xref: /qemu/target/arm/cpu.c (revision 92e87950)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
47 
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 {
50     ARMCPU *cpu = ARM_CPU(cs);
51     CPUARMState *env = &cpu->env;
52 
53     if (is_a64(env)) {
54         env->pc = value;
55         env->thumb = false;
56     } else {
57         env->regs[15] = value & ~1;
58         env->thumb = value & 1;
59     }
60 }
61 
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64                                  const TranslationBlock *tb)
65 {
66     ARMCPU *cpu = ARM_CPU(cs);
67     CPUARMState *env = &cpu->env;
68 
69     /*
70      * It's OK to look at env for the current mode here, because it's
71      * never possible for an AArch64 TB to chain to an AArch32 TB.
72      */
73     if (is_a64(env)) {
74         env->pc = tb->pc;
75     } else {
76         env->regs[15] = tb->pc;
77     }
78 }
79 #endif /* CONFIG_TCG */
80 
81 static bool arm_cpu_has_work(CPUState *cs)
82 {
83     ARMCPU *cpu = ARM_CPU(cs);
84 
85     return (cpu->power_state != PSCI_OFF)
86         && cs->interrupt_request &
87         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
89          | CPU_INTERRUPT_EXITTB);
90 }
91 
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93                                  void *opaque)
94 {
95     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 
97     entry->hook = hook;
98     entry->opaque = opaque;
99 
100     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 }
102 
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104                                  void *opaque)
105 {
106     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107 
108     entry->hook = hook;
109     entry->opaque = opaque;
110 
111     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 }
113 
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 {
116     /* Reset a single ARMCPRegInfo register */
117     ARMCPRegInfo *ri = value;
118     ARMCPU *cpu = opaque;
119 
120     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121         return;
122     }
123 
124     if (ri->resetfn) {
125         ri->resetfn(&cpu->env, ri);
126         return;
127     }
128 
129     /* A zero offset is never possible as it would be regs[0]
130      * so we use it to indicate that reset is being handled elsewhere.
131      * This is basically only used for fields in non-core coprocessors
132      * (like the pxa2xx ones).
133      */
134     if (!ri->fieldoffset) {
135         return;
136     }
137 
138     if (cpreg_field_is_64bit(ri)) {
139         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140     } else {
141         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142     }
143 }
144 
145 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
146 {
147     /* Purely an assertion check: we've already done reset once,
148      * so now check that running the reset for the cpreg doesn't
149      * change its value. This traps bugs where two different cpregs
150      * both try to reset the same state field but to different values.
151      */
152     ARMCPRegInfo *ri = value;
153     ARMCPU *cpu = opaque;
154     uint64_t oldvalue, newvalue;
155 
156     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157         return;
158     }
159 
160     oldvalue = read_raw_cp_reg(&cpu->env, ri);
161     cp_reg_reset(key, value, opaque);
162     newvalue = read_raw_cp_reg(&cpu->env, ri);
163     assert(oldvalue == newvalue);
164 }
165 
166 static void arm_cpu_reset(DeviceState *dev)
167 {
168     CPUState *s = CPU(dev);
169     ARMCPU *cpu = ARM_CPU(s);
170     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171     CPUARMState *env = &cpu->env;
172 
173     acc->parent_reset(dev);
174 
175     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176 
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179 
180     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184 
185     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186 
187     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189     }
190 
191     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192         /* 64 bit CPUs always start in 64 bit mode */
193         env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195         env->pstate = PSTATE_MODE_EL0t;
196         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198         /* Enable all PAC keys.  */
199         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200                                   SCTLR_EnDA | SCTLR_EnDB);
201         /* Trap on btype=3 for PACIxSP. */
202         env->cp15.sctlr_el[1] |= SCTLR_BT0;
203         /* and to the FP/Neon instructions */
204         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
205                                          CPACR_EL1, FPEN, 3);
206         /* and to the SVE instructions */
207         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
208                                          CPACR_EL1, ZEN, 3);
209         /* with reasonable vector length */
210         if (cpu_isar_feature(aa64_sve, cpu)) {
211             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
212         }
213         /*
214          * Enable 48-bit address space (TODO: take reserved_va into account).
215          * Enable TBI0 but not TBI1.
216          * Note that this must match useronly_clean_ptr.
217          */
218         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
219 
220         /* Enable MTE */
221         if (cpu_isar_feature(aa64_mte, cpu)) {
222             /* Enable tag access, but leave TCF0 as No Effect (0). */
223             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
224             /*
225              * Exclude all tags, so that tag 0 is always used.
226              * This corresponds to Linux current->thread.gcr_incl = 0.
227              *
228              * Set RRND, so that helper_irg() will generate a seed later.
229              * Here in cpu_reset(), the crypto subsystem has not yet been
230              * initialized.
231              */
232             env->cp15.gcr_el1 = 0x1ffff;
233         }
234         /*
235          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
236          * This is not yet exposed from the Linux kernel in any way.
237          */
238         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
239 #else
240         /* Reset into the highest available EL */
241         if (arm_feature(env, ARM_FEATURE_EL3)) {
242             env->pstate = PSTATE_MODE_EL3h;
243         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
244             env->pstate = PSTATE_MODE_EL2h;
245         } else {
246             env->pstate = PSTATE_MODE_EL1h;
247         }
248 
249         /* Sample rvbar at reset.  */
250         env->cp15.rvbar = cpu->rvbar_prop;
251         env->pc = env->cp15.rvbar;
252 #endif
253     } else {
254 #if defined(CONFIG_USER_ONLY)
255         /* Userspace expects access to cp10 and cp11 for FP/Neon */
256         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257                                          CPACR, CP10, 3);
258         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259                                          CPACR, CP11, 3);
260 #endif
261     }
262 
263 #if defined(CONFIG_USER_ONLY)
264     env->uncached_cpsr = ARM_CPU_MODE_USR;
265     /* For user mode we must enable access to coprocessors */
266     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
267     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
268         env->cp15.c15_cpar = 3;
269     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
270         env->cp15.c15_cpar = 1;
271     }
272 #else
273 
274     /*
275      * If the highest available EL is EL2, AArch32 will start in Hyp
276      * mode; otherwise it starts in SVC. Note that if we start in
277      * AArch64 then these values in the uncached_cpsr will be ignored.
278      */
279     if (arm_feature(env, ARM_FEATURE_EL2) &&
280         !arm_feature(env, ARM_FEATURE_EL3)) {
281         env->uncached_cpsr = ARM_CPU_MODE_HYP;
282     } else {
283         env->uncached_cpsr = ARM_CPU_MODE_SVC;
284     }
285     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
286 
287     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
288      * executing as AArch32 then check if highvecs are enabled and
289      * adjust the PC accordingly.
290      */
291     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
292         env->regs[15] = 0xFFFF0000;
293     }
294 
295     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
296 #endif
297 
298     if (arm_feature(env, ARM_FEATURE_M)) {
299 #ifndef CONFIG_USER_ONLY
300         uint32_t initial_msp; /* Loaded from 0x0 */
301         uint32_t initial_pc; /* Loaded from 0x4 */
302         uint8_t *rom;
303         uint32_t vecbase;
304 #endif
305 
306         if (cpu_isar_feature(aa32_lob, cpu)) {
307             /*
308              * LTPSIZE is constant 4 if MVE not implemented, and resets
309              * to an UNKNOWN value if MVE is implemented. We choose to
310              * always reset to 4.
311              */
312             env->v7m.ltpsize = 4;
313             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
314             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
315             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
316         }
317 
318         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
319             env->v7m.secure = true;
320         } else {
321             /* This bit resets to 0 if security is supported, but 1 if
322              * it is not. The bit is not present in v7M, but we set it
323              * here so we can avoid having to make checks on it conditional
324              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
325              */
326             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
327             /*
328              * Set NSACR to indicate "NS access permitted to everything";
329              * this avoids having to have all the tests of it being
330              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
331              * v8.1M the guest-visible value of NSACR in a CPU without the
332              * Security Extension is 0xcff.
