xref: /qemu/target/arm/cpu.h (revision 20b42c33)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "qapi/qapi-types-common.h"
30 #include "target/arm/multiprocessing.h"
31 #include "target/arm/gtimer.h"
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #ifdef TARGET_AARCH64
37 #define KVM_HAVE_MCE_INJECTION 1
38 #endif
39 
40 #define EXCP_UDEF            1   /* undefined instruction */
41 #define EXCP_SWI             2   /* software interrupt */
42 #define EXCP_PREFETCH_ABORT  3
43 #define EXCP_DATA_ABORT      4
44 #define EXCP_IRQ             5
45 #define EXCP_FIQ             6
46 #define EXCP_BKPT            7
47 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
48 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
49 #define EXCP_HVC            11   /* HyperVisor Call */
50 #define EXCP_HYP_TRAP       12
51 #define EXCP_SMC            13   /* Secure Monitor Call */
52 #define EXCP_VIRQ           14
53 #define EXCP_VFIQ           15
54 #define EXCP_SEMIHOST       16   /* semihosting call */
55 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
56 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
57 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
58 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
59 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
60 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
61 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
62 #define EXCP_VSERR          24
63 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
64 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
65 
66 #define ARMV7M_EXCP_RESET   1
67 #define ARMV7M_EXCP_NMI     2
68 #define ARMV7M_EXCP_HARD    3
69 #define ARMV7M_EXCP_MEM     4
70 #define ARMV7M_EXCP_BUS     5
71 #define ARMV7M_EXCP_USAGE   6
72 #define ARMV7M_EXCP_SECURE  7
73 #define ARMV7M_EXCP_SVC     11
74 #define ARMV7M_EXCP_DEBUG   12
75 #define ARMV7M_EXCP_PENDSV  14
76 #define ARMV7M_EXCP_SYSTICK 15
77 
78 /* ARM-specific interrupt pending bits.  */
79 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
80 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
81 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
82 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
83 
84 /* The usual mapping for an AArch64 system register to its AArch32
85  * counterpart is for the 32 bit world to have access to the lower
86  * half only (with writes leaving the upper half untouched). It's
87  * therefore useful to be able to pass TCG the offset of the least
88  * significant half of a uint64_t struct member.
89  */
90 #if HOST_BIG_ENDIAN
91 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
92 #define offsetofhigh32(S, M) offsetof(S, M)
93 #else
94 #define offsetoflow32(S, M) offsetof(S, M)
95 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #endif
97 
98 /* ARM-specific extra insn start words:
99  * 1: Conditional execution bits
100  * 2: Partial exception syndrome for data aborts
101  */
102 #define TARGET_INSN_START_EXTRA_WORDS 2
103 
104 /* The 2nd extra word holding syndrome info for data aborts does not use
105  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
106  * help the sleb128 encoder do a better job.
107  * When restoring the CPU state, we shift it back up.
108  */
109 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
110 #define ARM_INSN_START_WORD2_SHIFT 13
111 
112 /* We currently assume float and double are IEEE single and double
113    precision respectively.
114    Doing runtime conversions is tricky because VFP registers may contain
115    integer values (eg. as the result of a FTOSI instruction).
116    s<2n> maps to the least significant half of d<n>
117    s<2n+1> maps to the most significant half of d<n>
118  */
119 
120 /**
121  * DynamicGDBFeatureInfo:
122  * @desc: Contains the feature descriptions.
123  * @data: A union with data specific to the set of registers
124  *    @cpregs_keys: Array that contains the corresponding Key of
125  *                  a given cpreg with the same order of the cpreg
126  *                  in the XML description.
127  */
128 typedef struct DynamicGDBFeatureInfo {
129     GDBFeature desc;
130     union {
131         struct {
132             uint32_t *keys;
133         } cpregs;
134     } data;
135 } DynamicGDBFeatureInfo;
136 
137 /* CPU state for each instance of a generic timer (in cp15 c14) */
138 typedef struct ARMGenericTimer {
139     uint64_t cval; /* Timer CompareValue register */
140     uint64_t ctl; /* Timer Control register */
141 } ARMGenericTimer;
142 
143 /* Define a maximum sized vector register.
144  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
145  * For 64-bit, this is a 2048-bit SVE register.
146  *
147  * Note that the mapping between S, D, and Q views of the register bank
148  * differs between AArch64 and AArch32.
149  * In AArch32:
150  *  Qn = regs[n].d[1]:regs[n].d[0]
151  *  Dn = regs[n / 2].d[n & 1]
152  *  Sn = regs[n / 4].d[n % 4 / 2],
153  *       bits 31..0 for even n, and bits 63..32 for odd n
154  *       (and regs[16] to regs[31] are inaccessible)
155  * In AArch64:
156  *  Zn = regs[n].d[*]
157  *  Qn = regs[n].d[1]:regs[n].d[0]
158  *  Dn = regs[n].d[0]
159  *  Sn = regs[n].d[0] bits 31..0
160  *  Hn = regs[n].d[0] bits 15..0
161  *
162  * This corresponds to the architecturally defined mapping between
163  * the two execution states, and means we do not need to explicitly
164  * map these registers when changing states.
165  *
166  * Align the data for use with TCG host vector operations.
167  */
168 
169 #ifdef TARGET_AARCH64
170 # define ARM_MAX_VQ    16
171 #else
172 # define ARM_MAX_VQ    1
173 #endif
174 
175 typedef struct ARMVectorReg {
176     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
177 } ARMVectorReg;
178 
179 #ifdef TARGET_AARCH64
180 /* In AArch32 mode, predicate registers do not exist at all.  */
181 typedef struct ARMPredicateReg {
182     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
183 } ARMPredicateReg;
184 
185 /* In AArch32 mode, PAC keys do not exist at all.  */
186 typedef struct ARMPACKey {
187     uint64_t lo, hi;
188 } ARMPACKey;
189 #endif
190 
191 /* See the commentary above the TBFLAG field definitions.  */
192 typedef struct CPUARMTBFlags {
193     uint32_t flags;
194     target_ulong flags2;
195 } CPUARMTBFlags;
196 
197 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
198 
199 typedef struct NVICState NVICState;
200 
201 typedef struct CPUArchState {
202     /* Regs for current mode.  */
203     uint32_t regs[16];
204 
205     /* 32/64 switch only happens when taking and returning from
206      * exceptions so the overlap semantics are taken care of then
207      * instead of having a complicated union.
208      */
209     /* Regs for A64 mode.  */
210     uint64_t xregs[32];
211     uint64_t pc;
212     /* PSTATE isn't an architectural register for ARMv8. However, it is
213      * convenient for us to assemble the underlying state into a 32 bit format
214      * identical to the architectural format used for the SPSR. (This is also
215      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
216      * 'pstate' register are.) Of the PSTATE bits:
217      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
218      *    semantics as for AArch32, as described in the comments on each field)
219      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
220      *  DAIF (exception masks) are kept in env->daif
221      *  BTYPE is kept in env->btype
222      *  SM and ZA are kept in env->svcr
223      *  all other bits are stored in their correct places in env->pstate
224      */
225     uint32_t pstate;
226     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
227     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
228 
229     /* Cached TBFLAGS state.  See below for which bits are included.  */
230     CPUARMTBFlags hflags;
231 
232     /* Frequently accessed CPSR bits are stored separately for efficiency.
233        This contains all the other bits.  Use cpsr_{read,write} to access
234        the whole CPSR.  */
235     uint32_t uncached_cpsr;
236     uint32_t spsr;
237 
238     /* Banked registers.  */
239     uint64_t banked_spsr[8];
240     uint32_t banked_r13[8];
241     uint32_t banked_r14[8];
242 
243     /* These hold r8-r12.  */
244     uint32_t usr_regs[5];
245     uint32_t fiq_regs[5];
246 
247     /* cpsr flag cache for faster execution */
248     uint32_t CF; /* 0 or 1 */
249     uint32_t VF; /* V is the bit 31. All other bits are undefined */
250     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
251     uint32_t ZF; /* Z set if zero.  */
252     uint32_t QF; /* 0 or 1 */
253     uint32_t GE; /* cpsr[19:16] */
254     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
255     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
256     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
257     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
258 
259     uint64_t elr_el[4]; /* AArch64 exception link regs  */
260     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
261 
262     /* System control coprocessor (cp15) */
263     struct {
264         uint32_t c0_cpuid;
265         union { /* Cache size selection */
266             struct {
267                 uint64_t _unused_csselr0;
268                 uint64_t csselr_ns;
269                 uint64_t _unused_csselr1;
270                 uint64_t csselr_s;
271             };
272             uint64_t csselr_el[4];
273         };
274         union { /* System control register. */
275             struct {
276                 uint64_t _unused_sctlr;
277                 uint64_t sctlr_ns;
278                 uint64_t hsctlr;
279                 uint64_t sctlr_s;
280             };
281             uint64_t sctlr_el[4];
282         };
283         uint64_t vsctlr; /* Virtualization System control register. */
284         uint64_t cpacr_el1; /* Architectural feature access control register */
285         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
286         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
287         uint64_t sder; /* Secure debug enable register. */
288         uint32_t nsacr; /* Non-secure access control register. */
289         union { /* MMU translation table base 0. */
290             struct {
291                 uint64_t _unused_ttbr0_0;
292                 uint64_t ttbr0_ns;
293                 uint64_t _unused_ttbr0_1;
294                 uint64_t ttbr0_s;
295             };
296             uint64_t ttbr0_el[4];
297         };
298         union { /* MMU translation table base 1. */
299             struct {
300                 uint64_t _unused_ttbr1_0;
301                 uint64_t ttbr1_ns;
302                 uint64_t _unused_ttbr1_1;
303                 uint64_t ttbr1_s;
304             };
305             uint64_t ttbr1_el[4];
306         };
307         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
308         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
309         /* MMU translation table base control. */
310         uint64_t tcr_el[4];
311         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
312         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
313         uint32_t c2_data; /* MPU data cacheable bits.  */
314         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
315         union { /* MMU domain access control register
316                  * MPU write buffer control.
317                  */
318             struct {
319                 uint64_t dacr_ns;
320                 uint64_t dacr_s;
321             };
322             struct {
323                 uint64_t dacr32_el2;
324             };
325         };
326         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
328         uint64_t hcr_el2; /* Hypervisor configuration register */
329         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
330         uint64_t scr_el3; /* Secure configuration register.  */
331         union { /* Fault status registers.  */
332             struct {
333                 uint64_t ifsr_ns;
334                 uint64_t ifsr_s;
335             };
336             struct {
337                 uint64_t ifsr32_el2;
338             };
339         };
340         union {
341             struct {
342                 uint64_t _unused_dfsr;
343                 uint64_t dfsr_ns;
344                 uint64_t hsr;
345                 uint64_t dfsr_s;
346             };
347             uint64_t esr_el[4];
348         };
349         uint32_t c6_region[8]; /* MPU base/size registers.  */
350         union { /* Fault address registers. */
351             struct {
352                 uint64_t _unused_far0;
353 #if HOST_BIG_ENDIAN
354                 uint32_t ifar_ns;
355                 uint32_t dfar_ns;
356                 uint32_t ifar_s;
357                 uint32_t dfar_s;
358 #else
359                 uint32_t dfar_ns;
360                 uint32_t ifar_ns;
361                 uint32_t dfar_s;
362                 uint32_t ifar_s;
363 #endif
364                 uint64_t _unused_far3;
365             };
366             uint64_t far_el[4];
367         };
368         uint64_t hpfar_el2;
369         uint64_t hstr_el2;
370         union { /* Translation result. */
371             struct {
372                 uint64_t _unused_par_0;
373                 uint64_t par_ns;
374                 uint64_t _unused_par_1;
375                 uint64_t par_s;
376             };
377             uint64_t par_el[4];
378         };
379 
380         uint32_t c9_insn; /* Cache lockdown registers.  */
381         uint32_t c9_data;
382         uint64_t c9_pmcr; /* performance monitor control register */
383         uint64_t c9_pmcnten; /* perf monitor counter enables */
384         uint64_t c9_pmovsr; /* perf monitor overflow status */
385         uint64_t c9_pmuserenr; /* perf monitor user enable */
386         uint64_t c9_pmselr; /* perf monitor counter selection register */
387         uint64_t c9_pminten; /* perf monitor interrupt enables */
388         union { /* Memory attribute redirection */
389             struct {
390 #if HOST_BIG_ENDIAN
391                 uint64_t _unused_mair_0;
392                 uint32_t mair1_ns;
393                 uint32_t mair0_ns;
394                 uint64_t _unused_mair_1;
395                 uint32_t mair1_s;
396                 uint32_t mair0_s;
397 #else
398                 uint64_t _unused_mair_0;
399                 uint32_t mair0_ns;
400                 uint32_t mair1_ns;
401                 uint64_t _unused_mair_1;
402                 uint32_t mair0_s;
403                 uint32_t mair1_s;
404 #endif
405             };
406             uint64_t mair_el[4];
407         };
408         union { /* vector base address register */
409             struct {
410                 uint64_t _unused_vbar;
411                 uint64_t vbar_ns;
412                 uint64_t hvbar;
413                 uint64_t vbar_s;
414             };
415             uint64_t vbar_el[4];
416         };
417         uint32_t mvbar; /* (monitor) vector base address register */
418         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
419         struct { /* FCSE PID. */
420             uint32_t fcseidr_ns;
421             uint32_t fcseidr_s;
422         };
423         union { /* Context ID. */
424             struct {
425                 uint64_t _unused_contextidr_0;
426                 uint64_t contextidr_ns;
427                 uint64_t _unused_contextidr_1;
428                 uint64_t contextidr_s;
429             };
430             uint64_t contextidr_el[4];
431         };
432         union { /* User RW Thread register. */
433             struct {
434                 uint64_t tpidrurw_ns;
435                 uint64_t tpidrprw_ns;
436                 uint64_t htpidr;
437                 uint64_t _tpidr_el3;
438             };
439             uint64_t tpidr_el[4];
440         };
441         uint64_t tpidr2_el0;
442         /* The secure banks of these registers don't map anywhere */
443         uint64_t tpidrurw_s;
444         uint64_t tpidrprw_s;
445         uint64_t tpidruro_s;
446 
447         union { /* User RO Thread register. */
448             uint64_t tpidruro_ns;
449             uint64_t tpidrro_el[1];
450         };
451         uint64_t c14_cntfrq; /* Counter Frequency register */
452         uint64_t c14_cntkctl; /* Timer Control register */
453         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
454         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
455         ARMGenericTimer c14_timer[NUM_GTIMERS];
456         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
457         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
458         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
459         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
460         uint32_t c15_threadid; /* TI debugger thread-ID.  */
461         uint32_t c15_config_base_address; /* SCU base address.  */
462         uint32_t c15_diagnostic; /* diagnostic register */
463         uint32_t c15_power_diagnostic;
464         uint32_t c15_power_control; /* power control */
465         uint64_t dbgbvr[16]; /* breakpoint value registers */
466         uint64_t dbgbcr[16]; /* breakpoint control registers */
467         uint64_t dbgwvr[16]; /* watchpoint value registers */
468         uint64_t dbgwcr[16]; /* watchpoint control registers */
469         uint64_t dbgclaim;   /* DBGCLAIM bits */
470         uint64_t mdscr_el1;
471         uint64_t oslsr_el1; /* OS Lock Status */
472         uint64_t osdlr_el1; /* OS DoubleLock status */
473         uint64_t mdcr_el2;
474         uint64_t mdcr_el3;
475         /* Stores the architectural value of the counter *the last time it was
476          * updated* by pmccntr_op_start. Accesses should always be surrounded
477          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
478          * architecturally-correct value is being read/set.
