\t%3d ", start); 3776 } else { 3777 qemu_printf("\t%3d..%-3d ", start, end - 1); 3778 } 3779 qemu_printf(" skip=%d ", skip); 3780 if (ptr == PHYS_MAP_NODE_NIL) { 3781 qemu_printf(" ptr=NIL"); 3782 } else if (!skip) { 3783 qemu_printf(" ptr=#%d", ptr); 3784 } else { 3785 qemu_printf(" ptr=[%d]", ptr); 3786 } 3787 qemu_printf("\n"); 3788 } 3789 3790 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3791 int128_sub((size), int128_one())) : 0) 3792 3793 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3794 { 3795 int i; 3796 3797 qemu_printf(" Dispatch\n"); 3798 qemu_printf(" Physical sections\n"); 3799 3800 for (i = 0; i < d->map.sections_nb; ++i) { 3801 MemoryRegionSection *s = d->map.sections + i; 3802 const char *names[] = { " [unassigned]", " [not dirty]", 3803 " [ROM]", " [watch]" }; 3804 3805 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3806 " %s%s%s%s%s", 3807 i, 3808 s->offset_within_address_space, 3809 s->offset_within_address_space + MR_SIZE(s->size), 3810 s->mr->name ? s->mr->name : "(noname)", 3811 i < ARRAY_SIZE(names) ? names[i] : "", 3812 s->mr == root ? " [ROOT]" : "", 3813 s == d->mru_section ? " [MRU]" : "", 3814 s->mr->is_iommu ? " [iommu]" : ""); 3815 3816 if (s->mr->alias) { 3817 qemu_printf(" alias=%s", s->mr->alias->name ? 3818 s->mr->alias->name : "noname"); 3819 } 3820 qemu_printf("\n"); 3821 } 3822 3823 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3824 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3825 for (i = 0; i < d->map.nodes_nb; ++i) { 3826 int j, jprev; 3827 PhysPageEntry prev; 3828 Node *n = d->map.nodes + i; 3829 3830 qemu_printf(" [%d]\n", i); 3831 3832 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3833 PhysPageEntry *pe = *n + j; 3834 3835 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3836 continue; 3837 } 3838 3839 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3840 3841 jprev = j; 3842 prev = *pe; 3843 } 3844 3845 if (jprev != ARRAY_SIZE(*n)) { 3846 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3847 } 3848 } 3849 } 3850 3851 /* Require any discards to work. */ 3852 static unsigned int ram_block_discard_required_cnt; 3853 /* Require only coordinated discards to work. */ 3854 static unsigned int ram_block_coordinated_discard_required_cnt; 3855 /* Disable any discards. */ 3856 static unsigned int ram_block_discard_disabled_cnt; 3857 /* Disable only uncoordinated discards. */ 3858 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3859 static QemuMutex ram_block_discard_disable_mutex; 3860 3861 static void ram_block_discard_disable_mutex_lock(void) 3862 { 3863 static gsize initialized; 3864 3865 if (g_once_init_enter(&initialized)) { 3866 qemu_mutex_init(&ram_block_discard_disable_mutex); 3867 g_once_init_leave(&initialized, 1); 3868 } 3869 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3870 } 3871 3872 static void ram_block_discard_disable_mutex_unlock(void) 3873 { 3874 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3875 } 3876 3877 int ram_block_discard_disable(bool state) 3878 { 3879 int ret = 0; 3880 3881 ram_block_discard_disable_mutex_lock(); 3882 if (!state) { 3883 ram_block_discard_disabled_cnt--; 3884 } else if (ram_block_discard_required_cnt || 3885 ram_block_coordinated_discard_required_cnt) { 3886 ret = -EBUSY; 3887 } else { 3888 ram_block_discard_disabled_cnt++; 3889 } 3890 ram_block_discard_disable_mutex_unlock(); 3891 return ret; 3892 } 3893 3894 int ram_block_uncoordinated_discard_disable(bool state) 3895 { 3896 int ret = 0; 3897 3898 ram_block_discard_disable_mutex_lock(); 3899 if (!state) { 3900 ram_block_uncoordinated_discard_disabled_cnt--; 3901 } else if (ram_block_discard_required_cnt) { 3902 ret = -EBUSY; 3903 } else { 3904 ram_block_uncoordinated_discard_disabled_cnt++; 3905 } 3906 ram_block_discard_disable_mutex_unlock(); 3907 return ret; 3908 } 3909 3910 int ram_block_discard_require(bool state) 3911 { 3912 int ret = 0; 3913 3914 ram_block_discard_disable_mutex_lock(); 3915 if (!state) { 3916 ram_block_discard_required_cnt--; 3917 } else if (ram_block_discard_disabled_cnt || 3918 ram_block_uncoordinated_discard_disabled_cnt) { 3919 ret = -EBUSY; 3920 } else { 3921 ram_block_discard_required_cnt++; 3922 } 3923 ram_block_discard_disable_mutex_unlock(); 3924 return ret; 3925 } 3926 3927 int ram_block_coordinated_discard_require(bool state) 3928 { 3929 int ret = 0; 3930 3931 ram_block_discard_disable_mutex_lock(); 3932 if (!state) { 3933 ram_block_coordinated_discard_required_cnt--; 3934 } else if (ram_block_discard_disabled_cnt) { 3935 ret = -EBUSY; 3936 } else { 3937 ram_block_coordinated_discard_required_cnt++; 3938 } 3939 ram_block_discard_disable_mutex_unlock(); 3940 return ret; 3941 } 3942 3943 bool ram_block_discard_is_disabled(void) 3944 { 3945 return qatomic_read(&ram_block_discard_disabled_cnt) || 3946 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3947 } 3948 3949 bool ram_block_discard_is_required(void) 3950 { 3951 return qatomic_read(&ram_block_discard_required_cnt) || 3952 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3953 } 3954