333              */
334             env->v7m.nsacr = 0xcff;
335         }
336 
337         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
338          * that it resets to 1, so QEMU always does that rather than making
339          * it dependent on CPU model. In v8M it is RES1.
340          */
341         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
342         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
343         if (arm_feature(env, ARM_FEATURE_V8)) {
344             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
345             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
346             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
347         }
348         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
349             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
350             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
351         }
352 
353         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
354             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
355             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
356                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
357         }
358 
359 #ifndef CONFIG_USER_ONLY
360         /* Unlike A/R profile, M profile defines the reset LR value */
361         env->regs[14] = 0xffffffff;
362 
363         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
364         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
365 
366         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
367         vecbase = env->v7m.vecbase[env->v7m.secure];
368         rom = rom_ptr_for_as(s->as, vecbase, 8);
369         if (rom) {
370             /* Address zero is covered by ROM which hasn't yet been
371              * copied into physical memory.
372              */
373             initial_msp = ldl_p(rom);
374             initial_pc = ldl_p(rom + 4);
375         } else {
376             /* Address zero not covered by a ROM blob, or the ROM blob
377              * is in non-modifiable memory and this is a second reset after
378              * it got copied into memory. In the latter case, rom_ptr
379              * will return a NULL pointer and we should use ldl_phys instead.
380              */
381             initial_msp = ldl_phys(s->as, vecbase);
382             initial_pc = ldl_phys(s->as, vecbase + 4);
383         }
384 
385         qemu_log_mask(CPU_LOG_INT,
386                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
387                       initial_msp, initial_pc);
388 
389         env->regs[13] = initial_msp & 0xFFFFFFFC;
390         env->regs[15] = initial_pc & ~1;
391         env->thumb = initial_pc & 1;
392 #else
393         /*
394          * For user mode we run non-secure and with access to the FPU.
395          * The FPU context is active (ie does not need further setup)
396          * and is owned by non-secure.
397          */
398         env->v7m.secure = false;
399         env->v7m.nsacr = 0xcff;
400         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
401         env->v7m.fpccr[M_REG_S] &=
402             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
403         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
404 #endif
405     }
406 
407     /* M profile requires that reset clears the exclusive monitor;
408      * A profile does not, but clearing it makes more sense than having it
409      * set with an exclusive access on address zero.
410      */
411     arm_clear_exclusive(env);
412 
413     if (arm_feature(env, ARM_FEATURE_PMSA)) {
414         if (cpu->pmsav7_dregion > 0) {
415             if (arm_feature(env, ARM_FEATURE_V8)) {
416                 memset(env->pmsav8.rbar[M_REG_NS], 0,
417                        sizeof(*env->pmsav8.rbar[M_REG_NS])
418                        * cpu->pmsav7_dregion);
419                 memset(env->pmsav8.rlar[M_REG_NS], 0,
420                        sizeof(*env->pmsav8.rlar[M_REG_NS])
421                        * cpu->pmsav7_dregion);
422                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
423                     memset(env->pmsav8.rbar[M_REG_S], 0,
424                            sizeof(*env->pmsav8.rbar[M_REG_S])
425                            * cpu->pmsav7_dregion);
426                     memset(env->pmsav8.rlar[M_REG_S], 0,
427                            sizeof(*env->pmsav8.rlar[M_REG_S])
428                            * cpu->pmsav7_dregion);
429                 }
430             } else if (arm_feature(env, ARM_FEATURE_V7)) {
431                 memset(env->pmsav7.drbar, 0,
432                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
433                 memset(env->pmsav7.drsr, 0,
434                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
435                 memset(env->pmsav7.dracr, 0,
436                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
437             }
438         }
439         env->pmsav7.rnr[M_REG_NS] = 0;
440         env->pmsav7.rnr[M_REG_S] = 0;
441         env->pmsav8.mair0[M_REG_NS] = 0;
442         env->pmsav8.mair0[M_REG_S] = 0;
443         env->pmsav8.mair1[M_REG_NS] = 0;
444         env->pmsav8.mair1[M_REG_S] = 0;
445     }
446 
447     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
448         if (cpu->sau_sregion > 0) {
449             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
450             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
451         }
452         env->sau.rnr = 0;
453         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
454          * the Cortex-M33 does.
455          */
456         env->sau.ctrl = 0;
457     }
458 
459     set_flush_to_zero(1, &env->vfp.standard_fp_status);
460     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
461     set_default_nan_mode(1, &env->vfp.standard_fp_status);
462     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
463     set_float_detect_tininess(float_tininess_before_rounding,
464                               &env->vfp.fp_status);
465     set_float_detect_tininess(float_tininess_before_rounding,
466                               &env->vfp.standard_fp_status);
467     set_float_detect_tininess(float_tininess_before_rounding,
468                               &env->vfp.fp_status_f16);
469     set_float_detect_tininess(float_tininess_before_rounding,
470                               &env->vfp.standard_fp_status_f16);
471 #ifndef CONFIG_USER_ONLY
472     if (kvm_enabled()) {
473         kvm_arm_reset_vcpu(cpu);
474     }
475 #endif
476 
477     hw_breakpoint_update_all(cpu);
478     hw_watchpoint_update_all(cpu);
479     arm_rebuild_hflags(env);
480 }
481 
482 #ifndef CONFIG_USER_ONLY
483 
484 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
485                                      unsigned int target_el,
486                                      unsigned int cur_el, bool secure,
487                                      uint64_t hcr_el2)
488 {
489     CPUARMState *env = cs->env_ptr;
490     bool pstate_unmasked;
491     bool unmasked = false;
492 
493     /*
494      * Don't take exceptions if they target a lower EL.
495      * This check should catch any exceptions that would not be taken
496      * but left pending.
497      */
498     if (cur_el > target_el) {
499         return false;
500     }
501 
502     switch (excp_idx) {
503     case EXCP_FIQ:
504         pstate_unmasked = !(env->daif & PSTATE_F);
505         break;
506 
507     case EXCP_IRQ:
508         pstate_unmasked = !(env->daif & PSTATE_I);
509         break;
510 
511     case EXCP_VFIQ:
512         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
513             /* VFIQs are only taken when hypervized.  */
514             return false;
515         }
516         return !(env->daif & PSTATE_F);
517     case EXCP_VIRQ:
518         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
519             /* VIRQs are only taken when hypervized.  */
520             return false;
521         }
522         return !(env->daif & PSTATE_I);
523     case EXCP_VSERR:
524         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
525             /* VIRQs are only taken when hypervized.  */
526             return false;
527         }
528         return !(env->daif & PSTATE_A);
529     default:
530         g_assert_not_reached();
531     }
532 
533     /*
534      * Use the target EL, current execution state and SCR/HCR settings to
535      * determine whether the corresponding CPSR bit is used to mask the
536      * interrupt.
537      */
538     if ((target_el > cur_el) && (target_el != 1)) {
539         /* Exceptions targeting a higher EL may not be maskable */
540         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
541             /*
542              * 64-bit masking rules are simple: exceptions to EL3
543              * can't be masked, and exceptions to EL2 can only be
544              * masked from Secure state. The HCR and SCR settings
545              * don't affect the masking logic, only the interrupt routing.
546              */
547             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
548                 unmasked = true;
549             }
550         } else {
551             /*
552              * The old 32-bit-only environment has a more complicated
553              * masking setup. HCR and SCR bits not only affect interrupt
554              * routing but also change the behaviour of masking.
555              */
556             bool hcr, scr;
557 
558             switch (excp_idx) {
559             case EXCP_FIQ:
560                 /*
561                  * If FIQs are routed to EL3 or EL2 then there are cases where
562                  * we override the CPSR.F in determining if the exception is
563                  * masked or not. If neither of these are set then we fall back
564                  * to the CPSR.F setting otherwise we further assess the state
565                  * below.
566                  */
567                 hcr = hcr_el2 & HCR_FMO;
568                 scr = (env->cp15.scr_el3 & SCR_FIQ);
569 
570                 /*
571                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
572                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
573                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
574                  * when non-secure but only when FIQs are only routed to EL3.