479          */
480         uint64_t c15_ccnt;
481         /* Stores the delta between the architectural value and the underlying
482          * cycle count during normal operation. It is used to update c15_ccnt
483          * to be the correct architectural value before accesses. During
484          * accesses, c15_ccnt_delta contains the underlying count being used
485          * for the access, after which it reverts to the delta value in
486          * pmccntr_op_finish.
487          */
488         uint64_t c15_ccnt_delta;
489         uint64_t c14_pmevcntr[31];
490         uint64_t c14_pmevcntr_delta[31];
491         uint64_t c14_pmevtyper[31];
492         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
493         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
494         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
495         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
496         uint64_t gcr_el1;
497         uint64_t rgsr_el1;
498 
499         /* Minimal RAS registers */
500         uint64_t disr_el1;
501         uint64_t vdisr_el2;
502         uint64_t vsesr_el2;
503 
504         /*
505          * Fine-Grained Trap registers. We store these as arrays so the
506          * access checking code doesn't have to manually select
507          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
508          * FEAT_FGT2 will add more elements to these arrays.
509          */
510         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
511         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
512         uint64_t fgt_exec[1]; /* HFGITR */
513 
514         /* RME registers */
515         uint64_t gpccr_el3;
516         uint64_t gptbr_el3;
517         uint64_t mfar_el3;
518 
519         /* NV2 register */
520         uint64_t vncr_el2;
521     } cp15;
522 
523     struct {
524         /* M profile has up to 4 stack pointers:
525          * a Main Stack Pointer and a Process Stack Pointer for each
526          * of the Secure and Non-Secure states. (If the CPU doesn't support
527          * the security extension then it has only two SPs.)
528          * In QEMU we always store the currently active SP in regs[13],
529          * and the non-active SP for the current security state in
530          * v7m.other_sp. The stack pointers for the inactive security state
531          * are stored in other_ss_msp and other_ss_psp.
532          * switch_v7m_security_state() is responsible for rearranging them
533          * when we change security state.
534          */
535         uint32_t other_sp;
536         uint32_t other_ss_msp;
537         uint32_t other_ss_psp;
538         uint32_t vecbase[M_REG_NUM_BANKS];
539         uint32_t basepri[M_REG_NUM_BANKS];
540         uint32_t control[M_REG_NUM_BANKS];
541         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
542         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
543         uint32_t hfsr; /* HardFault Status */
544         uint32_t dfsr; /* Debug Fault Status Register */
545         uint32_t sfsr; /* Secure Fault Status Register */
546         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
547         uint32_t bfar; /* BusFault Address */
548         uint32_t sfar; /* Secure Fault Address Register */
549         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
550         int exception;
551         uint32_t primask[M_REG_NUM_BANKS];
552         uint32_t faultmask[M_REG_NUM_BANKS];
553         uint32_t aircr; /* only holds r/w state if security extn implemented */
554         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
555         uint32_t csselr[M_REG_NUM_BANKS];
556         uint32_t scr[M_REG_NUM_BANKS];
557         uint32_t msplim[M_REG_NUM_BANKS];
558         uint32_t psplim[M_REG_NUM_BANKS];
559         uint32_t fpcar[M_REG_NUM_BANKS];
560         uint32_t fpccr[M_REG_NUM_BANKS];
561         uint32_t fpdscr[M_REG_NUM_BANKS];
562         uint32_t cpacr[M_REG_NUM_BANKS];
563         uint32_t nsacr;
564         uint32_t ltpsize;
565         uint32_t vpr;
566     } v7m;
567 
568     /* Information associated with an exception about to be taken:
569      * code which raises an exception must set cs->exception_index and
570      * the relevant parts of this structure; the cpu_do_interrupt function
571      * will then set the guest-visible registers as part of the exception
572      * entry process.
573      */
574     struct {
575         uint32_t syndrome; /* AArch64 format syndrome register */
576         uint32_t fsr; /* AArch32 format fault status register info */
577         uint64_t vaddress; /* virtual addr associated with exception, if any */
578         uint32_t target_el; /* EL the exception should be targeted for */
579         /* If we implement EL2 we will also need to store information
580          * about the intermediate physical address for stage 2 faults.
581          */
582     } exception;
583 
584     /* Information associated with an SError */
585     struct {
586         uint8_t pending;
587         uint8_t has_esr;
588         uint64_t esr;
589     } serror;
590 
591     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
592 
593     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
594     uint32_t irq_line_state;
595 
596     /* Thumb-2 EE state.  */
597     uint32_t teecr;
598     uint32_t teehbr;
599 
600     /* VFP coprocessor state.  */
601     struct {
602         ARMVectorReg zregs[32];
603 
604 #ifdef TARGET_AARCH64
605         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
606 #define FFR_PRED_NUM 16
607         ARMPredicateReg pregs[17];
608         /* Scratch space for aa64 sve predicate temporary.  */
609         ARMPredicateReg preg_tmp;
610 #endif
611 
612         /* We store these fpcsr fields separately for convenience.  */
613         uint32_t qc[4] QEMU_ALIGNED(16);
614         int vec_len;
615         int vec_stride;
616 
617         uint32_t xregs[16];
618 
619         /* Scratch space for aa32 neon expansion.  */
620         uint32_t scratch[8];
621 
622         /* There are a number of distinct float control structures:
623          *
624          *  fp_status: is the "normal" fp status.
625          *  fp_status_fp16: used for half-precision calculations
626          *  standard_fp_status : the ARM "Standard FPSCR Value"
627          *  standard_fp_status_fp16 : used for half-precision
628          *       calculations with the ARM "Standard FPSCR Value"
629          *
630          * Half-precision operations are governed by a separate
631          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
632          * status structure to control this.
633          *
634          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
635          * round-to-nearest and is used by any operations (generally
636          * Neon) which the architecture defines as controlled by the
637          * standard FPSCR value rather than the FPSCR.
638          *
639          * The "standard FPSCR but for fp16 ops" is needed because
640          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
641          * using a fixed value for it.
642          *
643          * To avoid having to transfer exception bits around, we simply
644          * say that the FPSCR cumulative exception flags are the logical
645          * OR of the flags in the four fp statuses. This relies on the
646          * only thing which needs to read the exception flags being
647          * an explicit FPSCR read.
648          */
649         float_status fp_status;
650         float_status fp_status_f16;
651         float_status standard_fp_status;
652         float_status standard_fp_status_f16;
653 
654         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
655         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
656     } vfp;
657 
658     uint64_t exclusive_addr;
659     uint64_t exclusive_val;
660     /*
661      * Contains the 'val' for the second 64-bit register of LDXP, which comes
662      * from the higher address, not the high part of a complete 128-bit value.
663      * In some ways it might be more convenient to record the exclusive value
664      * as the low and high halves of a 128 bit data value, but the current
665      * semantics of these fields are baked into the migration format.
666      */
667     uint64_t exclusive_high;
668 
669     /* iwMMXt coprocessor state.  */
670     struct {
671         uint64_t regs[16];
672         uint64_t val;
673 
674         uint32_t cregs[16];
675     } iwmmxt;
676 
677 #ifdef TARGET_AARCH64
678     struct {
679         ARMPACKey apia;
680         ARMPACKey apib;
681         ARMPACKey apda;
682         ARMPACKey apdb;
683         ARMPACKey apga;
684     } keys;
685 
686     uint64_t scxtnum_el[4];
687 
688     /*
689      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
690      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
691      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
692      * When SVL is less than the architectural maximum, the accessible
693      * storage is restricted, such that if the SVL is X bytes the guest can
694      * see only the bottom X elements of zarray[], and only the least
695      * significant X bytes of each element of the array. (In other words,
696      * the observable part is always square.)
697      *
698      * The ZA storage can also be considered as a set of square tiles of
699      * elements of different sizes. The mapping from tiles to the ZA array
700      * is architecturally defined, such that for tiles of elements of esz
701      * bytes, the Nth row (or "horizontal slice") of tile T is in
702      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
703      * in the ZA storage, because its rows are striped through the ZA array.
704      *
705      * Because this is so large, keep this toward the end of the reset area,
706      * to keep the offsets into the rest of the structure smaller.
707      */
708     ARMVectorReg zarray[ARM_MAX_VQ * 16];
709 #endif
710 
711     struct CPUBreakpoint *cpu_breakpoint[16];
712     struct CPUWatchpoint *cpu_watchpoint[16];
713 
714     /* Optional fault info across tlb lookup. */
715     ARMMMUFaultInfo *tlb_fi;
716 
717     /* Fields up to this point are cleared by a CPU reset */
718     struct {} end_reset_fields;
719 
720     /* Fields after this point are preserved across CPU reset. */
721 
722     /* Internal CPU feature flags.  */
723     uint64_t features;
724 
725     /* PMSAv7 MPU */
726     struct {
727         uint32_t *drbar;
728         uint32_t *drsr;
729         uint32_t *dracr;
730         uint32_t rnr[M_REG_NUM_BANKS];
731     } pmsav7;
732 
733     /* PMSAv8 MPU */
734     struct {
735         /* The PMSAv8 implementation also shares some PMSAv7 config
736          * and state:
737          *  pmsav7.rnr (region number register)
738          *  pmsav7_dregion (number of configured regions)
739          */
740         uint32_t *rbar[M_REG_NUM_BANKS];
741         uint32_t *rlar[M_REG_NUM_BANKS];
742         uint32_t *hprbar;
743         uint32_t *hprlar;
744         uint32_t mair0[M_REG_NUM_BANKS];
745         uint32_t mair1[M_REG_NUM_BANKS];
746         uint32_t hprselr;
747     } pmsav8;
748 
749     /* v8M SAU */
750     struct {
751         uint32_t *rbar;
752         uint32_t *rlar;
753         uint32_t rnr;
754         uint32_t ctrl;
755     } sau;
756 
757 #if !defined(CONFIG_USER_ONLY)
758     NVICState *nvic;
759     const struct arm_boot_info *boot_info;
760     /* Store GICv3CPUState to access from this struct */
761     void *gicv3state;
762 #else /* CONFIG_USER_ONLY */
763     /* For usermode syscall translation.  */
764     bool eabi;
765 #endif /* CONFIG_USER_ONLY */
766 
767 #ifdef TARGET_TAGGED_ADDRESSES
768     /* Linux syscall tagged address support */
769     bool tagged_addr_enable;
770 #endif
771 } CPUARMState;
772 
773 static inline void set_feature(CPUARMState *env, int feature)
774 {
775     env->features |= 1ULL << feature;
776 }
777 
778 static inline void unset_feature(CPUARMState *env, int feature)
779 {
780     env->features &= ~(1ULL << feature);
781 }
782 
783 /**
784  * ARMELChangeHookFn:
785  * type of a function which can be registered via arm_register_el_change_hook()
786  * to get callbacks when the CPU changes its exception level or mode.
787  */
788 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
789 typedef struct ARMELChangeHook ARMELChangeHook;
790 struct ARMELChangeHook {
791     ARMELChangeHookFn *hook;
792     void *opaque;
793     QLIST_ENTRY(ARMELChangeHook) node;
794 };
795 
796 /* These values map onto the return values for
797  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
798 typedef enum ARMPSCIState {
799     PSCI_ON = 0,
800     PSCI_OFF = 1,
801     PSCI_ON_PENDING = 2
802 } ARMPSCIState;
803 
804 typedef struct ARMISARegisters ARMISARegisters;
805 
806 /*
807  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
808  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
809  *
810  * While processing properties during initialization, corresponding init bits
811  * are set for bits in sve_vq_map that have been set by properties.
812  *
813  * Bits set in supported represent valid vector lengths for the CPU type.
814  */
815 typedef struct {
816     uint32_t map, init, supported;
817 } ARMVQMap;
818 
819 /**
820  * ARMCPU:
821  * @env: #CPUARMState
822  *
823  * An ARM CPU core.
824  */
825 struct ArchCPU {
826     CPUState parent_obj;
827 
828     CPUARMState env;
829 
830     /* Coprocessor information */
831     GHashTable *cp_regs;
832     /* For marshalling (mostly coprocessor) register state between the
833      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
834      * we use these arrays.
835      */
836     /* List of register indexes managed via these arrays; (full KVM style
837      * 64 bit indexes, not CPRegInfo 32 bit indexes)
838      */
839     uint64_t *cpreg_indexes;
840     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
841     uint64_t *cpreg_values;
842     /* Length of the indexes, values, reset_values arrays */
843     int32_t cpreg_array_len;
844     /* These are used only for migration: incoming data arrives in
845      * these fields and is sanity checked in post_load before copying
846      * to the working data structures above.
847      */
848     uint64_t *cpreg_vmstate_indexes;
849     uint64_t *cpreg_vmstate_values;
850     int32_t cpreg_vmstate_array_len;
851 
852     DynamicGDBFeatureInfo dyn_sysreg_feature;
853     DynamicGDBFeatureInfo dyn_svereg_feature;
854     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
855     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
856 
857     /* Timers used by the generic (architected) timer */
858     QEMUTimer *gt_timer[NUM_GTIMERS];
859     /*
860      * Timer used by the PMU. Its state is restored after migration by
861      * pmu_op_finish() - it does not need other handling during migration
862      */
863     QEMUTimer *pmu_timer;
864     /* GPIO outputs for generic timer */
865     qemu_irq gt_timer_outputs[NUM_GTIMERS];
866     /* GPIO output for GICv3 maintenance interrupt signal */
867     qemu_irq gicv3_maintenance_interrupt;
868     /* GPIO output for the PMU interrupt */
869     qemu_irq pmu_interrupt;
870 
871     /* MemoryRegion to use for secure physical accesses */
872     MemoryRegion *secure_memory;
873 
874     /* MemoryRegion to use for allocation tag accesses */
875     MemoryRegion *tag_memory;
876     MemoryRegion *secure_tag_memory;
877 
878     /* For v8M, pointer to the IDAU interface provided by board/SoC */
879     Object *idau;
880 
881     /* 'compatible' string for this CPU for Linux device trees */
882     const char *dtb_compatible;
883 
884     /* PSCI version for this CPU
885      * Bits[31:16] = Major Version
886      * Bits[15:0] = Minor Version
887      */
888     uint32_t psci_version;
889 
890     /* Current power state, access guarded by BQL */
891     ARMPSCIState power_state;
892 
893     /* CPU has virtualization extension */
894     bool has_el2;
895     /* CPU has security extension */
896     bool has_el3;
897     /* CPU has PMU (Performance Monitor Unit) */
898     bool has_pmu;
899     /* CPU has VFP */
900     bool has_vfp;
901     /* CPU has 32 VFP registers */
902     bool has_vfp_d32;
903     /* CPU has Neon */
904     bool has_neon;
905     /* CPU has M-profile DSP extension */
906     bool has_dsp;
907 
908     /* CPU has memory protection unit */
909     bool has_mpu;
910     /* PMSAv7 MPU number of supported regions */
911     uint32_t pmsav7_dregion;
912     /* PMSAv8 MPU number of supported hyp regions */
913     uint32_t pmsav8r_hdregion;
914     /* v8M SAU number of supported regions */
915     uint32_t sau_sregion;
916 
917     /* PSCI conduit used to invoke PSCI methods
918      * 0 - disabled, 1 - smc, 2 - hvc
919      */
920     uint32_t psci_conduit;
921 
922     /* For v8M, initial value of the Secure VTOR */
923     uint32_t init_svtor;
924     /* For v8M, initial value of the Non-secure VTOR */
925     uint32_t init_nsvtor;
926 
927     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
928      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
929      */
930     uint32_t kvm_target;
931 
932 #ifdef CONFIG_KVM
933     /* KVM init features for this CPU */
934     uint32_t kvm_init_features[7];
935 
936     /* KVM CPU state */
937 
938     /* KVM virtual time adjustment */
939     bool kvm_adjvtime;
940     bool kvm_vtime_dirty;
941     uint64_t kvm_vtime;
942 
943     /* KVM steal time */
944     OnOffAuto kvm_steal_time;
945 #endif /* CONFIG_KVM */
946 
947     /* Uniprocessor system with MP extensions */
948     bool mp_is_up;
949 
950     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
951      * and the probe failed (so we need to report the error in realize)
952      */
953     bool host_cpu_probe_failed;
954 
955     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
956      * register.
957      */
958     int32_t core_count;
959 
960     /* The instance init functions for implementation-specific subclasses
961      * set these fields to specify the implementation-dependent values of
962      * various constant registers and reset values of non-constant
963      * registers.
964      * Some of these might become QOM properties eventually.
965      * Field names match the official register names as defined in the
966      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
967      * is used for reset values of non-constant registers; no reset_
968      * prefix means a constant register.
969      * Some of these registers are split out into a substructure that
970      * is shared with the translators to control the ISA.
971      *
972      * Note that if you add an ID register to the ARMISARegisters struct
973      * you need to also update the 32-bit and 64-bit versions of the
974      * kvm_arm_get_host_cpu_features() function to correctly populate the
975      * field by reading the value from the KVM vCPU.
976      */
977     struct ARMISARegisters {
978         uint32_t id_isar0;
979         uint32_t id_isar1;
980         uint32_t id_isar2;
981         uint32_t id_isar3;
982         uint32_t id_isar4;
983         uint32_t id_isar5;
984         uint32_t id_isar6;
985         uint32_t id_mmfr0;
986         uint32_t id_mmfr1;
987         uint32_t id_mmfr2;
988         uint32_t id_mmfr3;
989         uint32_t id_mmfr4;
990         uint32_t id_mmfr5;
991         uint32_t id_pfr0;
992         uint32_t id_pfr1;
993         uint32_t id_pfr2;
994         uint32_t mvfr0;
995         uint32_t mvfr1;
996         uint32_t mvfr2;
997         uint32_t id_dfr0;
998         uint32_t id_dfr1;
999         uint32_t dbgdidr;
1000         uint32_t dbgdevid;
1001         uint32_t dbgdevid1;
1002         uint64_t id_aa64isar0;
1003         uint64_t id_aa64isar1;
1004         uint64_t id_aa64isar2;
1005         uint64_t id_aa64pfr0;
1006         uint64_t id_aa64pfr1;
1007         uint64_t id_aa64mmfr0;
1008         uint64_t id_aa64mmfr1;
1009         uint64_t id_aa64mmfr2;
1010         uint64_t id_aa64dfr0;
1011         uint64_t id_aa64dfr1;
1012         uint64_t id_aa64zfr0;
1013         uint64_t id_aa64smfr0;
1014         uint64_t reset_pmcr_el0;
1015     } isar;
1016     uint64_t midr;
1017     uint32_t revidr;
1018     uint32_t reset_fpsid;
1019     uint64_t ctr;
1020     uint32_t reset_sctlr;
1021     uint64_t pmceid0;
1022     uint64_t pmceid1;
1023     uint32_t id_afr0;
1024     uint64_t id_aa64afr0;
1025     uint64_t id_aa64afr1;
1026     uint64_t clidr;
1027     uint64_t mp_affinity; /* MP ID without feature bits */
1028     /* The elements of this array are the CCSIDR values for each cache,
1029      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1030      */
1031     uint64_t ccsidr[16];
1032     uint64_t reset_cbar;
1033     uint32_t reset_auxcr;
1034     bool reset_hivecs;
1035     uint8_t reset_l0gptsz;
1036 
1037     /*
1038      * Intermediate values used during property parsing.
1039      * Once finalized, the values should be read from ID_AA64*.
1040      */
1041     bool prop_pauth;
1042     bool prop_pauth_impdef;
1043     bool prop_pauth_qarma3;
1044     bool prop_lpa2;
1045 
1046     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1047     uint8_t dcz_blocksize;
1048     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1049     uint8_t gm_blocksize;
1050 
1051     uint64_t rvbar_prop; /* Property/input signals.  */
1052 
1053     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1054     int gic_num_lrs; /* number of list registers */
1055     int gic_vpribits; /* number of virtual priority bits */
1056     int gic_vprebits; /* number of virtual preemption bits */
1057     int gic_pribits; /* number of physical priority bits */
1058 
1059     /* Whether the cfgend input is high (i.e. this CPU should reset into
1060      * big-endian mode).  This setting isn't used directly: instead it modifies
1061      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1062      * architecture version.
1063      */
1064     bool cfgend;
1065 
1066     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1067     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1068 
1069     int32_t node_id; /* NUMA node this CPU belongs to */
1070 
1071     /* Used to synchronize KVM and QEMU in-kernel device levels */
1072     uint8_t device_irq_level;
1073 
1074     /* Used to set the maximum vector length the cpu will support.  */
1075     uint32_t sve_max_vq;
1076 
1077 #ifdef CONFIG_USER_ONLY
1078     /* Used to set the default vector length at process start. */
1079     uint32_t sve_default_vq;
1080     uint32_t sme_default_vq;
1081 #endif
1082 
1083     ARMVQMap sve_vq;
1084     ARMVQMap sme_vq;
1085 
1086     /* Generic timer counter frequency, in Hz */
1087     uint64_t gt_cntfrq_hz;
1088 };
1089 
1090 typedef struct ARMCPUInfo {
1091     const char *name;
1092     void (*initfn)(Object *obj);
1093     void (*class_init)(ObjectClass *oc, void *data);
1094 } ARMCPUInfo;
1095 
1096 /**
1097  * ARMCPUClass:
1098  * @parent_realize: The parent class' realize handler.
1099  * @parent_phases: The parent class' reset phase handlers.
1100  *
1101  * An ARM CPU model.
1102  */
1103 struct ARMCPUClass {
1104     CPUClass parent_class;
1105 
1106     const ARMCPUInfo *info;
1107     DeviceRealize parent_realize;
1108     ResettablePhases parent_phases;
1109 };
1110 
1111 struct AArch64CPUClass {
1112     ARMCPUClass parent_class;
1113 };
1114 
1115 /* Callback functions for the generic timer's timers. */
1116 void arm_gt_ptimer_cb(void *opaque);
1117 void arm_gt_vtimer_cb(void *opaque);
1118 void arm_gt_htimer_cb(void *opaque);
1119 void arm_gt_stimer_cb(void *opaque);
1120 void arm_gt_hvtimer_cb(void *opaque);
1121 
1122 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1123 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1124 
1125 void arm_cpu_post_init(Object *obj);
1126 
1127 #define ARM_AFF0_SHIFT 0
1128 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1129 #define ARM_AFF1_SHIFT 8
1130 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1131 #define ARM_AFF2_SHIFT 16
1132 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1133 #define ARM_AFF3_SHIFT 32
1134 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1135 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1136 
1137 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1138 #define ARM64_AFFINITY_MASK \
1139     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1140 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1141 
1142 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1143 
1144 #ifndef CONFIG_USER_ONLY
1145 extern const VMStateDescription vmstate_arm_cpu;
1146 
1147 void arm_cpu_do_interrupt(CPUState *cpu);
1148 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1149 
1150 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1151                                          MemTxAttrs *attrs);
1152 #endif /* !CONFIG_USER_ONLY */
1153 
1154 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1155 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1156 
1157 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1158                              int cpuid, DumpState *s);
1159 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1160                              int cpuid, DumpState *s);
1161 
1162 /**
1163  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1164  * @cpu: CPU (which must have been freshly reset)
1165  * @target_el: exception level to put the CPU into
1166  * @secure: whether to put the CPU in secure state
1167  *
1168  * When QEMU is directly running a guest kernel at a lower level than
1169  * EL3 it implicitly emulates some aspects of the guest firmware.
1170  * This includes that on reset we need to configure the parts of the
1171  * CPU corresponding to EL3 so that the real guest code can run at its
1172  * lower exception level. This function does that post-reset CPU setup,
1173  * for when we do direct boot of a guest kernel, and for when we
1174  * emulate PSCI and similar firmware interfaces starting a CPU at a
1175  * lower exception level.
1176  *
1177  * @target_el must be an EL implemented by the CPU between 1 and 3.
1178  * We do not support dropping into a Secure EL other than 3.
1179  *
1180  * It is the responsibility of the caller to call arm_rebuild_hflags().