575                  */
576                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
577                 break;
578             case EXCP_IRQ:
579                 /*
580                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
581                  * we may override the CPSR.I masking when in non-secure state.
582                  * The SCR.IRQ setting has already been taken into consideration
583                  * when setting the target EL, so it does not have a further
584                  * affect here.
585                  */
586                 hcr = hcr_el2 & HCR_IMO;
587                 scr = false;
588                 break;
589             default:
590                 g_assert_not_reached();
591             }
592 
593             if ((scr || hcr) && !secure) {
594                 unmasked = true;
595             }
596         }
597     }
598 
599     /*
600      * The PSTATE bits only mask the interrupt if we have not overriden the
601      * ability above.
602      */
603     return unmasked || pstate_unmasked;
604 }
605 
606 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
607 {
608     CPUClass *cc = CPU_GET_CLASS(cs);
609     CPUARMState *env = cs->env_ptr;
610     uint32_t cur_el = arm_current_el(env);
611     bool secure = arm_is_secure(env);
612     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
613     uint32_t target_el;
614     uint32_t excp_idx;
615 
616     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
617 
618     if (interrupt_request & CPU_INTERRUPT_FIQ) {
619         excp_idx = EXCP_FIQ;
620         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
621         if (arm_excp_unmasked(cs, excp_idx, target_el,
622                               cur_el, secure, hcr_el2)) {
623             goto found;
624         }
625     }
626     if (interrupt_request & CPU_INTERRUPT_HARD) {
627         excp_idx = EXCP_IRQ;
628         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
629         if (arm_excp_unmasked(cs, excp_idx, target_el,
630                               cur_el, secure, hcr_el2)) {
631             goto found;
632         }
633     }
634     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
635         excp_idx = EXCP_VIRQ;
636         target_el = 1;
637         if (arm_excp_unmasked(cs, excp_idx, target_el,
638                               cur_el, secure, hcr_el2)) {
639             goto found;
640         }
641     }
642     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
643         excp_idx = EXCP_VFIQ;
644         target_el = 1;
645         if (arm_excp_unmasked(cs, excp_idx, target_el,
646                               cur_el, secure, hcr_el2)) {
647             goto found;
648         }
649     }
650     if (interrupt_request & CPU_INTERRUPT_VSERR) {
651         excp_idx = EXCP_VSERR;
652         target_el = 1;
653         if (arm_excp_unmasked(cs, excp_idx, target_el,
654                               cur_el, secure, hcr_el2)) {
655             /* Taking a virtual abort clears HCR_EL2.VSE */
656             env->cp15.hcr_el2 &= ~HCR_VSE;
657             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
658             goto found;
659         }
660     }
661     return false;
662 
663  found:
664     cs->exception_index = excp_idx;
665     env->exception.target_el = target_el;
666     cc->tcg_ops->do_interrupt(cs);
667     return true;
668 }
669 #endif /* !CONFIG_USER_ONLY */
670 
671 void arm_cpu_update_virq(ARMCPU *cpu)
672 {
673     /*
674      * Update the interrupt level for VIRQ, which is the logical OR of
675      * the HCR_EL2.VI bit and the input line level from the GIC.
676      */
677     CPUARMState *env = &cpu->env;
678     CPUState *cs = CPU(cpu);
679 
680     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
681         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
682 
683     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
684         if (new_state) {
685             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
686         } else {
687             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
688         }
689     }
690 }
691 
692 void arm_cpu_update_vfiq(ARMCPU *cpu)
693 {
694     /*
695      * Update the interrupt level for VFIQ, which is the logical OR of
696      * the HCR_EL2.VF bit and the input line level from the GIC.
697      */
698     CPUARMState *env = &cpu->env;
699     CPUState *cs = CPU(cpu);
700 
701     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
702         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
703 
704     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
705         if (new_state) {
706             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
707         } else {
708             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
709         }
710     }
711 }
712 
713 void arm_cpu_update_vserr(ARMCPU *cpu)
714 {
715     /*
716      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
717      */
718     CPUARMState *env = &cpu->env;
719     CPUState *cs = CPU(cpu);
720 
721     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
722 
723     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
724         if (new_state) {
725             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
726         } else {
727             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
728         }
729     }
730 }
731 
732 #ifndef CONFIG_USER_ONLY
733 static void arm_cpu_set_irq(void *opaque, int irq, int level)
734 {
735     ARMCPU *cpu = opaque;
736     CPUARMState *env = &cpu->env;
737     CPUState *cs = CPU(cpu);
738     static const int mask[] = {
739         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
740         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
741         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
742         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
743     };
744 
745     if (!arm_feature(env, ARM_FEATURE_EL2) &&
746         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
747         /*
748          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
749          * have EL2 support we don't care. (Unless the guest is doing something
750          * silly this will only be calls saying "level is still 0".)
751          */
752         return;
753     }
754 
755     if (level) {
756         env->irq_line_state |= mask[irq];
757     } else {
758         env->irq_line_state &= ~mask[irq];
759     }
760 
761     switch (irq) {
762     case ARM_CPU_VIRQ:
763         arm_cpu_update_virq(cpu);
764         break;
765     case ARM_CPU_VFIQ:
766         arm_cpu_update_vfiq(cpu);
767         break;
768     case ARM_CPU_IRQ:
769     case ARM_CPU_FIQ:
770         if (level) {
771             cpu_interrupt(cs, mask[irq]);
772         } else {
773             cpu_reset_interrupt(cs, mask[irq]);
774         }
775         break;
776     default:
777         g_assert_not_reached();
778     }
779 }
780 
781 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
782 {
783 #ifdef CONFIG_KVM
784     ARMCPU *cpu = opaque;
785     CPUARMState *env = &cpu->env;
786     CPUState *cs = CPU(cpu);
787     uint32_t linestate_bit;
788     int irq_id;
789 
790     switch (irq) {
791     case ARM_CPU_IRQ:
792         irq_id = KVM_ARM_IRQ_CPU_IRQ;
793         linestate_bit = CPU_INTERRUPT_HARD;
794         break;
795     case ARM_CPU_FIQ:
796         irq_id = KVM_ARM_IRQ_CPU_FIQ;
797         linestate_bit = CPU_INTERRUPT_FIQ;
798         break;
799     default:
800         g_assert_not_reached();
801     }
802 
803     if (level) {
804         env->irq_line_state |= linestate_bit;
805     } else {
806         env->irq_line_state &= ~linestate_bit;
807     }
808     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
809 #endif
810 }
811 
812 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
813 {
814     ARMCPU *cpu = ARM_CPU(cs);
815     CPUARMState *env = &cpu->env;
816 
817     cpu_synchronize_state(cs);
818     return arm_cpu_data_is_big_endian(env);
819 }
820 
821 #endif
822 
823 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
824 {
825     ARMCPU *ac = ARM_CPU(cpu);
826     CPUARMState *env = &ac->env;
827     bool sctlr_b;
828 
829     if (is_a64(env)) {
830         /* We might not be compiled with the A64 disassembler
831          * because it needs a C++ compiler. Leave print_insn
832          * unset in this case to use the caller default behaviour.
833          */
834 #if defined(CONFIG_ARM_A64_DIS)
835         info->print_insn = print_insn_arm_a64;
836 #endif
837         info->cap_arch = CS_ARCH_ARM64;
838         info->cap_insn_unit = 4;
839         info->cap_insn_split = 4;
840     } else {
841         int cap_mode;
842         if (env->thumb) {
843             info->cap_insn_unit = 2;
844             info->cap_insn_split = 4;
845             cap_mode = CS_MODE_THUMB;
846         } else {
847             info->cap_insn_unit = 4;
848             info->cap_insn_split = 4;
849             cap_mode = CS_MODE_ARM;
850         }
851         if (arm_feature(env, ARM_FEATURE_V8)) {
852             cap_mode |= CS_MODE_V8;
853         }
854         if (arm_feature(env, ARM_FEATURE_M)) {
855             cap_mode |= CS_MODE_MCLASS;
856         }
857         info->cap_arch = CS_ARCH_ARM;
858         info->cap_mode = cap_mode;
859     }
860 
861     sctlr_b = arm_sctlr_b(env);
862     if (bswap_code(sctlr_b)) {
863 #if TARGET_BIG_ENDIAN
864         info->endian = BFD_ENDIAN_LITTLE;
865 #else
866         info->endian = BFD_ENDIAN_BIG;
867 #endif
868     }
869     info->flags &= ~INSN_ARM_BE32;
870 #ifndef CONFIG_USER_ONLY
871     if (sctlr_b) {
872         info->flags |= INSN_ARM_BE32;
873     }
874 #endif
875 }
876 
877 #ifdef TARGET_AARCH64
878 
879 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
880 {
881     ARMCPU *cpu = ARM_CPU(cs);
882     CPUARMState *env = &cpu->env;
883     uint32_t psr = pstate_read(env);
884     int i;
885     int el = arm_current_el(env);
886     const char *ns_status;
887 
888     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
889     for (i = 0; i < 32; i++) {
890         if (i == 31) {
891             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
892         } else {
893             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
894                          (i + 2) % 3 ? " " : "\n");
895         }
896     }
897 
898     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
899         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
900     } else {
901         ns_status = "";
902     }
903     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
904                  psr,
905                  psr & PSTATE_N ? 'N' : '-',
906                  psr & PSTATE_Z ? 'Z' : '-',
907                  psr & PSTATE_C ? 'C' : '-',
908                  psr & PSTATE_V ? 'V' : '-',
909                  ns_status,
910                  el,
911                  psr & PSTATE_SP ? 'h' : 't');
912 
913     if (cpu_isar_feature(aa64_bti, cpu)) {
914         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
915     }
916     if (!(flags & CPU_DUMP_FPU)) {
917         qemu_fprintf(f, "\n");
918         return;
919     }
920     if (fp_exception_el(env, el) != 0) {
921         qemu_fprintf(f, "    FPU disabled\n");
922         return;
923     }
924     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
925                  vfp_get_fpcr(env), vfp_get_fpsr(env));
926 
927     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
928         int j, zcr_len = sve_vqm1_for_el(env, el);
929 
930         for (i = 0; i <= FFR_PRED_NUM; i++) {
931             bool eol;
932             if (i == FFR_PRED_NUM) {
933                 qemu_fprintf(f, "FFR=");
934                 /* It's last, so end the line.  */
935                 eol = true;
936             } else {
937                 qemu_fprintf(f, "P%02d=", i);
938                 switch (zcr_len) {
939                 case 0:
940                     eol = i % 8 == 7;
941                     break;
942                 case 1:
943                     eol = i % 6 == 5;
944                     break;
945                 case 2:
946                 case 3:
947                     eol = i % 3 == 2;
948                     break;
949                 default:
950                     /* More than one quadword per predicate.  */
951                     eol = true;
952                     break;
953                 }
954             }
955             for (j = zcr_len / 4; j >= 0; j--) {
956                 int digits;
957                 if (j * 4 + 4 <= zcr_len + 1) {
958                     digits = 16;
959                 } else {
960                     digits = (zcr_len % 4 + 1) * 4;
961                 }
962                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
963                              env->vfp.pregs[i].p[j],
964                              j ? ":" : eol ? "\n" : " ");
965             }
966         }
967 
968         for (i = 0; i < 32; i++) {
969             if (zcr_len == 0) {
970                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
971                              i, env->vfp.zregs[i].d[1],
972                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
973             } else if (zcr_len == 1) {
974                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
975                              ":%016" PRIx64 ":%016" PRIx64 "\n",
976                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
977                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
978             } else {
979                 for (j = zcr_len; j >= 0; j--) {
980                     bool odd = (zcr_len - j) % 2 != 0;
981                     if (j == zcr_len) {
982                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
983                     } else if (!odd) {
984                         if (j > 0) {
985                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
986                         } else {
987                             qemu_fprintf(f, "     [%x]=", j);
988                         }
989                     }
990                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
991                                  env->vfp.zregs[i].d[j * 2 + 1],
992                                  env->vfp.zregs[i].d[j * 2],
993                                  odd || j == 0 ? "\n" : ":");
994                 }
995             }
996         }
997     } else {
998         for (i = 0; i < 32; i++) {
999             uint64_t *q = aa64_vfp_qreg(env, i);
1000             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1001                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1002         }
1003     }
1004 }
1005 
1006 #else
1007 
1008 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1009 {
1010     g_assert_not_reached();
1011 }
1012 
1013 #endif
1014 
1015 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1016 {
1017     ARMCPU *cpu = ARM_CPU(cs);
1018     CPUARMState *env = &cpu->env;
1019     int i;
1020 
1021     if (is_a64(env)) {
1022         aarch64_cpu_dump_state(cs, f, flags);
1023         return;
1024     }
1025 
1026     for (i = 0; i < 16; i++) {
1027         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1028         if ((i % 4) == 3) {
1029             qemu_fprintf(f, "\n");
1030         } else {
1031             qemu_fprintf(f, " ");
1032         }
1033     }
1034 
1035     if (arm_feature(env, ARM_FEATURE_M)) {
1036         uint32_t xpsr = xpsr_read(env);
1037         const char *mode;
1038         const char *ns_status = "";
1039 
1040         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1041             ns_status = env->v7m.secure ? "S " : "NS ";
1042         }
1043 
1044         if (xpsr & XPSR_EXCP) {
1045             mode = "handler";
1046         } else {
1047             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1048                 mode = "unpriv-thread";
1049             } else {
1050                 mode = "priv-thread";
1051             }
1052         }
1053 
1054         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1055                      xpsr,
1056                      xpsr & XPSR_N ? 'N' : '-',
1057                      xpsr & XPSR_Z ? 'Z' : '-',
1058                      xpsr & XPSR_C ? 'C' : '-',
1059                      xpsr & XPSR_V ? 'V' : '-',
1060                      xpsr & XPSR_T ? 'T' : 'A',
1061                      ns_status,
1062                      mode);
1063     } else {
1064         uint32_t psr = cpsr_read(env);
1065         const char *ns_status = "";
1066 
1067         if (arm_feature(env, ARM_FEATURE_EL3) &&
1068             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1069             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1070         }
1071 
1072         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1073                      psr,
1074                      psr & CPSR_N ? 'N' : '-',
1075                      psr & CPSR_Z ? 'Z' : '-',
1076                      psr & CPSR_C ? 'C' : '-',
1077                      psr & CPSR_V ? 'V' : '-',
1078                      psr & CPSR_T ? 'T' : 'A',
1079                      ns_status,
1080                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1081     }
1082 
1083     if (flags & CPU_DUMP_FPU) {
1084         int numvfpregs = 0;
1085         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1086             numvfpregs = 32;
1087         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1088             numvfpregs = 16;
1089         }
1090         for (i = 0; i < numvfpregs; i++) {
1091             uint64_t v = *aa32_vfp_dreg(env, i);
1092             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1093                          i * 2, (uint32_t)v,
1094                          i * 2 + 1, (uint32_t)(v >> 32),
1095                          i, v);
1096         }
1097         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1098         if (cpu_isar_feature(aa32_mve, cpu)) {
1099             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1100         }
1101     }
1102 }
1103 
1104 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1105 {
1106     uint32_t Aff1 = idx / clustersz;
1107     uint32_t Aff0 = idx % clustersz;
1108     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1109 }
1110 
1111 static void arm_cpu_initfn(Object *obj)
1112 {
1113     ARMCPU *cpu = ARM_CPU(obj);
1114 
1115     cpu_set_cpustate_pointers(cpu);
1116     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1117                                          NULL, g_free);
1118 
1119     QLIST_INIT(&cpu->pre_el_change_hooks);
1120     QLIST_INIT(&cpu->el_change_hooks);
1121 
1122 #ifdef CONFIG_USER_ONLY
1123 # ifdef TARGET_AARCH64
1124     /*
1125      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1126      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1127      * our corresponding sve-default-vector-length cpu property.