1181  */
1182 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1183 
1184 #ifdef TARGET_AARCH64
1185 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1186 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1187 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1188 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1189                            int new_el, bool el0_a64);
1190 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1191 
1192 /*
1193  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1194  * The byte at offset i from the start of the in-memory representation contains
1195  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1196  * lowest offsets are stored in the lowest memory addresses, then that nearly
1197  * matches QEMU's representation, which is to use an array of host-endian
1198  * uint64_t's, where the lower offsets are at the lower indices. To complete
1199  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1200  */
1201 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1202 {
1203 #if HOST_BIG_ENDIAN
1204     int i;
1205 
1206     for (i = 0; i < nr; ++i) {
1207         dst[i] = bswap64(src[i]);
1208     }
1209 
1210     return dst;
1211 #else
1212     return src;
1213 #endif
1214 }
1215 
1216 #else
1217 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1218 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1219                                          int n, bool a)
1220 { }
1221 #endif
1222 
1223 void aarch64_sync_32_to_64(CPUARMState *env);
1224 void aarch64_sync_64_to_32(CPUARMState *env);
1225 
1226 int fp_exception_el(CPUARMState *env, int cur_el);
1227 int sve_exception_el(CPUARMState *env, int cur_el);
1228 int sme_exception_el(CPUARMState *env, int cur_el);
1229 
1230 /**
1231  * sve_vqm1_for_el_sm:
1232  * @env: CPUARMState
1233  * @el: exception level
1234  * @sm: streaming mode
1235  *
1236  * Compute the current vector length for @el & @sm, in units of
1237  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1238  * If @sm, compute for SVL, otherwise NVL.
1239  */
1240 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1241 
1242 /* Likewise, but using @sm = PSTATE.SM. */
1243 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1244 
1245 static inline bool is_a64(CPUARMState *env)
1246 {
1247     return env->aarch64;
1248 }
1249 
1250 /**
1251  * pmu_op_start/finish
1252  * @env: CPUARMState
1253  *
1254  * Convert all PMU counters between their delta form (the typical mode when
1255  * they are enabled) and the guest-visible values. These two calls must
1256  * surround any action which might affect the counters.
1257  */
1258 void pmu_op_start(CPUARMState *env);
1259 void pmu_op_finish(CPUARMState *env);
1260 
1261 /*
1262  * Called when a PMU counter is due to overflow
1263  */
1264 void arm_pmu_timer_cb(void *opaque);
1265 
1266 /**
1267  * Functions to register as EL change hooks for PMU mode filtering
1268  */
1269 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1270 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1271 
1272 /*
1273  * pmu_init
1274  * @cpu: ARMCPU
1275  *
1276  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1277  * for the current configuration
1278  */
1279 void pmu_init(ARMCPU *cpu);
1280 
1281 /* SCTLR bit meanings. Several bits have been reused in newer
1282  * versions of the architecture; in that case we define constants
1283  * for both old and new bit meanings. Code which tests against those
1284  * bits should probably check or otherwise arrange that the CPU
1285  * is the architectural version it expects.
1286  */
1287 #define SCTLR_M       (1U << 0)
1288 #define SCTLR_A       (1U << 1)
1289 #define SCTLR_C       (1U << 2)
1290 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1291 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1292 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1293 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1294 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1295 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1296 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1297 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1298 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1299 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1300 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1301 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1302 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1303 #define SCTLR_SED     (1U << 8) /* v8 onward */
1304 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1305 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1306 #define SCTLR_F       (1U << 10) /* up to v6 */
1307 #define SCTLR_SW      (1U << 10) /* v7 */
1308 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1309 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1310 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1311 #define SCTLR_I       (1U << 12)
1312 #define SCTLR_V       (1U << 13) /* AArch32 only */
1313 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1314 #define SCTLR_RR      (1U << 14) /* up to v7 */
1315 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1316 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1317 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1318 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1319 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1320 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1321 #define SCTLR_BR      (1U << 17) /* PMSA only */
1322 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1323 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1324 #define SCTLR_WXN     (1U << 19)
1325 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1326 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1327 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1328 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1329 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1330 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1331 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1332 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1333 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1334 #define SCTLR_VE      (1U << 24) /* up to v7 */
1335 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1336 #define SCTLR_EE      (1U << 25)
1337 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1338 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1339 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1340 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1341 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1342 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1343 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1344 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1345 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1346 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1347 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1348 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1349 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1350 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1351 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1352 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1353 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1354 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1355 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1356 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1357 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1358 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1359 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1360 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1361 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1362 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1363 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1364 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1365 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1366 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1367 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1368 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1369 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1370 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1371 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1372 
1373 #define CPSR_M (0x1fU)
1374 #define CPSR_T (1U << 5)
1375 #define CPSR_F (1U << 6)
1376 #define CPSR_I (1U << 7)
1377 #define CPSR_A (1U << 8)
1378 #define CPSR_E (1U << 9)
1379 #define CPSR_IT_2_7 (0xfc00U)
1380 #define CPSR_GE (0xfU << 16)
1381 #define CPSR_IL (1U << 20)
1382 #define CPSR_DIT (1U << 21)
1383 #define CPSR_PAN (1U << 22)
1384 #define CPSR_SSBS (1U << 23)
1385 #define CPSR_J (1U << 24)
1386 #define CPSR_IT_0_1 (3U << 25)
1387 #define CPSR_Q (1U << 27)
1388 #define CPSR_V (1U << 28)
1389 #define CPSR_C (1U << 29)
1390 #define CPSR_Z (1U << 30)
1391 #define CPSR_N (1U << 31)
1392 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1393 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1394 
1395 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1396 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1397     | CPSR_NZCV)
1398 /* Bits writable in user mode.  */
1399 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1400 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1401 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1402 
1403 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1404 #define XPSR_EXCP 0x1ffU
1405 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1406 #define XPSR_IT_2_7 CPSR_IT_2_7
1407 #define XPSR_GE CPSR_GE
1408 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1409 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1410 #define XPSR_IT_0_1 CPSR_IT_0_1
1411 #define XPSR_Q CPSR_Q
1412 #define XPSR_V CPSR_V
1413 #define XPSR_C CPSR_C
1414 #define XPSR_Z CPSR_Z
1415 #define XPSR_N CPSR_N
1416 #define XPSR_NZCV CPSR_NZCV
1417 #define XPSR_IT CPSR_IT
1418 
1419 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1420  * Only these are valid when in AArch64 mode; in
1421  * AArch32 mode SPSRs are basically CPSR-format.
1422  */
1423 #define PSTATE_SP (1U)
1424 #define PSTATE_M (0xFU)
1425 #define PSTATE_nRW (1U << 4)
1426 #define PSTATE_F (1U << 6)
1427 #define PSTATE_I (1U << 7)
1428 #define PSTATE_A (1U << 8)
1429 #define PSTATE_D (1U << 9)
1430 #define PSTATE_BTYPE (3U << 10)
1431 #define PSTATE_SSBS (1U << 12)
1432 #define PSTATE_IL (1U << 20)
1433 #define PSTATE_SS (1U << 21)
1434 #define PSTATE_PAN (1U << 22)
1435 #define PSTATE_UAO (1U << 23)
1436 #define PSTATE_DIT (1U << 24)
1437 #define PSTATE_TCO (1U << 25)
1438 #define PSTATE_V (1U << 28)
1439 #define PSTATE_C (1U << 29)
1440 #define PSTATE_Z (1U << 30)
1441 #define PSTATE_N (1U << 31)
1442 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1443 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1444 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1445 /* Mode values for AArch64 */
1446 #define PSTATE_MODE_EL3h 13
1447 #define PSTATE_MODE_EL3t 12
1448 #define PSTATE_MODE_EL2h 9
1449 #define PSTATE_MODE_EL2t 8
1450 #define PSTATE_MODE_EL1h 5
1451 #define PSTATE_MODE_EL1t 4
1452 #define PSTATE_MODE_EL0t 0
1453 
1454 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1455 FIELD(SVCR, SM, 0, 1)
1456 FIELD(SVCR, ZA, 1, 1)
1457 
1458 /* Fields for SMCR_ELx. */
1459 FIELD(SMCR, LEN, 0, 4)
1460 FIELD(SMCR, FA64, 31, 1)
1461 
1462 /* Write a new value to v7m.exception, thus transitioning into or out
1463  * of Handler mode; this may result in a change of active stack pointer.
1464  */
1465 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1466 
1467 /* Map EL and handler into a PSTATE_MODE.  */
1468 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1469 {
1470     return (el << 2) | handler;
1471 }
1472 
1473 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1474  * interprocessing, so we don't attempt to sync with the cpsr state used by
1475  * the 32 bit decoder.
1476  */
1477 static inline uint32_t pstate_read(CPUARMState *env)
1478 {
1479     int ZF;
1480 
1481     ZF = (env->ZF == 0);
1482     return (env->NF & 0x80000000) | (ZF << 30)
1483         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1484         | env->pstate | env->daif | (env->btype << 10);
1485 }
1486 
1487 static inline void pstate_write(CPUARMState *env, uint32_t val)
1488 {
1489     env->ZF = (~val) & PSTATE_Z;
1490     env->NF = val;
1491     env->CF = (val >> 29) & 1;
1492     env->VF = (val << 3) & 0x80000000;
1493     env->daif = val & PSTATE_DAIF;
1494     env->btype = (val >> 10) & 3;
1495     env->pstate = val & ~CACHED_PSTATE_BITS;
1496 }
1497 
1498 /* Return the current CPSR value.  */
1499 uint32_t cpsr_read(CPUARMState *env);
1500 
1501 typedef enum CPSRWriteType {
1502     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1503     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1504     CPSRWriteRaw = 2,
1505         /* trust values, no reg bank switch, no hflags rebuild */
1506     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1507 } CPSRWriteType;
1508 
1509 /*
1510  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1511  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1512  * correspond to TB flags bits cached in the hflags, unless @write_type
1513  * is CPSRWriteRaw.