1128      */
1129     cpu->sve_default_vq = 4;
1130 # endif
1131 #else
1132     /* Our inbound IRQ and FIQ lines */
1133     if (kvm_enabled()) {
1134         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1135          * the same interface as non-KVM CPUs.
1136          */
1137         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1138     } else {
1139         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1140     }
1141 
1142     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1143                        ARRAY_SIZE(cpu->gt_timer_outputs));
1144 
1145     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1146                              "gicv3-maintenance-interrupt", 1);
1147     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1148                              "pmu-interrupt", 1);
1149 #endif
1150 
1151     /* DTB consumers generally don't in fact care what the 'compatible'
1152      * string is, so always provide some string and trust that a hypothetical
1153      * picky DTB consumer will also provide a helpful error message.
1154      */
1155     cpu->dtb_compatible = "qemu,unknown";
1156     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1157     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1158 
1159     if (tcg_enabled() || hvf_enabled()) {
1160         /* TCG and HVF implement PSCI 1.1 */
1161         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1162     }
1163 }
1164 
1165 static Property arm_cpu_gt_cntfrq_property =
1166             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1167                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1168 
1169 static Property arm_cpu_reset_cbar_property =
1170             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1171 
1172 static Property arm_cpu_reset_hivecs_property =
1173             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1174 
1175 #ifndef CONFIG_USER_ONLY
1176 static Property arm_cpu_has_el2_property =
1177             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1178 
1179 static Property arm_cpu_has_el3_property =
1180             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1181 #endif
1182 
1183 static Property arm_cpu_cfgend_property =
1184             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1185 
1186 static Property arm_cpu_has_vfp_property =
1187             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1188 
1189 static Property arm_cpu_has_neon_property =
1190             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1191 
1192 static Property arm_cpu_has_dsp_property =
1193             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1194 
1195 static Property arm_cpu_has_mpu_property =
1196             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1197 
1198 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1199  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1200  * the right value for that particular CPU type, and we don't want
1201  * to override that with an incorrect constant value.
1202  */
1203 static Property arm_cpu_pmsav7_dregion_property =
1204             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1205                                            pmsav7_dregion,
1206                                            qdev_prop_uint32, uint32_t);
1207 
1208 static bool arm_get_pmu(Object *obj, Error **errp)
1209 {
1210     ARMCPU *cpu = ARM_CPU(obj);
1211 
1212     return cpu->has_pmu;
1213 }
1214 
1215 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1216 {
1217     ARMCPU *cpu = ARM_CPU(obj);
1218 
1219     if (value) {
1220         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1221             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1222             return;
1223         }
1224         set_feature(&cpu->env, ARM_FEATURE_PMU);
1225     } else {
1226         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1227     }
1228     cpu->has_pmu = value;
1229 }
1230 
1231 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1232 {
1233     /*
1234      * The exact approach to calculating guest ticks is:
1235      *
1236      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1237      *              NANOSECONDS_PER_SECOND);
1238      *
1239      * We don't do that. Rather we intentionally use integer division
1240      * truncation below and in the caller for the conversion of host monotonic
1241      * time to guest ticks to provide the exact inverse for the semantics of
1242      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1243      * it loses precision when representing frequencies where
1244      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1245      * provide an exact inverse leads to scheduling timers with negative
1246      * periods, which in turn leads to sticky behaviour in the guest.
1247      *
1248      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1249      * cannot become zero.
1250      */
1251     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1252       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1253 }
1254 
1255 void arm_cpu_post_init(Object *obj)
1256 {
1257     ARMCPU *cpu = ARM_CPU(obj);
1258 
1259     /* M profile implies PMSA. We have to do this here rather than
1260      * in realize with the other feature-implication checks because
1261      * we look at the PMSA bit to see if we should add some properties.
1262      */
1263     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1264         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1265     }
1266 
1267     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1268         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1269         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1270     }
1271 
1272     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1273         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1274     }
1275 
1276     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1277         object_property_add_uint64_ptr(obj, "rvbar",
1278                                        &cpu->rvbar_prop,
1279                                        OBJ_PROP_FLAG_READWRITE);
1280     }
1281 
1282 #ifndef CONFIG_USER_ONLY
1283     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1284         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1285          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1286          */
1287         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1288 
1289         object_property_add_link(obj, "secure-memory",
1290                                  TYPE_MEMORY_REGION,
1291                                  (Object **)&cpu->secure_memory,
1292                                  qdev_prop_allow_set_link_before_realize,
1293                                  OBJ_PROP_LINK_STRONG);
1294     }
1295 
1296     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1297         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1298     }
1299 #endif
1300 
1301     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1302         cpu->has_pmu = true;
1303         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1304     }
1305 
1306     /*
1307      * Allow user to turn off VFP and Neon support, but only for TCG --
1308      * KVM does not currently allow us to lie to the guest about its
1309      * ID/feature registers, so the guest always sees what the host has.
1310      */
1311     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1312         ? cpu_isar_feature(aa64_fp_simd, cpu)
1313         : cpu_isar_feature(aa32_vfp, cpu)) {
1314         cpu->has_vfp = true;
1315         if (!kvm_enabled()) {
1316             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1317         }
1318     }
1319 
1320     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1321         cpu->has_neon = true;
1322         if (!kvm_enabled()) {
1323             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1324         }
1325     }
1326 
1327     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1328         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1329         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1330     }
1331 
1332     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1333         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1334         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1335             qdev_property_add_static(DEVICE(obj),
1336                                      &arm_cpu_pmsav7_dregion_property);
1337         }
1338     }
1339 
1340     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1341         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1342                                  qdev_prop_allow_set_link_before_realize,
1343                                  OBJ_PROP_LINK_STRONG);
1344         /*
1345          * M profile: initial value of the Secure VTOR. We can't just use
1346          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1347          * the property to be set after realize.
1348          */
1349         object_property_add_uint32_ptr(obj, "init-svtor",
1350                                        &cpu->init_svtor,
1351                                        OBJ_PROP_FLAG_READWRITE);
1352     }
1353     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1354         /*
1355          * Initial value of the NS VTOR (for cores without the Security
1356          * extension, this is the only VTOR)
1357          */
1358         object_property_add_uint32_ptr(obj, "init-nsvtor",
1359                                        &cpu->init_nsvtor,
1360                                        OBJ_PROP_FLAG_READWRITE);
1361     }
1362 
1363     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1364     object_property_add_uint32_ptr(obj, "psci-conduit",
1365                                    &cpu->psci_conduit,
1366                                    OBJ_PROP_FLAG_READWRITE);
1367 
1368     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1369 
1370     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1371         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1372     }
1373 
1374     if (kvm_enabled()) {
1375         kvm_arm_add_vcpu_properties(obj);
1376     }
1377 
1378 #ifndef CONFIG_USER_ONLY
1379     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1380         cpu_isar_feature(aa64_mte, cpu)) {
1381         object_property_add_link(obj, "tag-memory",
1382                                  TYPE_MEMORY_REGION,
1383                                  (Object **)&cpu->tag_memory,
1384                                  qdev_prop_allow_set_link_before_realize,
1385                                  OBJ_PROP_LINK_STRONG);
1386 
1387         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1388             object_property_add_link(obj, "secure-tag-memory",
1389                                      TYPE_MEMORY_REGION,
1390                                      (Object **)&cpu->secure_tag_memory,
1391                                      qdev_prop_allow_set_link_before_realize,
1392                                      OBJ_PROP_LINK_STRONG);
1393         }
1394     }
1395 #endif
1396 }
1397 
1398 static void arm_cpu_finalizefn(Object *obj)
1399 {
1400     ARMCPU *cpu = ARM_CPU(obj);
1401     ARMELChangeHook *hook, *next;
1402 
1403     g_hash_table_destroy(cpu->cp_regs);
1404 
1405     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1406         QLIST_REMOVE(hook, node);
1407         g_free(hook);
1408     }
1409     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1410         QLIST_REMOVE(hook, node);
1411         g_free(hook);
1412     }
1413 #ifndef CONFIG_USER_ONLY
1414     if (cpu->pmu_timer) {
1415         timer_free(cpu->pmu_timer);
1416     }
1417 #endif
1418 }
1419 
1420 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1421 {
1422     Error *local_err = NULL;
1423 
1424     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1425         arm_cpu_sve_finalize(cpu, &local_err);
1426         if (local_err != NULL) {
1427             error_propagate(errp, local_err);
1428             return;
1429         }
1430 
1431         arm_cpu_pauth_finalize(cpu, &local_err);
1432         if (local_err != NULL) {
1433             error_propagate(errp, local_err);
1434             return;
1435         }
1436 
1437         arm_cpu_lpa2_finalize(cpu, &local_err);
1438         if (local_err != NULL) {
1439             error_propagate(errp, local_err);
1440             return;
1441         }
1442     }
1443 
1444     if (kvm_enabled()) {
1445         kvm_arm_steal_time_finalize(cpu, &local_err);
1446         if (local_err != NULL) {
1447             error_propagate(errp, local_err);
1448             return;
1449         }
1450     }
1451 }
1452 
1453 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1454 {
1455     CPUState *cs = CPU(dev);
1456     ARMCPU *cpu = ARM_CPU(dev);
1457     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1458     CPUARMState *env = &cpu->env;
1459     int pagebits;
1460     Error *local_err = NULL;
1461     bool no_aa32 = false;
1462 
1463     /* If we needed to query the host kernel for the CPU features
1464      * then it's possible that might have failed in the initfn, but
1465      * this is the first point where we can report it.