1514  */
1515 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1516                 CPSRWriteType write_type);
1517 
1518 /* Return the current xPSR value.  */
1519 static inline uint32_t xpsr_read(CPUARMState *env)
1520 {
1521     int ZF;
1522     ZF = (env->ZF == 0);
1523     return (env->NF & 0x80000000) | (ZF << 30)
1524         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1525         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1526         | ((env->condexec_bits & 0xfc) << 8)
1527         | (env->GE << 16)
1528         | env->v7m.exception;
1529 }
1530 
1531 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1532 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1533 {
1534     if (mask & XPSR_NZCV) {
1535         env->ZF = (~val) & XPSR_Z;
1536         env->NF = val;
1537         env->CF = (val >> 29) & 1;
1538         env->VF = (val << 3) & 0x80000000;
1539     }
1540     if (mask & XPSR_Q) {
1541         env->QF = ((val & XPSR_Q) != 0);
1542     }
1543     if (mask & XPSR_GE) {
1544         env->GE = (val & XPSR_GE) >> 16;
1545     }
1546 #ifndef CONFIG_USER_ONLY
1547     if (mask & XPSR_T) {
1548         env->thumb = ((val & XPSR_T) != 0);
1549     }
1550     if (mask & XPSR_IT_0_1) {
1551         env->condexec_bits &= ~3;
1552         env->condexec_bits |= (val >> 25) & 3;
1553     }
1554     if (mask & XPSR_IT_2_7) {
1555         env->condexec_bits &= 3;
1556         env->condexec_bits |= (val >> 8) & 0xfc;
1557     }
1558     if (mask & XPSR_EXCP) {
1559         /* Note that this only happens on exception exit */
1560         write_v7m_exception(env, val & XPSR_EXCP);
1561     }
1562 #endif
1563 }
1564 
1565 #define HCR_VM        (1ULL << 0)
1566 #define HCR_SWIO      (1ULL << 1)
1567 #define HCR_PTW       (1ULL << 2)
1568 #define HCR_FMO       (1ULL << 3)
1569 #define HCR_IMO       (1ULL << 4)
1570 #define HCR_AMO       (1ULL << 5)
1571 #define HCR_VF        (1ULL << 6)
1572 #define HCR_VI        (1ULL << 7)
1573 #define HCR_VSE       (1ULL << 8)
1574 #define HCR_FB        (1ULL << 9)
1575 #define HCR_BSU_MASK  (3ULL << 10)
1576 #define HCR_DC        (1ULL << 12)
1577 #define HCR_TWI       (1ULL << 13)
1578 #define HCR_TWE       (1ULL << 14)
1579 #define HCR_TID0      (1ULL << 15)
1580 #define HCR_TID1      (1ULL << 16)
1581 #define HCR_TID2      (1ULL << 17)
1582 #define HCR_TID3      (1ULL << 18)
1583 #define HCR_TSC       (1ULL << 19)
1584 #define HCR_TIDCP     (1ULL << 20)
1585 #define HCR_TACR      (1ULL << 21)
1586 #define HCR_TSW       (1ULL << 22)
1587 #define HCR_TPCP      (1ULL << 23)
1588 #define HCR_TPU       (1ULL << 24)
1589 #define HCR_TTLB      (1ULL << 25)
1590 #define HCR_TVM       (1ULL << 26)
1591 #define HCR_TGE       (1ULL << 27)
1592 #define HCR_TDZ       (1ULL << 28)
1593 #define HCR_HCD       (1ULL << 29)
1594 #define HCR_TRVM      (1ULL << 30)
1595 #define HCR_RW        (1ULL << 31)
1596 #define HCR_CD        (1ULL << 32)
1597 #define HCR_ID        (1ULL << 33)
1598 #define HCR_E2H       (1ULL << 34)
1599 #define HCR_TLOR      (1ULL << 35)
1600 #define HCR_TERR      (1ULL << 36)
1601 #define HCR_TEA       (1ULL << 37)
1602 #define HCR_MIOCNCE   (1ULL << 38)
1603 #define HCR_TME       (1ULL << 39)
1604 #define HCR_APK       (1ULL << 40)
1605 #define HCR_API       (1ULL << 41)
1606 #define HCR_NV        (1ULL << 42)
1607 #define HCR_NV1       (1ULL << 43)
1608 #define HCR_AT        (1ULL << 44)
1609 #define HCR_NV2       (1ULL << 45)
1610 #define HCR_FWB       (1ULL << 46)
1611 #define HCR_FIEN      (1ULL << 47)
1612 #define HCR_GPF       (1ULL << 48)
1613 #define HCR_TID4      (1ULL << 49)
1614 #define HCR_TICAB     (1ULL << 50)
1615 #define HCR_AMVOFFEN  (1ULL << 51)
1616 #define HCR_TOCU      (1ULL << 52)
1617 #define HCR_ENSCXT    (1ULL << 53)
1618 #define HCR_TTLBIS    (1ULL << 54)
1619 #define HCR_TTLBOS    (1ULL << 55)
1620 #define HCR_ATA       (1ULL << 56)
1621 #define HCR_DCT       (1ULL << 57)
1622 #define HCR_TID5      (1ULL << 58)
1623 #define HCR_TWEDEN    (1ULL << 59)
1624 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1625 
1626 #define SCR_NS                (1ULL << 0)
1627 #define SCR_IRQ               (1ULL << 1)
1628 #define SCR_FIQ               (1ULL << 2)
1629 #define SCR_EA                (1ULL << 3)
1630 #define SCR_FW                (1ULL << 4)
1631 #define SCR_AW                (1ULL << 5)
1632 #define SCR_NET               (1ULL << 6)
1633 #define SCR_SMD               (1ULL << 7)
1634 #define SCR_HCE               (1ULL << 8)
1635 #define SCR_SIF               (1ULL << 9)
1636 #define SCR_RW                (1ULL << 10)
1637 #define SCR_ST                (1ULL << 11)
1638 #define SCR_TWI               (1ULL << 12)
1639 #define SCR_TWE               (1ULL << 13)
1640 #define SCR_TLOR              (1ULL << 14)
1641 #define SCR_TERR              (1ULL << 15)
1642 #define SCR_APK               (1ULL << 16)
1643 #define SCR_API               (1ULL << 17)
1644 #define SCR_EEL2              (1ULL << 18)
1645 #define SCR_EASE              (1ULL << 19)
1646 #define SCR_NMEA              (1ULL << 20)
1647 #define SCR_FIEN              (1ULL << 21)
1648 #define SCR_ENSCXT            (1ULL << 25)
1649 #define SCR_ATA               (1ULL << 26)
1650 #define SCR_FGTEN             (1ULL << 27)
1651 #define SCR_ECVEN             (1ULL << 28)
1652 #define SCR_TWEDEN            (1ULL << 29)
1653 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1654 #define SCR_TME               (1ULL << 34)
1655 #define SCR_AMVOFFEN          (1ULL << 35)
1656 #define SCR_ENAS0             (1ULL << 36)
1657 #define SCR_ADEN              (1ULL << 37)
1658 #define SCR_HXEN              (1ULL << 38)
1659 #define SCR_TRNDR             (1ULL << 40)
1660 #define SCR_ENTP2             (1ULL << 41)
1661 #define SCR_GPF               (1ULL << 48)
1662 #define SCR_NSE               (1ULL << 62)
1663 
1664 /* Return the current FPSCR value.  */
1665 uint32_t vfp_get_fpscr(CPUARMState *env);
1666 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1667 
1668 /* FPCR, Floating Point Control Register
1669  * FPSR, Floating Poiht Status Register
1670  *
1671  * For A64 the FPSCR is split into two logically distinct registers,
1672  * FPCR and FPSR. However since they still use non-overlapping bits
1673  * we store the underlying state in fpscr and just mask on read/write.
1674  */
1675 #define FPSR_MASK 0xf800009f
1676 #define FPCR_MASK 0x07ff9f00
1677 
1678 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1679 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1680 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1681 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1682 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1683 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1684 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1685 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1686 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1687 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1688 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1689 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1690 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1691 #define FPCR_C      (1 << 29)   /* FP carry flag */
1692 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1693 #define FPCR_N      (1 << 31)   /* FP negative flag */
1694 
1695 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1696 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1697 #define FPCR_LTPSIZE_LENGTH 3
1698 
1699 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1700 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1701 
1702 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1703 {
1704     return vfp_get_fpscr(env) & FPSR_MASK;
1705 }
1706 
1707 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1708 {
1709     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1710     vfp_set_fpscr(env, new_fpscr);
1711 }
1712 
1713 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1714 {
1715     return vfp_get_fpscr(env) & FPCR_MASK;
1716 }
1717 
1718 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1719 {
1720     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1721     vfp_set_fpscr(env, new_fpscr);
1722 }
1723 
1724 enum arm_cpu_mode {
1725   ARM_CPU_MODE_USR = 0x10,
1726   ARM_CPU_MODE_FIQ = 0x11,
1727   ARM_CPU_MODE_IRQ = 0x12,
1728   ARM_CPU_MODE_SVC = 0x13,
1729   ARM_CPU_MODE_MON = 0x16,
1730   ARM_CPU_MODE_ABT = 0x17,
1731   ARM_CPU_MODE_HYP = 0x1a,
1732   ARM_CPU_MODE_UND = 0x1b,
1733   ARM_CPU_MODE_SYS = 0x1f
1734 };
1735 
1736 /* VFP system registers.  */
1737 #define ARM_VFP_FPSID   0
1738 #define ARM_VFP_FPSCR   1
1739 #define ARM_VFP_MVFR2   5
1740 #define ARM_VFP_MVFR1   6
1741 #define ARM_VFP_MVFR0   7
1742 #define ARM_VFP_FPEXC   8
1743 #define ARM_VFP_FPINST  9
1744 #define ARM_VFP_FPINST2 10
1745 /* These ones are M-profile only */
1746 #define ARM_VFP_FPSCR_NZCVQC 2
1747 #define ARM_VFP_VPR 12
1748 #define ARM_VFP_P0 13
1749 #define ARM_VFP_FPCXT_NS 14
1750 #define ARM_VFP_FPCXT_S 15
1751 
1752 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1753 #define QEMU_VFP_FPSCR_NZCV 0xffff
1754 
1755 /* iwMMXt coprocessor control registers.  */
1756 #define ARM_IWMMXT_wCID  0
1757 #define ARM_IWMMXT_wCon  1
1758 #define ARM_IWMMXT_wCSSF 2
1759 #define ARM_IWMMXT_wCASF 3
1760 #define ARM_IWMMXT_wCGR0 8
1761 #define ARM_IWMMXT_wCGR1 9
1762 #define ARM_IWMMXT_wCGR2 10
1763 #define ARM_IWMMXT_wCGR3 11
1764 
1765 /* V7M CCR bits */
1766 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1767 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1768 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1769 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1770 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1771 FIELD(V7M_CCR, STKALIGN, 9, 1)
1772 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1773 FIELD(V7M_CCR, DC, 16, 1)
1774 FIELD(V7M_CCR, IC, 17, 1)
1775 FIELD(V7M_CCR, BP, 18, 1)
1776 FIELD(V7M_CCR, LOB, 19, 1)
1777 FIELD(V7M_CCR, TRD, 20, 1)
1778 
1779 /* V7M SCR bits */
1780 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1781 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1782 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1783 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1784 
1785 /* V7M AIRCR bits */
1786 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1787 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1788 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1789 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1790 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1791 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1792 FIELD(V7M_AIRCR, PRIS, 14, 1)
1793 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1794 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1795 
1796 /* V7M CFSR bits for MMFSR */
1797 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1798 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1799 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1800 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1801 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1802 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1803 
1804 /* V7M CFSR bits for BFSR */
1805 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1806 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1807 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1808 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1809 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1810 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1811 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1812 
1813 /* V7M CFSR bits for UFSR */
1814 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1815 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1816 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1817 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1818 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1819 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1820 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1821 
1822 /* V7M CFSR bit masks covering all of the subregister bits */
1823 FIELD(V7M_CFSR, MMFSR, 0, 8)
1824 FIELD(V7M_CFSR, BFSR, 8, 8)
1825 FIELD(V7M_CFSR, UFSR, 16, 16)
1826 
1827 /* V7M HFSR bits */
1828 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1829 FIELD(V7M_HFSR, FORCED, 30, 1)
1830 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1831 
1832 /* V7M DFSR bits */
1833 FIELD(V7M_DFSR, HALTED, 0, 1)
1834 FIELD(V7M_DFSR, BKPT, 1, 1)
1835 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1836 FIELD(V7M_DFSR, VCATCH, 3, 1)
1837 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1838 
1839 /* V7M SFSR bits */
1840 FIELD(V7M_SFSR, INVEP, 0, 1)
1841 FIELD(V7M_SFSR, INVIS, 1, 1)
1842 FIELD(V7M_SFSR, INVER, 2, 1)
1843 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1844 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1845 FIELD(V7M_SFSR, LSPERR, 5, 1)
1846 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1847 FIELD(V7M_SFSR, LSERR, 7, 1)
1848 
1849 /* v7M MPU_CTRL bits */
1850 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1851 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1852 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1853 
1854 /* v7M CLIDR bits */
1855 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1856 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1857 FIELD(V7M_CLIDR, LOC, 24, 3)
1858 FIELD(V7M_CLIDR, LOUU, 27, 3)
1859 FIELD(V7M_CLIDR, ICB, 30, 2)
1860 
1861 FIELD(V7M_CSSELR, IND, 0, 1)
1862 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1863 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1864  * define a mask for this and check that it doesn't permit running off
1865  * the end of the array.
1866  */
1867 FIELD(V7M_CSSELR, INDEX, 0, 4)
1868 
1869 /* v7M FPCCR bits */
1870 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1871 FIELD(V7M_FPCCR, USER, 1, 1)
1872 FIELD(V7M_FPCCR, S, 2, 1)
1873 FIELD(V7M_FPCCR, THREAD, 3, 1)
1874 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1875 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1876 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1877 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1878 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1879 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1880 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1881 FIELD(V7M_FPCCR, RES0, 11, 15)
1882 FIELD(V7M_FPCCR, TS, 26, 1)
1883 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1884 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1885 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1886 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1887 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1888 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1889 #define R_V7M_FPCCR_BANKED_MASK                 \
1890     (R_V7M_FPCCR_LSPACT_MASK |                  \
1891      R_V7M_FPCCR_USER_MASK |                    \
1892      R_V7M_FPCCR_THREAD_MASK |                  \
1893      R_V7M_FPCCR_MMRDY_MASK |                   \
1894      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1895      R_V7M_FPCCR_UFRDY_MASK |                   \
1896      R_V7M_FPCCR_ASPEN_MASK)
1897 
1898 /* v7M VPR bits */
1899 FIELD(V7M_VPR, P0, 0, 16)
1900 FIELD(V7M_VPR, MASK01, 16, 4)
1901 FIELD(V7M_VPR, MASK23, 20, 4)
1902 
1903 /*
1904  * System register ID fields.
1905  */
1906 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1907 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1908 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1909 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1910 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1911 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1912 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1913 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1914 FIELD(CLIDR_EL1, LOC, 24, 3)
1915 FIELD(CLIDR_EL1, LOUU, 27, 3)
1916 FIELD(CLIDR_EL1, ICB, 30, 3)
1917 
1918 /* When FEAT_CCIDX is implemented */
1919 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1920 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1921 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1922 
1923 /* When FEAT_CCIDX is not implemented */
1924 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1925 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1926 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1927 
1928 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1929 FIELD(CTR_EL0,  L1IP, 14, 2)
1930 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1931 FIELD(CTR_EL0,  ERG, 20, 4)
1932 FIELD(CTR_EL0,  CWG, 24, 4)
1933 FIELD(CTR_EL0,  IDC, 28, 1)
1934 FIELD(CTR_EL0,  DIC, 29, 1)
1935 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1936 
1937 FIELD(MIDR_EL1, REVISION, 0, 4)
1938 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1939 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1940 FIELD(MIDR_EL1, VARIANT, 20, 4)
1941 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1942 
1943 FIELD(ID_ISAR0, SWAP, 0, 4)
1944 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1945 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1946 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1947 FIELD(ID_ISAR0, COPROC, 16, 4)
1948 FIELD(ID_ISAR0, DEBUG, 20, 4)
1949 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1950 
1951 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1952 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1953 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1954 FIELD(ID_ISAR1, EXTEND, 12, 4)
1955 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1956 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1957 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1958 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1959 
1960 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1961 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1962 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1963 FIELD(ID_ISAR2, MULT, 12, 4)
1964 FIELD(ID_ISAR2, MULTS, 16, 4)
1965 FIELD(ID_ISAR2, MULTU, 20, 4)
1966 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1967 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1968 
1969 FIELD(ID_ISAR3, SATURATE, 0, 4)
1970 FIELD(ID_ISAR3, SIMD, 4, 4)
1971 FIELD(ID_ISAR3, SVC, 8, 4)
1972 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1973 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1974 FIELD(ID_ISAR3, T32COPY, 20, 4)
1975 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1976 FIELD(ID_ISAR3, T32EE, 28, 4)
1977 
1978 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1979 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1980 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1981 FIELD(ID_ISAR4, SMC, 12, 4)
1982 FIELD(ID_ISAR4, BARRIER, 16, 4)
1983 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1984 FIELD(ID_ISAR4, PSR_M, 24, 4)
1985 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1986 
1987 FIELD(ID_ISAR5, SEVL, 0, 4)
1988 FIELD(ID_ISAR5, AES, 4, 4)
1989 FIELD(ID_ISAR5, SHA1, 8, 4)
1990 FIELD(ID_ISAR5, SHA2, 12, 4)
1991 FIELD(ID_ISAR5, CRC32, 16, 4)
1992 FIELD(ID_ISAR5, RDM, 24, 4)
1993 FIELD(ID_ISAR5, VCMA, 28, 4)
1994 
1995 FIELD(ID_ISAR6, JSCVT, 0, 4)
1996 FIELD(ID_ISAR6, DP, 4, 4)
1997 FIELD(ID_ISAR6, FHM, 8, 4)
1998 FIELD(ID_ISAR6, SB, 12, 4)
1999 FIELD(ID_ISAR6, SPECRES, 16, 4)
2000 FIELD(ID_ISAR6, BF16, 20, 4)
2001 FIELD(ID_ISAR6, I8MM, 24, 4)
2002 
2003 FIELD(ID_MMFR0, VMSA, 0, 4)
2004 FIELD(ID_MMFR0, PMSA, 4, 4)
2005 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2006 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2007 FIELD(ID_MMFR0, TCM, 16, 4)
2008 FIELD(ID_MMFR0, AUXREG, 20, 4)
2009 FIELD(ID_MMFR0, FCSE, 24, 4)
2010 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2011 
2012 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2013 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2014 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2015 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2016 FIELD(ID_MMFR1, L1HVD, 16, 4)
2017 FIELD(ID_MMFR1, L1UNI, 20, 4)
2018 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2019 FIELD(ID_MMFR1, BPRED, 28, 4)
2020 
2021 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2022 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2023 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2024 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2025 FIELD(ID_MMFR2, UNITLB, 16, 4)
2026 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2027 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2028 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2029 
2030 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2031 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2032 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2033 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2034 FIELD(ID_MMFR3, PAN, 16, 4)
2035 FIELD(ID_MMFR3, COHWALK, 20, 4)
2036 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2037 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2038 
2039 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2040 FIELD(ID_MMFR4, AC2, 4, 4)
2041 FIELD(ID_MMFR4, XNX, 8, 4)
2042 FIELD(ID_MMFR4, CNP, 12, 4)
2043 FIELD(ID_MMFR4, HPDS, 16, 4)
2044 FIELD(ID_MMFR4, LSM, 20, 4)
2045 FIELD(ID_MMFR4, CCIDX, 24, 4)
2046 FIELD(ID_MMFR4, EVT, 28, 4)
2047 
2048 FIELD(ID_MMFR5, ETS, 0, 4)
2049 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2050 
2051 FIELD(ID_PFR0, STATE0, 0, 4)
2052 FIELD(ID_PFR0, STATE1, 4, 4)
2053 FIELD(ID_PFR0, STATE2, 8, 4)
2054 FIELD(ID_PFR0, STATE3, 12, 4)
2055 FIELD(ID_PFR0, CSV2, 16, 4)
2056 FIELD(ID_PFR0, AMU, 20, 4)
2057 FIELD(ID_PFR0, DIT, 24, 4)
2058 FIELD(ID_PFR0, RAS, 28, 4)
2059 
2060 FIELD(ID_PFR1, PROGMOD, 0, 4)
2061 FIELD(ID_PFR1, SECURITY, 4, 4)
2062 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2063 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2064 FIELD(ID_PFR1, GENTIMER, 16, 4)
2065 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2066 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2067 FIELD(ID_PFR1, GIC, 28, 4)
2068 
2069 FIELD(ID_PFR2, CSV3, 0, 4)
2070 FIELD(ID_PFR2, SSBS, 4, 4)
2071 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2072 
2073 FIELD(ID_AA64ISAR0, AES, 4, 4)
2074 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2075 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2076 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2077 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2078 FIELD(ID_AA64ISAR0, TME, 24, 4)
2079 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2080 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2081 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2082 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2083 FIELD(ID_AA64ISAR0, DP, 44, 4)
2084 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2085 FIELD(ID_AA64ISAR0, TS, 52, 4)
2086 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2087 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2088 
2089 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2090 FIELD(ID_AA64ISAR1, APA, 4, 4)
2091 FIELD(ID_AA64ISAR1, API, 8, 4)
2092 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2093 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2094 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2095 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2096 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2097 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2098 FIELD(ID_AA64ISAR1, SB, 36, 4)
2099 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2100 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2101 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2102 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2103 FIELD(ID_AA64ISAR1, XS, 56, 4)
2104 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2105 
2106 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2107 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2108 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2109 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2110 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2111 FIELD(ID_AA64ISAR2, BC, 20, 4)
2112 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2113 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2114 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2115 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2116 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2117 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2118 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2119 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2120 
2121 FIELD(ID_AA64PFR0, EL0, 0, 4)
2122 FIELD(ID_AA64PFR0, EL1, 4, 4)
2123 FIELD(ID_AA64PFR0, EL2, 8, 4)
2124 FIELD(ID_AA64PFR0, EL3, 12, 4)
2125 FIELD(ID_AA64PFR0, FP, 16, 4)
2126 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2127 FIELD(ID_AA64PFR0, GIC, 24, 4)
2128 FIELD(ID_AA64PFR0, RAS, 28, 4)
2129 FIELD(ID_AA64PFR0, SVE, 32, 4)
2130 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2131 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2132 FIELD(ID_AA64PFR0, AMU, 44, 4)
2133 FIELD(ID_AA64PFR0, DIT, 48, 4)
2134 FIELD(ID_AA64PFR0, RME, 52, 4)
2135 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2136 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2137 
2138 FIELD(ID_AA64PFR1, BT, 0, 4)
2139 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2140 FIELD(ID_AA64PFR1, MTE, 8, 4)
2141 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2142 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2143 FIELD(ID_AA64PFR1, SME, 24, 4)
2144 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2145 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2146 FIELD(ID_AA64PFR1, NMI, 36, 4)
2147 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2148 FIELD(ID_AA64PFR1, GCS, 44, 4)
2149 FIELD(ID_AA64PFR1, THE, 48, 4)
2150 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2151 FIELD(ID_AA64PFR1, DF2, 56, 4)
2152 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2153 
2154 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2155 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2156 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2157 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2158 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2159 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2160 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2161 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2162 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2163 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2164 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2165 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2166 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2167 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2168 
2169 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2170 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2171 FIELD(ID_AA64MMFR1, VH, 8, 4)
2172 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2173 FIELD(ID_AA64MMFR1, LO, 16, 4)
2174 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2175 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2176 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2177 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2178 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2179 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2180 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2181 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2182 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2183 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2184 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2185 
2186 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2187 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2188 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2189 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2190 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2191 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2192 FIELD(ID_AA64MMFR2, NV, 24, 4)
2193 FIELD(ID_AA64MMFR2, ST, 28, 4)
2194 FIELD(ID_AA64MMFR2, AT, 32, 4)
2195 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2196 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2197 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2198 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2199 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2200 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2201 
2202 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2203 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2204 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2205 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2206 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2207 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2208 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2209 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2210 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2211 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2212 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2213 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2214 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2215 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2216 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2217 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2218 
2219 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2220 FIELD(ID_AA64ZFR0, AES, 4, 4)
2221 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2222 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2223 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2224 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2225 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2226 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2227 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2228 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2229 
2230 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2231 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2232 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2233 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2234 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2235 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2236 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2237 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2238 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2239 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2240 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2241 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2242 
2243 FIELD(ID_DFR0, COPDBG, 0, 4)
2244 FIELD(ID_DFR0, COPSDBG, 4, 4)
2245 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2246 FIELD(ID_DFR0, COPTRC, 12, 4)
2247 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2248 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2249 FIELD(ID_DFR0, PERFMON, 24, 4)
2250 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2251 
2252 FIELD(ID_DFR1, MTPMU, 0, 4)
2253 FIELD(ID_DFR1, HPMN0, 4, 4)
2254 
2255 FIELD(DBGDIDR, SE_IMP, 12, 1)
2256 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2257 FIELD(DBGDIDR, VERSION, 16, 4)
2258 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2259 FIELD(DBGDIDR, BRPS, 24, 4)
2260 FIELD(DBGDIDR, WRPS, 28, 4)
2261 
2262 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2263 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2264 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2265 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2266 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2267 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2268 FIELD(DBGDEVID, AUXREGS, 24, 4)
2269 FIELD(DBGDEVID, CIDMASK, 28, 4)
2270 
2271 FIELD(MVFR0, SIMDREG, 0, 4)
2272 FIELD(MVFR0, FPSP, 4, 4)
2273 FIELD(MVFR0, FPDP, 8, 4)
2274 FIELD(MVFR0, FPTRAP, 12, 4)
2275 FIELD(MVFR0, FPDIVIDE, 16, 4)
2276 FIELD(MVFR0, FPSQRT, 20, 4)
2277 FIELD(MVFR0, FPSHVEC, 24, 4)
2278 FIELD(MVFR0, FPROUND, 28, 4)
2279 
2280 FIELD(MVFR1, FPFTZ, 0, 4)
2281 FIELD(MVFR1, FPDNAN, 4, 4)
2282 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2283 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2284 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2285 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2286 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2287 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2288 FIELD(MVFR1, FPHP, 24, 4)
2289 FIELD(MVFR1, SIMDFMAC, 28, 4)
2290 
2291 FIELD(MVFR2, SIMDMISC, 0, 4)
2292 FIELD(MVFR2, FPMISC, 4, 4)
2293 
2294 FIELD(GPCCR, PPS, 0, 3)
2295 FIELD(GPCCR, IRGN, 8, 2)
2296 FIELD(GPCCR, ORGN, 10, 2)
2297 FIELD(GPCCR, SH, 12, 2)
2298 FIELD(GPCCR, PGS, 14, 2)
2299 FIELD(GPCCR, GPC, 16, 1)
2300 FIELD(GPCCR, GPCP, 17, 1)
2301 FIELD(GPCCR, L0GPTSZ, 20, 4)
2302 
2303 FIELD(MFAR, FPA, 12, 40)
2304 FIELD(MFAR, NSE, 62, 1)
2305 FIELD(MFAR, NS, 63, 1)
2306 
2307 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2308 
2309 /* If adding a feature bit which corresponds to a Linux ELF
2310  * HWCAP bit, remember to update the feature-bit-to-hwcap
2311  * mapping in linux-user/elfload.c:get_elf_hwcap().
2312  */
2313 enum arm_features {
2314     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2315     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2316     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2317     ARM_FEATURE_V6,
2318     ARM_FEATURE_V6K,
2319     ARM_FEATURE_V7,
2320     ARM_FEATURE_THUMB2,
2321     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2322     ARM_FEATURE_NEON,
2323     ARM_FEATURE_M, /* Microcontroller profile.  */
2324     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2325     ARM_FEATURE_THUMB2EE,
2326     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2327     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2328     ARM_FEATURE_V4T,
2329     ARM_FEATURE_V5,
2330     ARM_FEATURE_STRONGARM,
2331     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2332     ARM_FEATURE_GENERIC_TIMER,
2333     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2334     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2335     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2336     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2337     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2338     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2339     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2340     ARM_FEATURE_V8,
2341     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2342     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2343     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2344     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2345     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2346     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2347     ARM_FEATURE_PMU, /* has PMU support */
2348     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2349     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2350     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2351     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2352 };
2353 
2354 static inline int arm_feature(CPUARMState *env, int feature)
2355 {
2356     return (env->features & (1ULL << feature)) != 0;
2357 }
2358 
2359 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2360 
2361 /*
2362  * ARM v9 security states.
2363  * The ordering of the enumeration corresponds to the low 2 bits
2364  * of the GPI value, and (except for Root) the concat of NSE:NS.
2365  */
2366 
2367 typedef enum ARMSecuritySpace {
2368     ARMSS_Secure     = 0,
2369     ARMSS_NonSecure  = 1,
2370     ARMSS_Root       = 2,
2371     ARMSS_Realm      = 3,
2372 } ARMSecuritySpace;
2373 
2374 /* Return true if @space is secure, in the pre-v9 sense. */
2375 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2376 {
2377     return space == ARMSS_Secure || space == ARMSS_Root;
2378 }
2379 
2380 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2381 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2382 {
2383     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2384 }
2385 
2386 #if !defined(CONFIG_USER_ONLY)
2387 /**
2388  * arm_security_space_below_el3:
2389  * @env: cpu context
2390  *
2391  * Return the security space of exception levels below EL3, following
2392  * an exception return to those levels.  Unlike arm_security_space,
2393  * this doesn't care about the current EL.