1466      */
1467     if (cpu->host_cpu_probe_failed) {
1468         if (!kvm_enabled() && !hvf_enabled()) {
1469             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1470         } else {
1471             error_setg(errp, "Failed to retrieve host CPU features");
1472         }
1473         return;
1474     }
1475 
1476 #ifndef CONFIG_USER_ONLY
1477     /* The NVIC and M-profile CPU are two halves of a single piece of
1478      * hardware; trying to use one without the other is a command line
1479      * error and will result in segfaults if not caught here.
1480      */
1481     if (arm_feature(env, ARM_FEATURE_M)) {
1482         if (!env->nvic) {
1483             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1484             return;
1485         }
1486     } else {
1487         if (env->nvic) {
1488             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1489             return;
1490         }
1491     }
1492 
1493     if (kvm_enabled()) {
1494         /*
1495          * Catch all the cases which might cause us to create more than one
1496          * address space for the CPU (otherwise we will assert() later in
1497          * cpu_address_space_init()).
1498          */
1499         if (arm_feature(env, ARM_FEATURE_M)) {
1500             error_setg(errp,
1501                        "Cannot enable KVM when using an M-profile guest CPU");
1502             return;
1503         }
1504         if (cpu->has_el3) {
1505             error_setg(errp,
1506                        "Cannot enable KVM when guest CPU has EL3 enabled");
1507             return;
1508         }
1509         if (cpu->tag_memory) {
1510             error_setg(errp,
1511                        "Cannot enable KVM when guest CPUs has MTE enabled");
1512             return;
1513         }
1514     }
1515 
1516     {
1517         uint64_t scale;
1518 
1519         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1520             if (!cpu->gt_cntfrq_hz) {
1521                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1522                            cpu->gt_cntfrq_hz);
1523                 return;
1524             }
1525             scale = gt_cntfrq_period_ns(cpu);
1526         } else {
1527             scale = GTIMER_SCALE;
1528         }
1529 
1530         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1531                                                arm_gt_ptimer_cb, cpu);
1532         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1533                                                arm_gt_vtimer_cb, cpu);
1534         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1535                                               arm_gt_htimer_cb, cpu);
1536         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1537                                               arm_gt_stimer_cb, cpu);
1538         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1539                                                   arm_gt_hvtimer_cb, cpu);
1540     }
1541 #endif
1542 
1543     cpu_exec_realizefn(cs, &local_err);
1544     if (local_err != NULL) {
1545         error_propagate(errp, local_err);
1546         return;
1547     }
1548 
1549     arm_cpu_finalize_features(cpu, &local_err);
1550     if (local_err != NULL) {
1551         error_propagate(errp, local_err);
1552         return;
1553     }
1554 
1555     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1556         cpu->has_vfp != cpu->has_neon) {
1557         /*
1558          * This is an architectural requirement for AArch64; AArch32 is
1559          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1560          */
1561         error_setg(errp,
1562                    "AArch64 CPUs must have both VFP and Neon or neither");
1563         return;
1564     }
1565 
1566     if (!cpu->has_vfp) {
1567         uint64_t t;
1568         uint32_t u;
1569 
1570         t = cpu->isar.id_aa64isar1;
1571         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1572         cpu->isar.id_aa64isar1 = t;
1573 
1574         t = cpu->isar.id_aa64pfr0;
1575         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1576         cpu->isar.id_aa64pfr0 = t;
1577 
1578         u = cpu->isar.id_isar6;
1579         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1580         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1581         cpu->isar.id_isar6 = u;
1582 
1583         u = cpu->isar.mvfr0;
1584         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1585         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1586         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1587         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1588         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1589         if (!arm_feature(env, ARM_FEATURE_M)) {
1590             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1591             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1592         }
1593         cpu->isar.mvfr0 = u;
1594 
1595         u = cpu->isar.mvfr1;
1596         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1597         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1598         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1599         if (arm_feature(env, ARM_FEATURE_M)) {
1600             u = FIELD_DP32(u, MVFR1, FP16, 0);
1601         }
1602         cpu->isar.mvfr1 = u;
1603 
1604         u = cpu->isar.mvfr2;
1605         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1606         cpu->isar.mvfr2 = u;
1607     }
1608 
1609     if (!cpu->has_neon) {
1610         uint64_t t;
1611         uint32_t u;
1612 
1613         unset_feature(env, ARM_FEATURE_NEON);
1614 
1615         t = cpu->isar.id_aa64isar0;
1616         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1617         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1618         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1619         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1620         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1621         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1622         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1623         cpu->isar.id_aa64isar0 = t;
1624 
1625         t = cpu->isar.id_aa64isar1;
1626         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1627         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1628         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1629         cpu->isar.id_aa64isar1 = t;
1630 
1631         t = cpu->isar.id_aa64pfr0;
1632         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1633         cpu->isar.id_aa64pfr0 = t;
1634 
1635         u = cpu->isar.id_isar5;
1636         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1637         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1638         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1639         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1640         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1641         cpu->isar.id_isar5 = u;
1642 
1643         u = cpu->isar.id_isar6;
1644         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1645         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1646         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1647         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1648         cpu->isar.id_isar6 = u;
1649 
1650         if (!arm_feature(env, ARM_FEATURE_M)) {
1651             u = cpu->isar.mvfr1;
1652             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1653             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1654             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1655             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1656             cpu->isar.mvfr1 = u;
1657 
1658             u = cpu->isar.mvfr2;
1659             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1660             cpu->isar.mvfr2 = u;
1661         }
1662     }
1663 
1664     if (!cpu->has_neon && !cpu->has_vfp) {
1665         uint64_t t;
1666         uint32_t u;
1667 
1668         t = cpu->isar.id_aa64isar0;
1669         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1670         cpu->isar.id_aa64isar0 = t;
1671 
1672         t = cpu->isar.id_aa64isar1;
1673         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1674         cpu->isar.id_aa64isar1 = t;
1675 
1676         u = cpu->isar.mvfr0;
1677         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1678         cpu->isar.mvfr0 = u;
1679 
1680         /* Despite the name, this field covers both VFP and Neon */
1681         u = cpu->isar.mvfr1;
1682         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1683         cpu->isar.mvfr1 = u;
1684     }
1685 
1686     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1687         uint32_t u;
1688 
1689         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1690 
1691         u = cpu->isar.id_isar1;
1692         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1693         cpu->isar.id_isar1 = u;
1694 
1695         u = cpu->isar.id_isar2;
1696         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1697         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1698         cpu->isar.id_isar2 = u;
1699 
1700         u = cpu->isar.id_isar3;
1701         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1702         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1703         cpu->isar.id_isar3 = u;
1704     }
1705 
1706     /* Some features automatically imply others: */
1707     if (arm_feature(env, ARM_FEATURE_V8)) {
1708         if (arm_feature(env, ARM_FEATURE_M)) {
1709             set_feature(env, ARM_FEATURE_V7);
1710         } else {
1711             set_feature(env, ARM_FEATURE_V7VE);
1712         }
1713     }
1714 
1715     /*
1716      * There exist AArch64 cpus without AArch32 support.  When KVM
1717      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1718      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1719      * As a general principle, we also do not make ID register
1720      * consistency checks anywhere unless using TCG, because only
1721      * for TCG would a consistency-check failure be a QEMU bug.
1722      */
1723     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1724         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1725     }
1726 
1727     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1728         /* v7 Virtualization Extensions. In real hardware this implies
1729          * EL2 and also the presence of the Security Extensions.
1730          * For QEMU, for backwards-compatibility we implement some
1731          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1732          * include the various other features that V7VE implies.
1733          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1734          * Security Extensions is ARM_FEATURE_EL3.
1735          */
1736         assert(!tcg_enabled() || no_aa32 ||
1737                cpu_isar_feature(aa32_arm_div, cpu));
1738         set_feature(env, ARM_FEATURE_LPAE);
1739         set_feature(env, ARM_FEATURE_V7);
1740     }
1741     if (arm_feature(env, ARM_FEATURE_V7)) {
1742         set_feature(env, ARM_FEATURE_VAPA);
1743         set_feature(env, ARM_FEATURE_THUMB2);
1744         set_feature(env, ARM_FEATURE_MPIDR);
1745         if (!arm_feature(env, ARM_FEATURE_M)) {
1746             set_feature(env, ARM_FEATURE_V6K);
1747         } else {
1748             set_feature(env, ARM_FEATURE_V6);
1749         }
1750 
1751         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1752          * non-EL3 configs. This is needed by some legacy boards.
1753          */
1754         set_feature(env, ARM_FEATURE_VBAR);
1755     }
1756     if (arm_feature(env, ARM_FEATURE_V6K)) {
1757         set_feature(env, ARM_FEATURE_V6);
1758         set_feature(env, ARM_FEATURE_MVFR);
1759     }
1760     if (arm_feature(env, ARM_FEATURE_V6)) {
1761         set_feature(env, ARM_FEATURE_V5);
1762         if (!arm_feature(env, ARM_FEATURE_M)) {
1763             assert(!tcg_enabled() || no_aa32 ||
1764                    cpu_isar_feature(aa32_jazelle, cpu));
1765             set_feature(env, ARM_FEATURE_AUXCR);
1766         }
1767     }
1768     if (arm_feature(env, ARM_FEATURE_V5)) {
1769         set_feature(env, ARM_FEATURE_V4T);
1770     }
1771     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1772         set_feature(env, ARM_FEATURE_V7MP);
1773     }
1774     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1775         set_feature(env, ARM_FEATURE_CBAR);
1776     }
1777     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1778         !arm_feature(env, ARM_FEATURE_M)) {
1779         set_feature(env, ARM_FEATURE_THUMB_DSP);
1780     }
1781 
1782     /*
1783      * We rely on no XScale CPU having VFP so we can use the same bits in the
1784      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1785      */
1786     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1787            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1788            !arm_feature(env, ARM_FEATURE_XSCALE));
1789 
1790     if (arm_feature(env, ARM_FEATURE_V7) &&
1791         !arm_feature(env, ARM_FEATURE_M) &&
1792         !arm_feature(env, ARM_FEATURE_PMSA)) {
1793         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1794          * can use 4K pages.
1795          */
1796         pagebits = 12;
1797     } else {
1798         /* For CPUs which might have tiny 1K pages, or which have an
1799          * MPU and might have small region sizes, stick with 1K pages.
1800          */
1801         pagebits = 10;
1802     }
1803     if (!set_preferred_target_page_bits(pagebits)) {
1804         /* This can only ever happen for hotplugging a CPU, or if
1805          * the board code incorrectly creates a CPU which it has
1806          * promised via minimum_page_size that it will not.
1807          */
1808         error_setg(errp, "This CPU requires a smaller page size than the "
1809                    "system is using");
1810         return;
1811     }
1812 
1813     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1814      * We don't support setting cluster ID ([16..23]) (known as Aff2
1815      * in later ARM ARM versions), or any of the higher affinity level fields,
1816      * so these bits always RAZ.
1817      */
1818     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1819         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1820                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1821     }
1822 
1823     if (cpu->reset_hivecs) {
1824             cpu->reset_sctlr |= (1 << 13);
1825     }
1826 
1827     if (cpu->cfgend) {
1828         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1829             cpu->reset_sctlr |= SCTLR_EE;
1830         } else {
1831             cpu->reset_sctlr |= SCTLR_B;
1832         }
1833     }
1834 
1835     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1836         /* If the has_el3 CPU property is disabled then we need to disable the
1837          * feature.
1838          */
1839         unset_feature(env, ARM_FEATURE_EL3);
1840 
1841         /*
1842          * Disable the security extension feature bits in the processor
1843          * feature registers as well.
1844          */
1845         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1846         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1847         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1848                                            ID_AA64PFR0, EL3, 0);
1849     }
1850 
1851     if (!cpu->has_el2) {
1852         unset_feature(env, ARM_FEATURE_EL2);
1853     }
1854 
1855     if (!cpu->has_pmu) {
1856         unset_feature(env, ARM_FEATURE_PMU);
1857     }
1858     if (arm_feature(env, ARM_FEATURE_PMU)) {
1859         pmu_init(cpu);
1860 
1861         if (!kvm_enabled()) {
1862             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1863             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1864         }
1865 
1866 #ifndef CONFIG_USER_ONLY
1867         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1868                 cpu);
1869 #endif
1870     } else {
1871         cpu->isar.id_aa64dfr0 =
1872             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1873         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1874         cpu->pmceid0 = 0;
1875         cpu->pmceid1 = 0;
1876     }
1877 
1878     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1879         /*
1880          * Disable the hypervisor feature bits in the processor feature
1881          * registers if we don't have EL2.
1882          */
1883         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1884                                            ID_AA64PFR0, EL2, 0);
1885         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1886                                        ID_PFR1, VIRTUALIZATION, 0);
1887     }
1888 
1889 #ifndef CONFIG_USER_ONLY
1890     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1891         /*
1892          * Disable the MTE feature bits if we do not have tag-memory
1893          * provided by the machine.
1894          */
1895         cpu->isar.id_aa64pfr1 =
1896             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1897     }
1898 #endif
1899 
1900     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1901      * to false or by setting pmsav7-dregion to 0.
1902      */
1903     if (!cpu->has_mpu) {
1904         cpu->pmsav7_dregion = 0;
1905     }
1906     if (cpu->pmsav7_dregion == 0) {
1907         cpu->has_mpu = false;
1908     }
1909 
1910     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1911         arm_feature(env, ARM_FEATURE_V7)) {
1912         uint32_t nr = cpu->pmsav7_dregion;
1913 
1914         if (nr > 0xff) {
1915             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1916             return;
1917         }
1918 
1919         if (nr) {
1920             if (arm_feature(env, ARM_FEATURE_V8)) {
1921                 /* PMSAv8 */
1922                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1923                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1924                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1925                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1926                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1927                 }
1928             } else {
1929                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1930                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1931                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1932             }
1933         }
1934     }
1935 
1936     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1937         uint32_t nr = cpu->sau_sregion;
1938 
1939         if (nr > 0xff) {
1940             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1941             return;
1942         }
1943 
1944         if (nr) {
1945             env->sau.rbar = g_new0(uint32_t, nr);
1946             env->sau.rlar = g_new0(uint32_t, nr);
1947         }
1948     }
1949 
1950     if (arm_feature(env, ARM_FEATURE_EL3)) {
1951         set_feature(env, ARM_FEATURE_VBAR);
1952     }
1953 
1954     register_cp_regs_for_features(cpu);
1955     arm_cpu_register_gdb_regs_for_features(cpu);
1956 
1957     init_cpreg_list(cpu);
1958 
1959 #ifndef CONFIG_USER_ONLY
1960     MachineState *ms = MACHINE(qdev_get_machine());
1961     unsigned int smp_cpus = ms->smp.cpus;
1962     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1963 
1964     /*
1965      * We must set cs->num_ases to the final value before
1966      * the first call to cpu_address_space_init.