2394  */
2395 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2396 
2397 /**
2398  * arm_is_secure_below_el3:
2399  * @env: cpu context
2400  *
2401  * Return true if exception levels below EL3 are in secure state,
2402  * or would be following an exception return to those levels.
2403  */
2404 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2405 {
2406     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2407     return ss == ARMSS_Secure;
2408 }
2409 
2410 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2411 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2412 {
2413     assert(!arm_feature(env, ARM_FEATURE_M));
2414     if (arm_feature(env, ARM_FEATURE_EL3)) {
2415         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2416             /* CPU currently in AArch64 state and EL3 */
2417             return true;
2418         } else if (!is_a64(env) &&
2419                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2420             /* CPU currently in AArch32 state and monitor mode */
2421             return true;
2422         }
2423     }
2424     return false;
2425 }
2426 
2427 /**
2428  * arm_security_space:
2429  * @env: cpu context
2430  *
2431  * Return the current security space of the cpu.
2432  */
2433 ARMSecuritySpace arm_security_space(CPUARMState *env);
2434 
2435 /**
2436  * arm_is_secure:
2437  * @env: cpu context
2438  *
2439  * Return true if the processor is in secure state.
2440  */
2441 static inline bool arm_is_secure(CPUARMState *env)
2442 {
2443     return arm_space_is_secure(arm_security_space(env));
2444 }
2445 
2446 /*
2447  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2448  * This corresponds to the pseudocode EL2Enabled().
2449  */
2450 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2451                                                ARMSecuritySpace space)
2452 {
2453     assert(space != ARMSS_Root);
2454     return arm_feature(env, ARM_FEATURE_EL2)
2455            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2456 }
2457 
2458 static inline bool arm_is_el2_enabled(CPUARMState *env)
2459 {
2460     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2461 }
2462 
2463 #else
2464 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2465 {
2466     return ARMSS_NonSecure;
2467 }
2468 
2469 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2470 {
2471     return false;
2472 }
2473 
2474 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2475 {
2476     return ARMSS_NonSecure;
2477 }
2478 
2479 static inline bool arm_is_secure(CPUARMState *env)
2480 {
2481     return false;
2482 }
2483 
2484 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2485                                                ARMSecuritySpace space)
2486 {
2487     return false;
2488 }
2489 
2490 static inline bool arm_is_el2_enabled(CPUARMState *env)
2491 {
2492     return false;
2493 }
2494 #endif
2495 
2496 /**
2497  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2498  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2499  * "for all purposes other than a direct read or write access of HCR_EL2."
2500  * Not included here is HCR_RW.
2501  */
2502 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2503 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2504 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2505 
2506 /* Return true if the specified exception level is running in AArch64 state. */
2507 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2508 {
2509     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2510      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2511      */
2512     assert(el >= 1 && el <= 3);
2513     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2514 
2515     /* The highest exception level is always at the maximum supported
2516      * register width, and then lower levels have a register width controlled
2517      * by bits in the SCR or HCR registers.
2518      */
2519     if (el == 3) {
2520         return aa64;
2521     }
2522 
2523     if (arm_feature(env, ARM_FEATURE_EL3) &&
2524         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2525         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2526     }
2527 
2528     if (el == 2) {
2529         return aa64;
2530     }
2531 
2532     if (arm_is_el2_enabled(env)) {
2533         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2534     }
2535 
2536     return aa64;
2537 }
2538 
2539 /* Function for determining whether guest cp register reads and writes should
2540  * access the secure or non-secure bank of a cp register.  When EL3 is
2541  * operating in AArch32 state, the NS-bit determines whether the secure
2542  * instance of a cp register should be used. When EL3 is AArch64 (or if
2543  * it doesn't exist at all) then there is no register banking, and all
2544  * accesses are to the non-secure version.
2545  */
2546 static inline bool access_secure_reg(CPUARMState *env)
2547 {
2548     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2549                 !arm_el_is_aa64(env, 3) &&
2550                 !(env->cp15.scr_el3 & SCR_NS));
2551 
2552     return ret;
2553 }
2554 
2555 /* Macros for accessing a specified CP register bank */
2556 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2557     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2558 
2559 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2560     do {                                                \
2561         if (_secure) {                                   \
2562             (_env)->cp15._regname##_s = (_val);            \
2563         } else {                                        \
2564             (_env)->cp15._regname##_ns = (_val);           \
2565         }                                               \
2566     } while (0)
2567 
2568 /* Macros for automatically accessing a specific CP register bank depending on
2569  * the current secure state of the system.  These macros are not intended for
2570  * supporting instruction translation reads/writes as these are dependent
2571  * solely on the SCR.NS bit and not the mode.
2572  */
2573 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2574     A32_BANKED_REG_GET((_env), _regname,                \
2575                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2576 
2577 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2578     A32_BANKED_REG_SET((_env), _regname,                                    \
2579                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2580                        (_val))
2581 
2582 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2583                                  uint32_t cur_el, bool secure);
2584 
2585 /* Return the highest implemented Exception Level */
2586 static inline int arm_highest_el(CPUARMState *env)
2587 {
2588     if (arm_feature(env, ARM_FEATURE_EL3)) {
2589         return 3;
2590     }
2591     if (arm_feature(env, ARM_FEATURE_EL2)) {
2592         return 2;
2593     }
2594     return 1;
2595 }
2596 
2597 /* Return true if a v7M CPU is in Handler mode */
2598 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2599 {
2600     return env->v7m.exception != 0;
2601 }
2602 
2603 /* Return the current Exception Level (as per ARMv8; note that this differs
2604  * from the ARMv7 Privilege Level).
2605  */
2606 static inline int arm_current_el(CPUARMState *env)
2607 {
2608     if (arm_feature(env, ARM_FEATURE_M)) {
2609         return arm_v7m_is_handler_mode(env) ||
2610             !(env->v7m.control[env->v7m.secure] & 1);
2611     }
2612 
2613     if (is_a64(env)) {
2614         return extract32(env->pstate, 2, 2);
2615     }
2616 
2617     switch (env->uncached_cpsr & 0x1f) {
2618     case ARM_CPU_MODE_USR:
2619         return 0;
2620     case ARM_CPU_MODE_HYP:
2621         return 2;
2622     case ARM_CPU_MODE_MON:
2623         return 3;
2624     default:
2625         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2626             /* If EL3 is 32-bit then all secure privileged modes run in
2627              * EL3
2628              */
2629             return 3;
2630         }
2631 
2632         return 1;
2633     }
2634 }
2635 
2636 /**
2637  * write_list_to_cpustate
2638  * @cpu: ARMCPU
2639  *
2640  * For each register listed in the ARMCPU cpreg_indexes list, write
2641  * its value from the cpreg_values list into the ARMCPUState structure.
2642  * This updates TCG's working data structures from KVM data or
2643  * from incoming migration state.
2644  *
2645  * Returns: true if all register values were updated correctly,
2646  * false if some register was unknown or could not be written.
2647  * Note that we do not stop early on failure -- we will attempt
2648  * writing all registers in the list.
2649  */
2650 bool write_list_to_cpustate(ARMCPU *cpu);
2651 
2652 /**
2653  * write_cpustate_to_list:
2654  * @cpu: ARMCPU
2655  * @kvm_sync: true if this is for syncing back to KVM
2656  *
2657  * For each register listed in the ARMCPU cpreg_indexes list, write
2658  * its value from the ARMCPUState structure into the cpreg_values list.
2659  * This is used to copy info from TCG's working data structures into
2660  * KVM or for outbound migration.
2661  *
2662  * @kvm_sync is true if we are doing this in order to sync the
2663  * register state back to KVM. In this case we will only update
2664  * values in the list if the previous list->cpustate sync actually
2665  * successfully wrote the CPU state. Otherwise we will keep the value
2666  * that is in the list.
2667  *
2668  * Returns: true if all register values were read correctly,
2669  * false if some register was unknown or could not be read.
2670  * Note that we do not stop early on failure -- we will attempt
2671  * reading all registers in the list.
2672  */
2673 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2674 
2675 #define ARM_CPUID_TI915T      0x54029152
2676 #define ARM_CPUID_TI925T      0x54029252
2677 
2678 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2679 
2680 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2681 
2682 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2683  *
2684  * If EL3 is 64-bit:
2685  *  + NonSecure EL1 & 0 stage 1
2686  *  + NonSecure EL1 & 0 stage 2
2687  *  + NonSecure EL2
2688  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2689  *  + Secure EL1 & 0
2690  *  + Secure EL3
2691  * If EL3 is 32-bit:
2692  *  + NonSecure PL1 & 0 stage 1
2693  *  + NonSecure PL1 & 0 stage 2
2694  *  + NonSecure PL2
2695  *  + Secure PL0
2696  *  + Secure PL1
2697  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2698  *
2699  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2700  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2701  *     because they may differ in access permissions even if the VA->PA map is
2702  *     the same
2703  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2704  *     translation, which means that we have one mmu_idx that deals with two
2705  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2706  *     architecturally permitted]
2707  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2708  *     handling via the TLB. The only way to do a stage 1 translation without
2709  *     the immediate stage 2 translation is via the ATS or AT system insns,
2710  *     which can be slow-pathed and always do a page table walk.
2711  *     The only use of stage 2 translations is either as part of an s1+2
2712  *     lookup or when loading the descriptors during a stage 1 page table walk,
2713  *     and in both those cases we don't use the TLB.
2714  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2715  *     translation regimes, because they map reasonably well to each other
2716  *     and they can't both be active at the same time.
2717  *  5. we want to be able to use the TLB for accesses done as part of a
2718  *     stage1 page table walk, rather than having to walk the stage2 page
2719  *     table over and over.
2720  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2721  *     Never (PAN) bit within PSTATE.
2722  *  7. we fold together the secure and non-secure regimes for A-profile,
2723  *     because there are no banked system registers for aarch64, so the
2724  *     process of switching between secure and non-secure is
2725  *     already heavyweight.
2726  *
2727  * This gives us the following list of cases:
2728  *
2729  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2730  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2731  * EL1 EL1&0 stage 1+2 +PAN
2732  * EL0 EL2&0
2733  * EL2 EL2&0
2734  * EL2 EL2&0 +PAN
2735  * EL2 (aka NS PL2)
2736  * EL3 (aka S PL1)
2737  * Physical (NS & S)
2738  * Stage2 (NS & S)
2739  *
2740  * for a total of 12 different mmu_idx.
2741  *
2742  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2743  * as A profile. They only need to distinguish EL0 and EL1 (and
2744  * EL2 if we ever model a Cortex-R52).
2745  *
2746  * M profile CPUs are rather different as they do not have a true MMU.
2747  * They have the following different MMU indexes:
2748  *  User
2749  *  Privileged
2750  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2751  *  Privileged, execution priority negative (ditto)
2752  * If the CPU supports the v8M Security Extension then there are also:
2753  *  Secure User
2754  *  Secure Privileged
2755  *  Secure User, execution priority negative
2756  *  Secure Privileged, execution priority negative
2757  *
2758  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2759  * are not quite the same -- different CPU types (most notably M profile
2760  * vs A/R profile) would like to use MMU indexes with different semantics,
2761  * but since we don't ever need to use all of those in a single CPU we
2762  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2763  * modes + total number of M profile MMU modes". The lower bits of
2764  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2765  * the same for any particular CPU.
2766  * Variables of type ARMMUIdx are always full values, and the core
2767  * index values are in variables of type 'int'.
2768  *
2769  * Our enumeration includes at the end some entries which are not "true"
2770  * mmu_idx values in that they don't have corresponding TLBs and are only
2771  * valid for doing slow path page table walks.
2772  *
2773  * The constant names here are patterned after the general style of the names
2774  * of the AT/ATS operations.
2775  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2776  * For M profile we arrange them to have a bit for priv, a bit for negpri
2777  * and a bit for secure.
2778  */
2779 #define ARM_MMU_IDX_A     0x10  /* A profile */
2780 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2781 #define ARM_MMU_IDX_M     0x40  /* M profile */
2782 
2783 /* Meanings of the bits for M profile mmu idx values */
2784 #define ARM_MMU_IDX_M_PRIV   0x1
2785 #define ARM_MMU_IDX_M_NEGPRI 0x2
2786 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2787 
2788 #define ARM_MMU_IDX_TYPE_MASK \
2789     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2790 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2791 
2792 typedef enum ARMMMUIdx {
2793     /*
2794      * A-profile.
2795      */
2796     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2797     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2798     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2799     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2800     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2801     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2802     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2803     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2804 
2805     /*
2806      * Used for second stage of an S12 page table walk, or for descriptor
2807      * loads during first stage of an S1 page table walk.  Note that both
2808      * are in use simultaneously for SecureEL2: the security state for
2809      * the S2 ptw is selected by the NS bit from the S1 ptw.
2810      */
2811     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2812     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2813 
2814     /* TLBs with 1-1 mapping to the physical address spaces. */
2815     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2816     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2817     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2818     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2819 
2820     /*
2821      * These are not allocated TLBs and are used only for AT system
2822      * instructions or for the first stage of an S12 page table walk.
2823      */
2824     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2825     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2826     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2827 
2828     /*
2829      * M-profile.
2830      */
2831     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2832     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2833     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2834     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2835     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2836     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2837     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2838     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2839 } ARMMMUIdx;
2840 
2841 /*
2842  * Bit macros for the core-mmu-index values for each index,
2843  * for use when calling tlb_flush_by_mmuidx() and friends.
2844  */
2845 #define TO_CORE_BIT(NAME) \
2846     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2847 
2848 typedef enum ARMMMUIdxBit {
2849     TO_CORE_BIT(E10_0),
2850     TO_CORE_BIT(E20_0),
2851     TO_CORE_BIT(E10_1),
2852     TO_CORE_BIT(E10_1_PAN),
2853     TO_CORE_BIT(E2),
2854     TO_CORE_BIT(E20_2),
2855     TO_CORE_BIT(E20_2_PAN),
2856     TO_CORE_BIT(E3),
2857     TO_CORE_BIT(Stage2),
2858     TO_CORE_BIT(Stage2_S),
2859 
2860     TO_CORE_BIT(MUser),
2861     TO_CORE_BIT(MPriv),
2862     TO_CORE_BIT(MUserNegPri),
2863     TO_CORE_BIT(MPrivNegPri),
2864     TO_CORE_BIT(MSUser),
2865     TO_CORE_BIT(MSPriv),
2866     TO_CORE_BIT(MSUserNegPri),
2867     TO_CORE_BIT(MSPrivNegPri),
2868 } ARMMMUIdxBit;
2869 
2870 #undef TO_CORE_BIT
2871 
2872 #define MMU_USER_IDX 0
2873 
2874 /* Indexes used when registering address spaces with cpu_address_space_init */
2875 typedef enum ARMASIdx {
2876     ARMASIdx_NS = 0,
2877     ARMASIdx_S = 1,
2878     ARMASIdx_TagNS = 2,
2879     ARMASIdx_TagS = 3,
2880 } ARMASIdx;
2881 
2882 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2883 {
2884     /* Assert the relative order of the physical mmu indexes. */
2885     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2886     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2887     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2888     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2889 
2890     return ARMMMUIdx_Phys_S + space;
2891 }
2892 
2893 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2894 {
2895     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2896     return idx - ARMMMUIdx_Phys_S;
2897 }
2898 
2899 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2900 {
2901     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2902      * CSSELR is RAZ/WI.
2903      */
2904     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2905 }
2906 
2907 static inline bool arm_sctlr_b(CPUARMState *env)
2908 {
2909     return
2910         /* We need not implement SCTLR.ITD in user-mode emulation, so
2911          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2912          * This lets people run BE32 binaries with "-cpu any".
2913          */
2914 #ifndef CONFIG_USER_ONLY
2915         !arm_feature(env, ARM_FEATURE_V7) &&
2916 #endif
2917         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2918 }
2919 
2920 uint64_t arm_sctlr(CPUARMState *env, int el);
2921 
2922 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2923                                                   bool sctlr_b)
2924 {
2925 #ifdef CONFIG_USER_ONLY
2926     /*
2927      * In system mode, BE32 is modelled in line with the
2928      * architecture (as word-invariant big-endianness), where loads
2929      * and stores are done little endian but from addresses which
2930      * are adjusted by XORing with the appropriate constant. So the
2931      * endianness to use for the raw data access is not affected by
2932      * SCTLR.B.
2933      * In user mode, however, we model BE32 as byte-invariant
2934      * big-endianness (because user-only code cannot tell the
2935      * difference), and so we need to use a data access endianness
2936      * that depends on SCTLR.B.
2937      */
2938     if (sctlr_b) {
2939         return true;
2940     }
2941 #endif
2942     /* In 32bit endianness is determined by looking at CPSR's E bit */
2943     return env->uncached_cpsr & CPSR_E;
2944 }
2945 
2946 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2947 {
2948     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2949 }
2950 
2951 /* Return true if the processor is in big-endian mode. */
2952 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2953 {
2954     if (!is_a64(env)) {
2955         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2956     } else {
2957         int cur_el = arm_current_el(env);
2958         uint64_t sctlr = arm_sctlr(env, cur_el);
2959         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2960     }
2961 }
2962 
2963 #include "exec/cpu-all.h"
2964 
2965 /*
2966  * We have more than 32-bits worth of state per TB, so we split the data
2967  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2968  * We collect these two parts in CPUARMTBFlags where they are named
2969  * flags and flags2 respectively.
2970  *
2971  * The flags that are shared between all execution modes, TBFLAG_ANY,
2972  * are stored in flags.  The flags that are specific to a given mode
2973  * are stores in flags2.  Since cs_base is sized on the configured
2974  * address size, flags2 always has 64-bits for A64, and a minimum of
2975  * 32-bits for A32 and M32.
2976  *
2977  * The bits for 32-bit A-profile and M-profile partially overlap:
2978  *
2979  *  31         23         11 10             0
2980  * +-------------+----------+----------------+
2981  * |             |          |   TBFLAG_A32   |
2982  * | TBFLAG_AM32 |          +-----+----------+
2983  * |             |                |TBFLAG_M32|
2984  * +-------------+----------------+----------+
2985  *  31         23                6 5        0
2986  *
2987  * Unless otherwise noted, these bits are cached in env->hflags.
2988  */
2989 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2990 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2991 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
2992 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2993 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
2994 /* Target EL if we take a floating-point-disabled exception */
2995 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
2996 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
2997 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2998 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
2999 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3000 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3001 
3002 /*
3003  * Bit usage when in AArch32 state, both A- and M-profile.
3004  */
3005 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3006 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3007 
3008 /*
3009  * Bit usage when in AArch32 state, for A-profile only.
3010  */
3011 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3012 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3013 /*
3014  * We store the bottom two bits of the CPAR as TB flags and handle
3015  * checks on the other bits at runtime. This shares the same bits as
3016  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3017  * Not cached, because VECLEN+VECSTRIDE are not cached.
3018  */
3019 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3020 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3021 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3022 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3023 /*
3024  * Indicates whether cp register reads and writes by guest code should access
3025  * the secure or nonsecure bank of banked registers; note that this is not
3026  * the same thing as the current security state of the processor!
3027  */
3028 FIELD(TBFLAG_A32, NS, 10, 1)
3029 /*
3030  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3031  * This requires an SME trap from AArch32 mode when using NEON.
3032  */
3033 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3034 
3035 /*
3036  * Bit usage when in AArch32 state, for M-profile only.
3037  */
3038 /* Handler (ie not Thread) mode */
3039 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3040 /* Whether we should generate stack-limit checks */
3041 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3042 /* Set if FPCCR.LSPACT is set */
3043 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3044 /* Set if we must create a new FP context */
3045 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3046 /* Set if FPCCR.S does not match current security state */
3047 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3048 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3049 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3050 /* Set if in secure mode */
3051 FIELD(TBFLAG_M32, SECURE, 6, 1)
3052 
3053 /*
3054  * Bit usage when in AArch64 state
3055  */
3056 FIELD(TBFLAG_A64, TBII, 0, 2)
3057 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3058 /* The current vector length, either NVL or SVL. */
3059 FIELD(TBFLAG_A64, VL, 4, 4)
3060 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3061 FIELD(TBFLAG_A64, BT, 9, 1)
3062 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3063 FIELD(TBFLAG_A64, TBID, 12, 2)
3064 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3065 FIELD(TBFLAG_A64, ATA, 15, 1)
3066 FIELD(TBFLAG_A64, TCMA, 16, 2)
3067 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3068 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3069 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3070 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3071 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3072 FIELD(TBFLAG_A64, SVL, 24, 4)
3073 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3074 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3075 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3076 FIELD(TBFLAG_A64, NAA, 30, 1)
3077 FIELD(TBFLAG_A64, ATA0, 31, 1)
3078 FIELD(TBFLAG_A64, NV, 32, 1)
3079 FIELD(TBFLAG_A64, NV1, 33, 1)
3080 FIELD(TBFLAG_A64, NV2, 34, 1)
3081 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3082 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3083 /* Set if FEAT_NV2 RAM accesses are big-endian */
3084 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3085 
3086 /*
3087  * Helpers for using the above. Note that only the A64 accessors use
3088  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3089  * word either is or might be 32 bits only.
3090  */
3091 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3092     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3093 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3094     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3095 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3096     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3097 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3098     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3099 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3100     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3101 
3102 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3103 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3104 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3105 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3106 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3107 
3108 /**
3109  * sve_vq
3110  * @env: the cpu context
3111  *
3112  * Return the VL cached within env->hflags, in units of quadwords.
3113  */
3114 static inline int sve_vq(CPUARMState *env)
3115 {
3116     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3117 }
3118 
3119 /**
3120  * sme_vq
3121  * @env: the cpu context
3122  *
3123  * Return the SVL cached within env->hflags, in units of quadwords.
3124  */
3125 static inline int sme_vq(CPUARMState *env)
3126 {
3127     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3128 }
3129 
3130 static inline bool bswap_code(bool sctlr_b)
3131 {
3132 #ifdef CONFIG_USER_ONLY
3133     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3134      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3135      * would also end up as a mixed-endian mode with BE code, LE data.
3136      */
3137     return TARGET_BIG_ENDIAN ^ sctlr_b;
3138 #else
3139     /* All code access in ARM is little endian, and there are no loaders
3140      * doing swaps that need to be reversed
3141      */
3142     return 0;
3143 #endif
3144 }
3145 
3146 #ifdef CONFIG_USER_ONLY
3147 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3148 {
3149     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3150 }
3151 #endif
3152 
3153 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3154                           uint64_t *cs_base, uint32_t *flags);
3155 
3156 enum {
3157     QEMU_PSCI_CONDUIT_DISABLED = 0,
3158     QEMU_PSCI_CONDUIT_SMC = 1,
3159     QEMU_PSCI_CONDUIT_HVC = 2,
3160 };
3161 
3162 #ifndef CONFIG_USER_ONLY
3163 /* Return the address space index to use for a memory access */
3164 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3165 {
3166     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3167 }
3168 
3169 /* Return the AddressSpace to use for a memory access
3170  * (which depends on whether the access is S or NS, and whether
3171  * the board gave us a separate AddressSpace for S accesses).
3172  */
3173 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3174 {
3175     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3176 }
3177 #endif
3178 
3179 /**
3180  * arm_register_pre_el_change_hook:
3181  * Register a hook function which will be called immediately before this
3182  * CPU changes exception level or mode. The hook function will be
3183  * passed a pointer to the ARMCPU and the opaque data pointer passed
3184  * to this function when the hook was registered.
3185  *
3186  * Note that if a pre-change hook is called, any registered post-change hooks
3187  * are guaranteed to subsequently be called.
3188  */
3189 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3190                                  void *opaque);
3191 /**
3192  * arm_register_el_change_hook:
3193  * Register a hook function which will be called immediately after this
3194  * CPU changes exception level or mode. The hook function will be
3195  * passed a pointer to the ARMCPU and the opaque data pointer passed
3196  * to this function when the hook was registered.
3197  *
3198  * Note that any registered hooks registered here are guaranteed to be called
3199  * if pre-change hooks have been.
3200  */
3201 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3202         *opaque);
3203 
3204 /**
3205  * arm_rebuild_hflags:
3206  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3207  */
3208 void arm_rebuild_hflags(CPUARMState *env);
3209 
3210 /**
3211  * aa32_vfp_dreg:
3212  * Return a pointer to the Dn register within env in 32-bit mode.
3213  */
3214 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3215 {
3216     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3217 }
3218 
3219 /**
3220  * aa32_vfp_qreg:
3221  * Return a pointer to the Qn register within env in 32-bit mode.
3222  */
3223 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3224 {
3225     return &env->vfp.zregs[regno].d[0];
3226 }
3227 
3228 /**
3229  * aa64_vfp_qreg:
3230  * Return a pointer to the Qn register within env in 64-bit mode.
3231  */
3232 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3233 {
3234     return &env->vfp.zregs[regno].d[0];
3235 }
3236 
3237 /* Shared between translate-sve.c and sve_helper.c.  */
3238 extern const uint64_t pred_esz_masks[5];
3239 
3240 /*
3241  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3242  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3243  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3244  */
3245 #define PAGE_BTI            PAGE_TARGET_1
3246 #define PAGE_MTE            PAGE_TARGET_2
3247 #define PAGE_TARGET_STICKY  PAGE_MTE
3248 
3249 /* We associate one allocation tag per 16 bytes, the minimum.  */
3250 #define LOG2_TAG_GRANULE 4
3251 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3252 
3253 #ifdef CONFIG_USER_ONLY
3254 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3255 #endif
3256 
3257 #ifdef TARGET_TAGGED_ADDRESSES
3258 /**
3259  * cpu_untagged_addr:
3260  * @cs: CPU context
3261  * @x: tagged address
3262  *
3263  * Remove any address tag from @x.  This is explicitly related to the
3264  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3265  *
3266  * There should be a better place to put this, but we need this in
3267  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3268  */
3269 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3270 {
3271     ARMCPU *cpu = ARM_CPU(cs);
3272     if (cpu->env.tagged_addr_enable) {
3273         /*
3274          * TBI is enabled for userspace but not kernelspace addresses.
3275          * Only clear the tag if bit 55 is clear.
3276          */
3277         x &= sextract64(x, 0, 56);
3278     }
3279     return x;
3280 }
3281 #endif
3282 
3283 #endif
3284