1967      */
1968     if (cpu->tag_memory != NULL) {
1969         cs->num_ases = 3 + has_secure;
1970     } else {
1971         cs->num_ases = 1 + has_secure;
1972     }
1973 
1974     if (has_secure) {
1975         if (!cpu->secure_memory) {
1976             cpu->secure_memory = cs->memory;
1977         }
1978         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1979                                cpu->secure_memory);
1980     }
1981 
1982     if (cpu->tag_memory != NULL) {
1983         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1984                                cpu->tag_memory);
1985         if (has_secure) {
1986             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1987                                    cpu->secure_tag_memory);
1988         }
1989     }
1990 
1991     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1992 
1993     /* No core_count specified, default to smp_cpus. */
1994     if (cpu->core_count == -1) {
1995         cpu->core_count = smp_cpus;
1996     }
1997 #endif
1998 
1999     if (tcg_enabled()) {
2000         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2001 
2002         /*
2003          * We only support DCZ blocklen that fits on one page.
2004          *
2005          * Architectually this is always true.  However TARGET_PAGE_SIZE
2006          * is variable and, for compatibility with -machine virt-2.7,
2007          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2008          * But even then, while the largest architectural DCZ blocklen
2009          * is 2KiB, no cpu actually uses such a large blocklen.
2010          */
2011         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2012 
2013         /*
2014          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2015          * both nibbles of each byte storing tag data may be written at once.
2016          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2017          */
2018         if (cpu_isar_feature(aa64_mte, cpu)) {
2019             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2020         }
2021     }
2022 
2023     qemu_init_vcpu(cs);
2024     cpu_reset(cs);
2025 
2026     acc->parent_realize(dev, errp);
2027 }
2028 
2029 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2030 {
2031     ObjectClass *oc;
2032     char *typename;
2033     char **cpuname;
2034     const char *cpunamestr;
2035 
2036     cpuname = g_strsplit(cpu_model, ",", 1);
2037     cpunamestr = cpuname[0];
2038 #ifdef CONFIG_USER_ONLY
2039     /* For backwards compatibility usermode emulation allows "-cpu any",
2040      * which has the same semantics as "-cpu max".
2041      */
2042     if (!strcmp(cpunamestr, "any")) {
2043         cpunamestr = "max";
2044     }
2045 #endif
2046     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2047     oc = object_class_by_name(typename);
2048     g_strfreev(cpuname);
2049     g_free(typename);
2050     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2051         object_class_is_abstract(oc)) {
2052         return NULL;
2053     }
2054     return oc;
2055 }
2056 
2057 static Property arm_cpu_properties[] = {
2058     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2059     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2060                         mp_affinity, ARM64_AFFINITY_INVALID),
2061     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2062     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2063     DEFINE_PROP_END_OF_LIST()
2064 };
2065 
2066 static gchar *arm_gdb_arch_name(CPUState *cs)
2067 {
2068     ARMCPU *cpu = ARM_CPU(cs);
2069     CPUARMState *env = &cpu->env;
2070 
2071     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2072         return g_strdup("iwmmxt");
2073     }
2074     return g_strdup("arm");
2075 }
2076 
2077 #ifndef CONFIG_USER_ONLY
2078 #include "hw/core/sysemu-cpu-ops.h"
2079 
2080 static const struct SysemuCPUOps arm_sysemu_ops = {
2081     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2082     .asidx_from_attrs = arm_asidx_from_attrs,
2083     .write_elf32_note = arm_cpu_write_elf32_note,
2084     .write_elf64_note = arm_cpu_write_elf64_note,
2085     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2086     .legacy_vmsd = &vmstate_arm_cpu,
2087 };
2088 #endif
2089 
2090 #ifdef CONFIG_TCG
2091 static const struct TCGCPUOps arm_tcg_ops = {
2092     .initialize = arm_translate_init,
2093     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2094     .debug_excp_handler = arm_debug_excp_handler,
2095 
2096 #ifdef CONFIG_USER_ONLY
2097     .record_sigsegv = arm_cpu_record_sigsegv,
2098     .record_sigbus = arm_cpu_record_sigbus,
2099 #else
2100     .tlb_fill = arm_cpu_tlb_fill,
2101     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2102     .do_interrupt = arm_cpu_do_interrupt,
2103     .do_transaction_failed = arm_cpu_do_transaction_failed,
2104     .do_unaligned_access = arm_cpu_do_unaligned_access,
2105     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2106     .debug_check_watchpoint = arm_debug_check_watchpoint,
2107     .debug_check_breakpoint = arm_debug_check_breakpoint,
2108 #endif /* !CONFIG_USER_ONLY */
2109 };
2110 #endif /* CONFIG_TCG */
2111 
2112 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2113 {
2114     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2115     CPUClass *cc = CPU_CLASS(acc);
2116     DeviceClass *dc = DEVICE_CLASS(oc);
2117 
2118     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2119                                     &acc->parent_realize);
2120 
2121     device_class_set_props(dc, arm_cpu_properties);
2122     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2123 
2124     cc->class_by_name = arm_cpu_class_by_name;
2125     cc->has_work = arm_cpu_has_work;
2126     cc->dump_state = arm_cpu_dump_state;
2127     cc->set_pc = arm_cpu_set_pc;
2128     cc->gdb_read_register = arm_cpu_gdb_read_register;
2129     cc->gdb_write_register = arm_cpu_gdb_write_register;
2130 #ifndef CONFIG_USER_ONLY
2131     cc->sysemu_ops = &arm_sysemu_ops;
2132 #endif
2133     cc->gdb_num_core_regs = 26;
2134     cc->gdb_core_xml_file = "arm-core.xml";
2135     cc->gdb_arch_name = arm_gdb_arch_name;
2136     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2137     cc->gdb_stop_before_watchpoint = true;
2138     cc->disas_set_info = arm_disas_set_info;
2139 
2140 #ifdef CONFIG_TCG
2141     cc->tcg_ops = &arm_tcg_ops;
2142 #endif /* CONFIG_TCG */
2143 }
2144 
2145 static void arm_cpu_instance_init(Object *obj)
2146 {
2147     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2148 
2149     acc->info->initfn(obj);
2150     arm_cpu_post_init(obj);
2151 }
2152 
2153 static void cpu_register_class_init(ObjectClass *oc, void *data)
2154 {
2155     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2156 
2157     acc->info = data;
2158 }
2159 
2160 void arm_cpu_register(const ARMCPUInfo *info)
2161 {
2162     TypeInfo type_info = {
2163         .parent = TYPE_ARM_CPU,
2164         .instance_size = sizeof(ARMCPU),
2165         .instance_align = __alignof__(ARMCPU),
2166         .instance_init = arm_cpu_instance_init,
2167         .class_size = sizeof(ARMCPUClass),
2168         .class_init = info->class_init ?: cpu_register_class_init,
2169         .class_data = (void *)info,
2170     };
2171 
2172     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2173     type_register(&type_info);
2174     g_free((void *)type_info.name);
2175 }
2176 
2177 static const TypeInfo arm_cpu_type_info = {
2178     .name = TYPE_ARM_CPU,
2179     .parent = TYPE_CPU,
2180     .instance_size = sizeof(ARMCPU),
2181     .instance_align = __alignof__(ARMCPU),
2182     .instance_init = arm_cpu_initfn,
2183     .instance_finalize = arm_cpu_finalizefn,
2184     .abstract = true,
2185     .class_size = sizeof(ARMCPUClass),
2186     .class_init = arm_cpu_class_init,
2187 };
2188 
2189 static void arm_cpu_register_types(void)
2190 {
2191     type_register_static(&arm_cpu_type_info);
2192 }
2193 
2194 type_init(arm_cpu_register_types)
2195